Prottoy: A Middleware for Sentient
Environment

Fahim Kawsar, Kaori Fujinami and Tatsuo Nakajima

Department of Computer Science,
Waseda University, Tokyo, Japan.
{fahim,fujinami, tatsuo}@dcl.info.waseda.ac.jp

Abstract. Our approach towards context awareness is to retrieve con-
textual information by augmenting our daily life objects (like a chair,
a mirror etc.) with sensing capabilities. We call such artefacts sentient
artefacts. To avoid developing dedicated context-aware application inte-
grating these artefacts, there is a need for a generic computing platform
that can assist application programmers to develop and deploy appli-
cations easily and rapidly. We present a framework titled “Prottoy”for
context-aware applications. The framework provides a generic interface
for interacting with sentient artefacts in a unified way, regardless of their
type and properties. As a result, application development is simple, rapid
and independent from the underlying environments. This paper describes
the design and implementation of Prottoy.

1 Introduction

Ubiquitous computing envisions a future environment that will be aware of its
operating context and will be adaptive to ease our interaction. Our approach
towards such an environment is the environment itself. That means focusing
on the building blocks of the environment and making them smart and context
aware by capturing peoples implicit interaction. We augment daily life artefacts
like a chair, a table, a door, a mirror, a bed etc. with various kinds of sensors to
capture contextual information. Our vision is to utilize these objects for value
added services in addition to their primary roles. By augmenting sensors, we
make these belongings (micro component of the environment) smart. Eventually
this process recursively makes our environment smart and context aware in a
bottom up approach.

Based on our experiences of developing contextual applications integrating
these artefacts, we felt the necessity of a software abstraction that hides the
low level details while satisfying requirements like security support, preference
reflection, reliability etc. To fulfill these requirements we are working on a soft-
ware infrastructure called “Prottoy”. Our primary goal is to provide a simple,
lightweight and extensible framework that offers a unified view of the underly-
ing physical spaces to the applications while supporting all other features.This
paper discusses about the design and implementation of Prottoy.

The rest of the paper is organized as follows: In Section 2, the motivation
and design principle of Prottoy are presented. Section 3 gives an insight in the
architecture of Prottoy respectively. In section 4 we have presented three sample
applications that are built on top of Prottoy. Section 5 discusses several issues
and future directions. Section 6 discusses about the related work and finally
Section 7 concludes the paper.

2 DMotivation and Design Principle

A common goal for programming frameworks for context-aware computing is
to provide a computing platform to easily develop and deploy context-aware
applications. Programmers can focus on modeling and using the context infor-
mation while the underlying platform takes care of the actual management and
the distribution of this information[1]. There have been several investigations on
context aware computing framework in the literature [8] [6] [7] [11] [10] [4] [13] [2]
[12] . Many of these frameworks have several interesting features. Prottoys ap-
proach is to share all those interesting features while incorporating the features
that are missing in other frameworks. In addition Prottoy is designed to satisfy
some essential requirements.The major design principle of Prottoy is to provide
a generic interface that isolates all environment access issues . Next it targets to
separates the application and physical space completely. This separation ensures
the decoupling in space and provides fair flexibility to the developers. Another
important design issue of Prottoy is to make the application independent of
the architecture. Prottoy also designed to be event driven and easily extensible.
Final design goal of Prottoy is to provide fair support for context history, end
users’ preference reflection and artefacts’ security.

3 Architecture of Prottoy

As illustrated in Figure 1 Prottoy is composed of few core components and few
pluggable components. Core components are the architectural base that facilitate
the underlying support for context acquisition and service actuation. Pluggable
components run in the application space to assist the developers to exploit the
context information.

— Core Framework Components:

1. Resource Manager 2. Artefact Wrapper 3. Virtual Artefact
— Components Pluggable to Application:
1. Interpreter 2. Preference Manager

These components internal structures and their corresponding programming
models are discussed in the following.

Interpreter Preference Manager]

I Context Value Interpretation End User Preference

| Application ‘

Creating Instances and Interacting using API

ZO——=H>»0—-rVvU>

| Virtual Artefact |

Query| Response Subscription, Poll,Property Query, Service Actuatign

mX OO0

A4

T T Register to
Resource Manager

Resource
Manager Artefact
Wrapper

S

Artefact
Wrapper

Artefact
Wrapper

Sensor Value [Acquisition

RXAOVOSMZ>TM

Actuating Service
Virtual

(Aciualor) (Sensor) (ISensor) ‘

Sensor

Fig. 1. Basic Architecture of Prottoy

3.1 Resource Manager

It acts as the information repository and service discoverer. It contains arte-
facts’ information like what context or service they provide and their properties.
Artefacts register and deregister themselves to the resource manager when they
join or leave the environment respectively. Applications locate an artefact by
querying the resource manager. If an application uses an artefact, it notifies the
resource manager. Also when an application releases an artefact, the resource
manager is notified. So the resource manager has the snap shot of the environ-
ment and the applications association with the environment all the time.

3.2 Artefact Wrapper

This component encapsulates the sentient artefacts, sensors, actuators and vir-
tual sensors (like weather services, scheduler etc.). It can be used for acquiring
context information from the environment and also can be used to actuate ser-
vices to affect the context or environment. Artefact wrapper is essentially a
template that contains various functionalities as already implemented. Artefact
developers only need to provide their device drivers for context acquisition or for
service actuation. Prottoy handles everything else like event handling, commu-
nication mechanisms, deployment techniques etc. Artefact wrapper is composed
of the following modules:

. Communication Module: Artefact wrapper supports two modes of commu-

nication. In synchronous mode, the context information is constantly dis-
patched to the interested application whenever the context information is
requested, where as in asynchronous mode, the context information is dis-
patched to the interested applications only when context is changed. In case
of the service actuation the artefact wrapper always sends an acknowledge-
ment to the application stating the actuation status.

Local Resource Manager: Artefact wrapper has its own resource manager.
If the global resource manager in the environment is absent, then the arte-
fact can start its own resource manager to advertise its service or context
information.

Security Module: Artefact wrapper has an internal security module that
allows an artefact to protect its service and information from malicious ap-
plications. The artefact only responds to the requests coming from the ap-
plications running on its known domain.

Device Driver and Context Logic: This module provides a template for the
artefact developers to plug in their device driver code and context calculation
logic.

Programming Model: Artefact wrapper has built-in features for most of the
architectural support. Developers need to provide their device driver and context
calculation logic by overriding two functionalities, i.e context update and service
execution method. A snippet of artefact wrapper code looks like the following:

© 00 N O U D W N =

=
= O

public class Thermometer extends ArtefactWrapper{

public Thermometer ()

public void update(){

/* Device driver code and context calculation logic */
setContextState(contextStatement) ;

notifyClient();

}

/* Provide the service execution code here */

public synchronized Hashtable executeService(String argument){

. return null;
-}

12.
13.
14.
15.

public static void main(String[] args){
Thermometer artefact = new Thermometer();
artefact.start();

1

In the update() (line 3-7) function, after context calculation, the developer

should specify the current context value by setting the context statement using
setContextStatement () (line 5) and should fire notifyClient() (line 6), which
eventually notifies all the subscribed applications. The ArtefactWrapper.start ()
(line 14) in the main function initiates the startup process of the artefact.

3.3 Virtual Artefact

Virtual artefact is the heart of our framework that encapsulates the smart en-
vironments and provides a unified view to the application developer. Using the
APIs provided in the virtual artefact, the application developers can interact
with the actual physical artefacts. Virtual artefact consists of the following com-
ponents:

1. Communication Module: This module plays the key role for isolating all

the access issues to the environment from application point of view. The
developer only provides the required artefact functionality /properties using
the APIs. This communication model handles the rest by hiding all the
details like discovering and establishing the communication link with the
actual artefact.

. Storage Module: Virtual artefact internally hosts a transparent storage com-
ponent. When an application uses an artefact, the interaction history of the
application with the artefact is stored in this storage. Application can later
query any historical context.

. Proxy Module: This module utilizes the storage to facilitate the proxy sup-
port when the actual artefact is absent. It produces a calculated context
value using some predefined logic. The value is tagged with a low accuracy
value indicating that it is a calculated value.

Table 1. Virtual Artefact APIs Available to the Developers

Virtual Artefact API

| Functionality

public VirtualArtefact(String context,
String service, PropertyList props,
boolean storage, boolean proxy)

Constructor for creating
the virtual artefact instances

public void subscribe(Object source,
String callback)

For subscribing to artefact for
the context information

public void unsubscribe()

For removing subscription from
the artefact

public synchronized Hashtable execute
(String args)

For executing artefacts service

public Hashtable poll()

For polling an artefacts
context information

public String getProperty(String propname)

For querying artefacts specific
property

public PropertyList getPropertyList()

For querying all the properties
of an artefact

Public Hashtable getTimeValue(Calendar time)

For querying the historical
context information

Programming Model: Virtual artefact has methods for all the standard op-
erations required by the applications for interacting with the artefacts. Table 1
summarizes the APIs and their functionalities.

To demonstrate these APIs usage, a very simple application is provided here.
The application automatically adjusts a cooler to the comfort level based on the
sensed air temperature.The first 4 lines of the snippet are used to create virtual
artefact instances. Then using these instances the actual artefact can be polled
(line 6) or can be subscribed to artefact events (line 7). In case of subscription the
call back supplied to the framework, is generic and independent of architecture.
Also artefact service can be executed (line 17) and properties can be queried
(line 9,10) using the instance respectively.

It is visible in the code snippet that applications do not consider network or
message management of the architecture and do not need to override or extend
any component of the architecture; even applications do not have to look for
the resource manager. The developers only provide the context to action map-
ping rules. Thus Prottoy makes application development fairly simple and rapid.

1. PropertylList props = new PropertyList();
2. props.add("location","lambdax");
3. VirtualArtefact thermometer =
new VirtualArtefact("temperature",null,prop,false,false);
4. VirtualArtefact cooler =
new VirtualArtefact(null, "cooler service",prop,false,false);
. If(thermometer.status){
. System.out.println(thermometer.poll());

5
6
7. thermometer.subscribe(this, "thermometerListener");}
8. If(cooler.status){

9. String owner=cooler.getProperty("owner") ;

10. props=thermometer.getPropertylList();}

11. thermometer.unsubscribe();

12. /*call back*/

13. public void thermometerListener(Hashtable data){

14. /* Hashtable contains context value, timestamp, accuracy and sourcex*/
15. String context = data.get("context").toString();

16. If(cooler.status){

17. System.out.println(cooler.execute("turn-on");}}

3.4 Interpreter

This component maps the context value to the interpreted value. We argue that
context interpretation is completely application dependent. For example, con-
sider a chair that provides information about its state of use. We can use this
information to infer its user is sitting/not sitting (activity) or its users location
(at chairs location) based on the applications requirement. Similarly an RFID
tag can be interpreted as a person name or a news category name based on the

application. Our argument is that, we cannot broadly confine the interpretation
of the context information. So we separate it form the core and provide it as
a pluggable component at the application layer. The interpreter provides very
simple interfaces for the developers to map the context value received from the
lower layers to application specific value. During initial deployment , the devel-
oper needs to provide the mapping information, which is later used when the
real time context value is received.

3.5 Preference Manager

This component is dynamically generated when the application is deployed and
runs at application space. This component is non-editable and is primarily cre-
ated targeting the end users of the application developed using Prottoy. So we
can consider it as a macro running on top of Prottoy. The preference manager
provides endusers with the facility to enable or disable the participation of any
artefact in the application.

(&) Awarahimor (b} Byta M Dina [eh Smart Assistant

Fig. 2. Sample Applications Developed using Prottoy

4 Sample Applications

While introducing a new framework perhaps the most important issue is the
evaluation. We approach this issue by deploying several context aware applica-
tions on top of Prottoy. We will discuss here three applications as shown in figure
2 that capture three scenarios at three distinct places namely washroom, dining
space and work place.

4.1 AwareMirror

AwareMirror [9] is a smart mirror installed in the washroom. In addition to
its primary task of reflecting someones image, it can also provide some useful
information related to the person who is using the mirror. It uses two sentient

artefacts: a mirror and a toothbrush. It also uses three web services to collect
information about users schedule, transportation information and weather fore-
casting.These services were wrapped in artefact wrapper. When a toothbrush is
used, its user is identified and the useful information related to the user is shown
on the mirror. Initial goal of this application is to identify artefact wrappers per-
formance on handling heterogonous context sources like physical artefact and
virtual artefact (web services). We have found that the artefact wrapper could
handle these successfully. Another important observation was applications effect
on artefacts replacement. For testing purpose, weather forecasting web service
was replaced by a thermometer and was being simulated to provide the same in-
formation as the web service. Interestingly we did not modify single line of code
for the proper behavior of AwareMirror. This finding proves Prottoys capability
to handle such replacement seamlessly.

4.2 Byte N Dine

This application is designed for a public/private dining space scenario. The goal
of the application is to provide the latest news to the user while dining. The
application uses two types of sentient artefacts: a few chairs and a table. When
the table and the chairs are used in conjunction, the table displays some news.
We have assumed that the user will carry a RFID tag that represents his/her
preferred topic. The artefact wrapper was used to wrap the artefacts, information
source and the RFID reader. Artefact wrapper was successful to handle isolated
context source like RFID reader.Another major observation of this application
was the development time for such simple applications. Considering reusability
of the sentient artefacts, we realized that virual artefact enables writing simple
application in a very short span of time.

4.3 SmartAssistant

This application runs in user workspace and can track users activities by analyz-
ing the states of the artefacts populated in the workspace. The application uses
a chair, a desk lamp, a tray and a few mugs and jars. Each of these are wrapped
in artefact wrapper. The application suggests the user to take a refreshment
considering users activity and can provide the user with some predefined sched-
ule notification. Further more, the application can control workspace lighting.
This application is more complex in terms of the functionalities than the other
two. However we have found that by using virtual artefact interfaces, we could
put aside the concern of interacting with such heterogeneous artefacts.One im-
portant observation is: context history plays a key role in the analysis of user
activity.So such applications are good consumer of historical context.

5 Discussions

In this section we discussed about several issues related to the evaluation of
Prottoy and our future work.

5.1 Feedback from Programmers

We have found that application development using Prottoy is fairly simple. None
of the applications that we have developed exceed more than 100 lines of code
for interfacing with Prottoy. Several members of our lab have used Prottoy in
their applications. Programmers impression on Prottoy is positive. They like
its simplicity, especially the virtual artefacts features. They have reported that
Prottoy APIs are very easy to use. However they asked for more interfaces at
the artefact wrapper layer for the calculation of context.

5.2 Qualitative Evaluation considering Design Principles

The virtual artefact and the artefact wrapper in conjunction provide the generic
interface for everything from a sentient artefact to a single sensor to a web service
and to an actuator. The artefact wrapper provides the generalization support
that allows the actual artefact to be replaced anytime with another one.While
using Prottoy, application developers are free from network management issues.
The three-layer architecture separates the application from the physical space
completely. The unique callback creation mechanism features of virtual artefact
and standard data structure usage provide the complete independence to the
application from the architecture. Some of the existing systems provide the stor-
age functionality at the artefact layer [8]. Our argument is that if the artefact
itself is absent in that case the storage is also absent. We think the best use of
the context storage or the history is the prediction of the context. So it should
be somewhere that can be accessible when the artefact is absent. The virtual
artefact perfectly solves the problem by hosting the storage. Historical context
information stored in the storage can be used for predicting future context or
tracking users activity pattern. In Prottoy, the proxy component provides the
context prediction support. The proxy service is a unique feature of Prottoy.
No architecture yet in the literature supports this feature. Prottoy also provides
the support for reflecting end users preference. Current version simply offers end
users the flexibility to select an artefacts participation in the application. How-
ever our support is very minimal. Another issue is protecting artefact content.
We argue that self-descriptive micro world component should be smart enough
to protect their content. Some architecture [3] [4] tries to tag the context in-
formation as secured or non secured. However malicious applications can still
exploit such information. Our approach is different in the sense that the arte-
facts or the context source can completely deny any request if the requester is not
authenticated thus enabling artefact to protect their content from eavesdroppers.

5.3 Major Contribution

Prottoy’s event driven design with interesting features facilitate seamless plat-
form for context aware applications. In summary we can point out the following
as the main contributions of Prottoy:

10

1. Generic Interface for all sorts of context source, (namely sentient artefacts,
unit sensor, virtual sensor like scheduler, web services etc) and actuators.
Complete independence of the application from the underlying architecture.
Context storage and proxy service support.

Authentication and local resource manager support for the smart artefacts.
End users preference reflection support.

S N

Essentially developers need to handle only two components, virtual artefact and
artefact wrapper. Because of this, application is very simple and lightweight.

5.4 Future Work

One important drawback of Prottoy is that it does not have any inherent location
model for maintaining the spatial relationship among the artefacts. Currently
we have used a static location model. However any suitable location model can
be adopted in Prottoy with minor modification. We are currently working on
this issue. There are few other issues that we are further investigating. Like au-
thentication and proxy module are currently too shallow in performance. We
are working on these modules to come up with much better performance The
preference component in the current version only provides a selection-based ap-
proach. However, we dont feel such GUI based preference is suitable for a context
aware application. We are investigating to make this component more realistic
and effective. We hope to come up with some interesting results soon on these
issues.

6 Related Work

Currently there exist a number of context aware application frameworks in the
literature. We have mentioned in Section 2, that Prottoy incorporates many of
these frameworks features. However Prottoy also introduces several new notions
as we have stated in the paper that differentiates it from the rest of lot. Usu-
ally, two approaches have been investigated for context-aware framework. One
is the centralized server approach, like Schilits System [12] and the other is the
distributed approach like Context Toolkit [8] or Speitzers work [13]. Centralized
frameworks provide fair performance from the point of view of context acqui-
sition from the sensors and providing interpreted context via standard APIs.
However they suffer from the fact of single point of failure and extensibility
concerns. Also, collecting information from several sources in one place makes
the framework complex and maintenance becomes difficult. Prottoys approach is
different from these as it completely distributes the context sources into multiple
artefact wrappers.Thus scalability is well supported in Prottoy.Schilits System
[12] deals with the context awareness by Device Agents that maintain the status
and the capabilities of the devices, User Agents that maintain the user policies
and Active Maps that maintain the location information of the devices and the
users. Resource manager and preference component in Prottoy provide the same

11

functionalities. In addition, by introducing features of the artefact wrapper and
the virtual artefact, it provides the developer much more control and flexibilities
over the physical space and the application development process.

Among the distributed ones, Context Toolkit [8] focuses on the component
abstraction by providing the notion of Context Widget and Context Aggrega-
tor. Discoverer manages these components and additionally there is a Context
Interpreter component that performs the task of context interpretation. Con-
text Toolkit provides very low-level abstraction. Developer needs to provide the
details about the context source like location, port etc. Also, the application
is inherently dependent on the framework as the application is tightly coupled
with the architecture. That means application needs to extend the architecture
component and manipulate accordingly. Prottoy is highly influenced by Context
Toolkit, however it differs in several ways. Prottoy takes the Context Toolkit ar-
chitecture and generalizes it in a single component namely virtual artefact. Using
Prottoy, the applications become independent from the context infrastructure.
Even the applications do not need to communicate with the resource manager.
Applications only use the virtual artefact as a generic component that provides
all the infrastructure supports. Prottoy also hides the context implementation
from the context specification. It means applications process contextual informa-
tion at run time dynamically without concerning their acquisition mechanism.
In Prottoy, the context storage is at virtual artefact layer that the proxy mod-
ule utilizes when the actual artefact is absent. We have justified our argument
regarding this storage location in the discussion section.

The Stick-e Notes system [5] provides simple semantics for writing rules that
specify what action to perform based on the acquired context, mainly focusing
on non-programmers to author context aware services. Prottoy generalizes this
context acquisition from programmers point of view. The Sentient Computing
Project [2] utilizes Active Bat location system to provide an architectural base
for indoor application exploiting a world model. Prottoys approach is different
from the point of view that it offers the applications to create a context aware
environment by constructing an array of artefacts. It means Prottoy specializes
the world model creation by allowing developers to construct the model as they
want using virtual artefacts.HP Cool Town [7] encapsulates the world by pro-
viding web presence of place, people and thing and allows interaction with web
presence of these entities primarily exploiting RF technology. Cool Town sup-
ports only web based context aware applications where Prottoy supports any
classes of context aware applications. Easy Living [6] focuses on an architec-
ture that supports the coherent user experience as users interact with variety
of devices in a smart environment. Easy Living also utilizes the notion of world
model. Open Agent architecture [11] exploits a centralized black board to sup-
port the contextual behavior. In contrast to these systems, Prottoy provides a
more generic abstraction as developer has the flexibility to construct the model
by manipulating a single component namely virtual artefact.

12

7

Conclusion

In this paper we have presented a framework “Prottoy”for context-aware ap-
plication development.When looking at the related work, Prottoy shares many
features of the research already done for creating and supporting context infor-
mation. Our attempt is to take all those frameworks into consideration and come
out with one that specializes all. However, Prottoy has several distinct features
such as a unique generalized interface, storage and proxy support, security and
preference policy. In this paper we have provided the ins and outs of Prottoy
and its approach in a summarized way. We believe Prottoy promises to provide
a seamless development platform for context aware application developer.

References

1.

2.

10.

11.

12.

13.

G. Abowd. Software Engineering Issues for Ubiquitous Computing. In 21st Inter-
national conference on Software Engineering, 1999.

M. Addlesee, R. Curwen, S. Hodges, J. Newman, A. W. P. Steggels, and A. Hooper.
Implementing a Sentient Computing System. Cover Feature in IEEE Computer,
34, 2001.

C. Bisdikian, J. Christensen, J. Davis, G. H. Maria R. Ebling, W. Jerome, H. Lei,
S. Maes, and D. Sow. Enabling Location Based Applications. In 1st international
Workshop on Mobile Commerce, 2001.

J. E. Bradman. Applications of Context Aware Computing in Hospital Work
Examples and Design Principles. In 2004 ACM Symposium on Applied Computing,
2004.

J. P. Brown. The stick-e document: A framework for creating context aware ap-
plications. In FElectronic Publishing 96, 1996.

B. L. Brumittet, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easy living: tech-
nologies for intelligent environments. In 2nd International Symposium on Handheld
and Ubiquitous Computing, 2000.

C. Deborah and P. Debaty. Creating web representations for places. In 2nd Inter-
national Symposium on Handheld and Ubiquitous Computing, 2000.

A. K. Dey, G. Abowd, and D. Salber. A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-aware Applications. Human
Computer Interaction, 16, 2001.

. K. Fujinami, F. Kawsar, and T. Nakajima. AwareMirror: A Personalized Display

using a Mirror. In 3rd International Conference on Pervasive Computing, 2005.
H. Gallerson, A. Schmidt, and M. Beigl. Adding Some Smartness to Devices
and Everyday Things. In IEEE Workshop on Mobile Computing Systems and
Applications, 2000.

C. Philip, A. Cheyer, M. Wang, and S. C. Baeg. An Open Agent Architecture. In
AAAI Spring Symposium Series on Software Agents, 1994.

N. B. Schilit. System Architecture for Context Aware Mobile Computing. PhD
thesis, Columbia University New York, 1995.

M. Spreitzer. Providing Location Information in a Ubiquitous Computing Envi-
ronment. In 1/th ACM symposium on Operating System Principles, ACM Press,
1993.

