
Implementing and Evaluating Color-Aware Instruction
Set for Low-Memory, Embedded Video Processing in

Data Parallel Architectures*

Jongmyon Kim1, D. Scott Wills2, and Linda M. Wills2
1 Chip Solution Center, Samsung Advanced Institute of Technology,

San 14-1, Nongseo-ri, Kiheung-eup, Kyungki-do, 449-712, South Korea
jongmyon.kim@samsung.com

2 School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332-0250

{scott.wills, linda.wills}@ece.gatech.edu

Abstract. Future embedded imaging applications will be more demanding
processing performance while requiring the same low cost and low energy
consumption. This paper presents and evaluates a color-aware instruction set
extension (CAX) for single instruction, multiple data (SIMD) processor arrays
to meet the computational requirements and cost goals. CAX supports parallel
operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit datapath
processor, providing greater concurrency and efficiency for color image and
video processing. Unlike typical multimedia extensions (e.g., MMX, VIS, and
MDMX), CAX harnesses parallelism within the human perceptual color space
rather than depending solely on generic subword parallelism. Moreover, the
ability to reduce data format size reduces system cost. The reduction in data
bandwidth also simplifies system design. Experimental results on a
representative SIMD array architecture show that CAX achieves a speedup
ranging from 5.2× to 8.8× (an average of 6.3×) over the baseline SIMD array
performance. This is in contrast to MDMX (a representative MIPS multimedia
extension), which achieves a speedup ranging from 3× to 5× (an average of
3.7×) over the same baseline SIMD array. CAX also outperforms MDMX in
both area efficiency (a 52% increase versus a 13% increase) and energy
efficiency (a 50% increase versus an 11% increase), resulting in better
component utilization and sustainable battery life. Furthermore, CAX improves
the performance and efficiency with a mere 3% increase in the system area and
a 5% increase in the system power, while MDMX requires a 14% increase in
the system area and a 16% increase in the system power. These results
demonstrate that CAX is a suitable candidate for application-specific embedded
multimedia systems.

1 Introduction

As multimedia revolutionizes our society, its applications are becoming some of the
most dominant computing workloads. Color image and video processing in particular
has garnered considerable interest over the past few years since color features are
valuable in sensing the environment, recognizing objects, and conveying crucial

* This work was performed by authors at the Georgia Institute of Technology (Atlanta, GA).

information [10]. These applications, however, demand tremendous computational
and I/O throughput. Moreover, increasing user demand for multimedia-over-wireless
capabilities on embedded systems places additional constraints on power, size, and
weight.

Single instruction, multiple data (SIMD) architectures have demonstrated the
potential to meet the computational requirements and cost goals by employing
thousands of inexpensive processing elements (PEs) and distributing and co-locating
PEs with the data I/O to minimize storage and data communication requirements. The
SIMD Pixel (SIMPil) processor [2, 4], for example, is a low memory, monolithically
integrated SIMD architecture that efficiently exploits massive data parallelism
inherent in imaging applications. It reduces data movement through a processing-in-
place technique in which image data are directly transported into the PEs and stored
there. Two-dimensional SIMD arrays, including SIMPil, are well suited for many
imaging tasks that require processing of pixel data with respect to either nearest-
neighbor or other 2-D patterns exhibiting locality or regularity. However, they are
less amenable to vector (multichannel) processing in which each pixel computation is
performed simultaneously on 3-D YCbCr (luminance-chrominance) channels [1],
which are widely used in the image and video processing community. More
specifically, since the 3-D vector computation is performed within innermost loops,
its performance does not scale with larger PE arrays.

This paper presents a color-aware instruction set extension (CAX) for such SIMD
arrays as a solution to this performance limitation by supporting two-packed 16-bit
(6:5:5) YCbCr data in a 32-bit register, while processing these color data in parallel.
(CAX was introduced previously for superscalar processors [7], but this paper is
investigating its use in SIMD image processing architectures.) The YCbCr space
allows coding schemes that exploit the properties of human vision by truncating some
of the less important data in every color pixel and allocating fewer bits to the high-
frequency chrominance components that are perceptually less significant. Thus, it
provides satisfactory image quality in a compact 16-bit color representation that
consists of a six-bit luminance (Y) and two five-bit chrominance (Cr and Cb)
components [6]. In addition, CAX offers greater concurrency with minimal hardware
modification. Fig. 1 shows an example of how a 32-bit ALU functional unit can be
used to perform either a 32-bit baseline ALU or two 6:5:5-bit ALUs. The 32-bit ALU
is divided into two six-bit ALUs and four five-bit ALUs. When the output carry
(Cout) is blocked (i.e., Cin = 0), the six smaller ALUs can be performed in parallel.

32-bit ALU

CAX
Or

Base

5-bit ALU

Cb4 Y4Cr4 Cb3 Y3Cr3
051015212631

Cb2 Y2Cr2 Cb1 Y1Cr1
051015212631

0

Cin
muxCout0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout0

Cin
muxCout

5-bit ALU6-bit ALU 5-bit ALU5-bit ALU 6-bit ALU

Cb’’ Y’’Cr’’ Cb’ Y’Cr’

32-bit ALU

CAX
Or

Base

5-bit ALU

Cb4 Y4Cr4 Cb3 Y3Cr3
051015212631

Cb4 Y4Cr4 Cb3 Y3Cr3Cb4 Y4Cr4 Cb3 Y3Cr3
051015212631

Cb2 Y2Cr2 Cb1 Y1Cr1
051015212631

Cb2 Y2Cr2 Cb1 Y1Cr1Cb2 Y2Cr2 Cb1 Y1Cr1
051015212631

0

Cin
muxCout 0

Cin
muxCout0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout0

Cin
muxCout 0

Cin
muxCout

5-bit ALU6-bit ALU 5-bit ALU5-bit ALU 6-bit ALU

Cb’’ Y’’Cr’’ Cb’ Y’Cr’Cb’’ Y’’Cr’’ Cb’ Y’Cr’
Fig. 1. An example of a partitioned ALU functional unit that exploits color subword parallelism

This paper evaluates CAX in comparison to a representative multimedia extension,
MIPS MDMX [11], in a specified SIMD array architecture. MDMX was chosen as a
basis of comparison because it provides an effective way of dealing with reduction
operations, using a wide packed accumulator that successively accumulates the results
produced by operations on multimedia vector registers. Other multimedia extensions
(e.g., Intel MMX [9] and Sun VIS [14]) provide more limited support of vector
processing in a 32-bit datapath processor without accumulators. To handle vector
processing on a 64-bit or 128-bit datapath, they require frequent packing/unpacking of
operand data, deteriorating their performance.

This evaluation shows that CAX outperforms MDMX in performance and
efficiency metrics on the same SIMD array because CAX benefits from greater
concurrency and reduced pixel word storage which can consume a large percentage of
silicon area. In particular, the key findings are the following. MDMX achieves a
speedup ranging from 3× to 5× (an average of 3.7×) over the baseline performance.
However, MDMX requires a 14% increase in the system area and a 16% increase in
the system power. As a result, MDMX improves energy efficiency from only 2% to
24% and area efficiency from 6% to 22% over the baseline. On the other hand, CAX
achieves a speedup ranging from 5.2× to 8.8× (an average of 6.3×) over the baseline
performance because of greater subword parallelism. Moreover, the higher
performance is achieved with a mere 3% increase in the system area and a 5%
increase in the system power. As a result, CAX improves area efficiency from 36% to
68% and energy efficiency from 35% to 77% over the baseline. These results
demonstrate that CAX provides an efficient mechanism for embedded imaging
systems.

The rest of the paper is organized as follows. Section 2 presents a summary of the
CAX instruction set. Section 3 describes the modeled architectures and a
methodology infrastructure for the evaluation of CAX. Section 4 evaluates the system
area and power of our modeled architectures, and Section 5 analyzes execution
performance and efficiency for each case. Section 6 concludes this paper.

2 Color-Aware Instruction Set for Color Imaging Applications

The color-aware instruction set (CAX) efficiently eliminates the computational
burden of vector processing by supporting parallel operations on two-packed 16-bit
(6:5:5) YCbCr data in a 32-bit datapath processor. In addition, CAX employs a 128-
bit color-packed accumulator that provides a solution to overflow and other issues
caused by packing data as tightly as possible by implicit width promotion and
adequate space. Fig. 2 illustrates three types of operations: (1) a baseline 32-bit
operation, (2) a 4 × 8-bit SIMD operation used in many general-purpose processors,
and (3) a 2 × 16-bit CAX operation employing heterogeneous (non-uniform) subword
parallelism.

For color images, the band data may be interleaved (e.g., the red, green, and blue
data of each pixel are adjacent in memory) or separated (e.g., the red data for adjacent
pixels are adjacent in memory). Although the band separated format is the most
convenient for SIMD processing, a significant amount of overhead for data alignment
is expected prior to SIMD processing. Moreover, traditional SIMD data
communication operations have trouble with the band data that are not aligned on

boundaries that are powers of two (e.g., adjacent pixels from each band are visually
spaced three bytes apart) [12]. Even if the SIMD multimedia extensions store the
pixel information in the band-interleaved format (i.e., |Unused|R|G|B| in a 32-bit
register), subword parallelism cannot be exploited on the operand of the unused field.
Furthermore, since the RGB space does not model the perceptual attributes of human
vision well, the RGB to YCbCr conversion is required prior to color image processing.
Although the SIMD multimedia extensions can handle the color conversion process in
software, the hardware approach would be more efficient.

CAX solves problems inherent to packed RGB extensions by properly aligning
two-packed 16-bit data on 32-bit boundaries and by directly supporting YCbCr data
processing, providing greater concurrency and efficiency for processing color image
sequences. The CAX instructions are classified into four different groups: (1) parallel
arithmetic and logical instructions, (2) parallel compare instructions, (3) permute
instructions, and (4) special-purpose instructions.

…Register File

031

Unused B3 G3 R3

Unused B1 G1 R1

Unused B2 G2 R2

7

z1 z2 z3 z4

1523

…Register File

031

Unused B3 G3 R3

Unused B1 G1 R1

Unused B2 G2 R2

7

z1 z2 z3 z4

1523

Register File

031

Register File

Unused B3 G3 R3

Unused B1 G1 R1

Unused B2 G2 R2

7

z1 z2 z3 z4

1523

Register File

031

Register File

Unused B3 G3 R3

Unused B1 G1 R1

Unused B2 G2 R2

7

z1 z2 z3 z4

1523

(a) (b)

Register File

051015212631
Y2Cb2Cr2 Y1Cb1Cr1

Y4Cb4Cr4 Y3Cb3Cr3

Y6Cb6Cr6 Y5Cb5Cr5

z3z2z1 z6z5z4

Register File

051015212631
Y2Cb2Cr2 Y1Cb1Cr1

Y4Cb4Cr4 Y3Cb3Cr3Y4Cb4Cr4 Y3Cb3Cr3

Y6Cb6Cr6 Y5Cb5Cr5Y6Cb6Cr6 Y5Cb5Cr5

z3z2z1 z6z5z4z3z2z1 z6z5z4

(c)

Fig. 2. Types of operations: (a) a baseline 32-bit operation, (b) a 32-bit SIMD operation, and
(c) a 32-bit CAX operation

2.1 Parallel Arithmetic and Logical Instructions

Parallel arithmetic and logical instructions include packed versions of addition
(ADD_CRCBY), subtraction (SUBTRACT_CRCBY), and average (AVERAGE_CRCBY).
The addition and subtraction instructions include a saturation operation that clamps
the output result to the largest or smallest value for the given data type when an
overflow occurs. Saturating arithmetic is particularly useful in pixel-related
operations, for example, to prevent a black pixel from becoming white if an overflow
occurs. The parallel average instruction, which is useful for blending algorithms,
takes two packed data types as input, adds corresponding data quantities, and divides
each result by two while placing the result in the corresponding data location. The
rounding is performed to ensure precision over repeated average instructions.

2.2 Parallel Compare Instructions

Parallel compare instructions include CMPEQ_CRCBY, CMPNE_CRCBY,
CMPGE_CRCBY, CMPGT_CRCBY, CMPLE_CRCBY, CMPLT_CRCBY, CMOV_CRCBY
(conditional move), MIN_CRCBY, and MAX_CRCBY. These instructions compare
pairs of sub-elements (e.g., Y, Cb, and Cr) in the two source registers. Depending on
the instructions, the results are varied for each sub-element comparison. The first
seven instructions are useful for a condition query performed on the incoming data
such as chroma-keying [9]. The last two instructions, MIN_CRCBY and MAX_CRCBY,
are especially useful for median filtering, which compare pairs of sub-elements in the
two source registers while outputting the minimum and maximum values to the target
register.

2.3 Parallel Permute Instructions

Permute instructions include MIX_CRCBY and ROTATE_CRCBY. These instructions
are used to rearrange the order of quantities in the packed data type. The mix
instruction mixes the sub-elements of the two source registers into the operands of the
target register, and the rotate instruction rotates the sub-elements to the right by an
immediate value. These instructions are useful for performing a vector pixel
transposition or a matrix transposition [13].

2.4 Special-Purpose Instructions

Special-purpose CAX instructions include ADACC_CRCBY (absolute-differences-
accumulate), MACC_CRCBY (multiply-accumulate), RAC (read accumulator), and
ZACC (zero accumulator), which provide the most computational benefits of all the
CAX instructions. The ADACC_CRCBY instruction, for example, is frequently used in
a number of algorithms for motion estimation. The MACC_CRCBY instruction is
useful in DSP algorithms that involve computing a vector dot-product, such as digital
filters and convolutions. The last two instructions RAC and ZACC are related to the
managing of the CAX accumulator.

3 Methodology

This section describes modeled architectures and a methodology infrastructure for the
evaluation of the CAX instruction set.

3.1 Modeled Architectures

The SIMD Pixel (SIMPil) processor is used as the baseline SIMD image processing
architecture for this study. Fig. 3 shows the microarchitecture of the SIMD array,
along with its interconnection network. When data are distributed, the processing
elements (PEs) execute a set of instructions in a lockstep fashion. With 4×4 pixel
sensor sub-arrays, each PE is associated with a specific portion (4×4 pixels or 16
pixel-per-processing-element) of an image frame, allowing streaming pixel data to be
retrieved and processed locally. Each PE has a reduced instruction set computer
(RISC) datapath with the following minimum characteristics:

 Small amount of local storage (128 32-bit words),
 Three-ported general-purpose registers (16 32-bit words),

 ALU − computes basic arithmetic and logic operations,
 Barrel shifter − performs multi-bit logic/arithmetic shift operations,
 MACC − multiplies 32-bit values and accumulates into a 64-bit accumulator,
 Sleep − activates or deactivates a PE based on local information,
 Pixel unit − samples pixel data from the local image sensor array,
 ADC unit − converts light intensities into digital values,
 RGB2YCC and YCC2RGB unit− converts RGB to/from YCbCr, and
 Nearest neighbor communications through a NEWS (north-east-west-south)

network and serial I/O unit.

Y

Cb

Cr

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

PE

SIMD Array

ACU

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

PE

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACC

CAX

Sleep

RGB2YCC
YCC2RGB

and

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

PEPE

SIMD Array

ACU

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

PE

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACCMACC

CAXCAX

Sleep

RGB2YCC
YCC2RGB
RGB2YCC
YCC2RGB

and

Y

Cb

Cr

Y

Cb

Cr

Y

Cb

Cr

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

PE

SIMD Array

ACU

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

PE

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACC

CAX

Sleep

RGB2YCC
YCC2RGB

and

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

PEPE

SIMD Array

ACU

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

PE

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACCMACC

CAXCAX

Sleep

RGB2YCC
YCC2RGB
RGB2YCC
YCC2RGB

and

Fig. 3. Block diagram of a SIMD array and a processing element

To improve the performance of vector processing of color image sequences, CAX

instructions are included in the instruction set architecture (ISA) of the SIMPil array.
For a performance comparison, MDMX-type instructions are also included in the
SIMPil ISA. Table 1 summarizes the parameters of the modeled architectures. An
overall simulation infrastructure is presented next.

Table 1. Modeled architecture parameters

Parameter Value

System Size 44×38 (1,584 PEs)

Image Sensor per PE (vertor pixel per PE ratio) 4×4 (16 VPPE)

VLSI Technology 100 nm

Clock Frequency 80 MHz

Interconnection Network Mesh

intALU/intMUL/Barrel Shifter/intMACC/Comm 1 / 1 / 1 / 1 / 1

MDMX/CAX: intALU/intMACC 1 / 1

Local Memory Size (baseline/MDMX/CAX) 128 32-bit/ 128 32-bit/ 64 32-bit word

3.2 Methodology Infrastructure

Fig. 4 shows a methodology infrastructure that is divided into three levels: application,
architecture, and technology.

Execution
Database

CAX
MDMX

Applications

SIMD
Simulator

Application Level

CAX
MDMX

baseline

Architecture
Models

Technology
Models

Synopsys
(Module Builder)

HAMGENESYS

Design Space
Explorer

Technology Level Architecture Level

Area Efficiency
Energy Efficiency
Execution Time

Output

Fig. 4. A methodology infrastructure for exploring the design space of three modeled
architectures: baseline SIMPil, MDMX-SIMPil, and CAX-SIMPil

At the application level, an instruction-level SIMD simulator, called SIMPilSim,
has been used to profile execution statistics, such as cycle count, dynamic instruction
frequency, and PE utilization, for the three different versions of the programs: (1)
baseline ISA without subword parallelism (SIMPil), (2) baseline plus MDMX ISA
(MDMX-SIMPil), and (3) baseline plus CAX ISA (CAX-SIMPil). The benchmark
suite includes five imaging applications (see more details at [5]): a chroma-keying
program (CHROMA), color edge detection using a vector Sobel operator (VSobel),
the vector median filter (VMF), vector quantization (VQ), and the full-search vector
block-matching algorithm of motion estimation (FSVBMA) within the MPEG
standard.

At the architecture level, the heterogeneous architectural modeling (HAM) of
functional units for SIMD arrays, proposed by Chai et al. [3], has been used to
calculate the design parameters of modeled architectures. For the design parameters
of the MDMX and CAX functional units (FUs), Verilog models for the baseline,
MDMX, and CAX FUs were implemented and synthesized with the Synopsys design
compiler (DC) using a 0.18-micron standard cell library. The reported area
specifications of the MDMX and CAX FUs were then normalized to the baseline FU,
and the normalized numbers were applied to the HAM tool for determining the design
parameters of MDMX- and CAX-SIMPil. The design parameters are then passed to
the technology level.

At the technology level, the Generic System Simulator (GENESYS) developed at
Georgia Tech [8] has been used to calculate technology parameters (e.g., latency, area,
power, and clock frequency) for each configuration. Finally, the databases (e.g., cycle
times, instruction latencies, instruction counts, area, and power of the functional units)

obtained from the application, architecture, and technology levels are combined to
determine execution times, area efficiency, and energy efficiency for each case. The
next section presents the system area and power of the modeled architectures.

4 System Area and Power Evaluation Using Technology Modeling

Fig. 5 shows the system area and power of MDMX-SIMPil and CAX-SIMPil,
normalized to the baseline SIMPil. Experimental results indicate that MDMX requires
a 14% increase in the entire system area and a 16% increase in the peak system power.
However, CAX only requires a 3% increase in the system area and a 5% increase in
the system area and power because of the reduced pixel word storage (local memory).
These system area and power results are combined with application simulations for
determining processing performance, area efficiency, and energy efficiency for each
case, which is presented next.

1.05
1.16

1.001.03

1.14

1.00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Baseline MDMX CAX Baseline MDMX CAX

System area Peak system power

N
or

m
al

iz
ed

 s
ys

te
m

 a
re

a
an

d
po

w
er

Serial
Sleep
Decoder
Comm
Memory
Shifter
MACC
ALU
Register File

Fig. 5. System area and power of CAX-SIMPil and MDMX-SIMPil, normalized to the baseline
SIMPil

5 Experimental Results

Cycle accurate simulation and technology modeling have been used to determine the
performance and efficiency characteristics of modeled architectures for each
application task. Each application was developed in its respective assembly languages
for the SIMPil system, in which all three versions for each program have the same
parameters, data sets, and calling sequences. In the experiment, the overhead of the
color conversion was not included in the performance evaluation for all the versions.
In other words, this study assumes that the baseline, MDMX, and CAX versions
directly support YCbCr data in the band-interleaved format (e.g., |Unused|Cr|Cb|Y|
for baseline and MDMX and |Cr|Cb|Y|Cr|Cb|Y| for CAX). The metrics of the
execution cycle count, corresponding sustained throughput, energy efficiency, and
area efficiency of each case form the basis of the study comparison, defined in Table
2.

Table 2. Summary of evaluation metrics

execution
time sustained throughput area efficiency energy efficiency

ck
exec f

Ct =
exec

PEexec
sust t

NUOTh ⋅⋅
=]

mms
Gops[2⋅

=
Area
Thsust

Aη]
Joule
Gops[

Energy
NUO PEexec

E
⋅⋅

=η

C is the cycle count,
ckf is the clock frequency, execO is the number of executed operations,

U is the system utilization, and NPE is the number of processing elements. Note that since each
CAX and MDMX instruction executes more operations (typically six and three times,
respectively) than a baseline instruction, we assume that each CAX, MDMX, and baseline
instruction executes six, three, and one operation, respectively, for the sustained throughput
calculation.

5.1 Performance Evaluation Results

This section evaluates the impact of CAX on processing performance for the selected
color imaging applications on the SIMPil system.

Overall Results. Fig. 6 illustrates execution performance (speedups in executed
cycles) attained by CAX and MDMX when compared with the baseline performance
without subword parallelism. The results indicate that CAX outperforms MDMX for
all the programs in terms of speedup, indicating a speedup ranging from 5.2× to 8.8×
(an average of 6.3×) with CAX, but only 3× to 5× (an average of 3.7×) with MDMX
over the baseline. The next section discusses the sources for the reductions in the
issued instructions are discussed next.

4.3

3.2

5.0

3.6
3.0

3.7

6.9

5.7

8.8

6.3

5.2

6.3

0

1

2

3

4

5

6

7

8

9

10

CHROMA VSobel VMF VQ FSVBMA HARMEAN

Sp
ee

du
p Baseline

MDMX
CAX

Fig. 6. Speedups for the SIMPil system with CAX and MDMX, normalized to the baseline
performance. Note that HARMEAN is the harmonic mean

Benefits of CAX for Color Imaging Applications. Fig. 7 shows the distribution of
issued vector instructions for the SIMPil system with CAX and MDMX, normalized
to the baseline version. Each bar divides the instructions into the arithmetic-logic-unit
(ALU), memory (MEM), communication (COMM), PE activity control unit (MASK),
image pixel loading (PIXEL), MDMX, and CAX. The use of CAX reduces a
significant number of the instruction counts for all of the programs, ranging from
88.6% (VMF) to 80.7% (FSVBMA) over the baseline. In particular, CAX reduces a

significant number of ALU and memory instruction counts due to its instruction
definition. An interesting observation is that the FSVBMA program has the smallest
reduction in the instruction count with CAX. This is because it involves high inter-PE
communication operations that are not affected by CAX. For example, each PE
cannot directly support a macroblock size of 16×16 pixels because 4×4 pixels are
mapped to each PE. As a result, the 4×4 distortions are computed in each PE
separately. Each result is then combined through NEWS communication instructions
for the final distortion between the 16×16 input and reference blocks.

19.3

33.4

16.0

28.0

11.4
19.917.5

30.9

14.6
23.1

100.0100.0100.0100.0100.0

0

10

20

30

40

50

60

70

80

90

100

B
as

el
in

e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

CHROMA VSobel VMF VQ FSVBMA

N
or

m
al

iz
ed

 v
ec

to
r i

ns
tru

ct
io

n
co

un
t

CAX
MDMX
PIXEL
MASK
COMM
MEM
ALU

Fig. 7. The distribution of issued vector instructions for the SIMPil system with CAX and
MDMX, normalized to the baseline version

5.2 Energy Evaluation Results

Fig. 8 shows energy efficiency, the task throughput achieved per unit of Joule, for the
SIMPil system with MDMX and CAX, normalized to the baseline version. CAX
outperforms MDMX across all the programs in the energy efficiency, indicating a
50% increase with CAX, but only an 11% increase with MDMX. This is because
CAX achieves higher sustained throughputs with a smaller increase in the system
power. Increasing energy efficiency improves sustainable battery life for given system
capabilities.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CHROMA VSobel VMF VQ FSVBMA

N
or

m
al

iz
ed

 e
ne

rg
y

ef
fic

ie
nc

y

baseline
MDMX
CAX

Fig. 8. Energy efficiency for the SIMPil system with CAX and MDMX, normalized to the
baseline version

5.3 Area Evaluation Results

Fig. 9 shows area efficiency, the task throughput achieved per unit of area, for the
SIMPil system with MDMX and CAX, normalized to the baseline version. As with
energy efficiency, CAX outperforms MDMX for all the programs in the area
efficiency, indicating a 52% increase with CAX, but only a 13% increase with
MDMX. This is because CAX achieves higher sustained throughput with smaller area
overhead. Increasing area efficiency improves component utilization for given system
capabilities.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

CHROMA VSobel VMF VQ FSVBMA

N
or

m
al

iz
ed

 a
re

a
ef

fic
ie

nc
y

baseline
MDMX
CAX

 Fig. 9. Area efficiency for the SIMPil system with CAX and MDMX, normalized to the
baseline version

6 Conclusions

As emerging portable multimedia applications demand more and more tremendous
computational throughput with limited area and power, the need for high efficiency,
high throughput embedded processing is becoming an important challenge in
computer architecture. In this regard, this paper has addressed application-,
architecture-, and technology-level issues in an existing processing system to
efficiently support vector processing of color image sequences. In particular, this
paper has focused on the color-aware instruction set (CAX) for memory- and
performance-hungry embedded applications in a representative SIMD image
processing architecture. Unlike typical multimedia extensions, CAX harnesses
parallelism within the human perceptual color space (e.g., YCbCr). Rather than
depending solely on generic subword parallelism, CAX supports parallel operations
on two-packed 16-bit YCbCr data in a 32-bit datapath processor, providing greater
concurrency and efficiency for color image and video processing. The key findings
are as follows:

 CAX achieves a speedup ranging from 5.2× to 8.8× (an average of 6.3×) over the
baseline SIMD array performance without subword parallelism. This is in contrast
to MDMX, which achieves a speedup ranging from only 3× to 5× (an average of
3.7×) over the same baseline SIMD array.

 CAX reduces energy consumption from 80% to 89%, but MDMX reduces energy
consumption from only 60% to 79% over the baseline version.

 Moreover, CAX benefits from reduced pixel word storage in addition to greater

concurrency. As a result, CAX outperforms MDMX for all the programs in area
efficiency and energy efficiency. The area efficiency increases from 36% to 68%
(an average of 52%) with CAX, but only 6% to 22% (an average of 13%) with
MDMX. The energy efficiency increases from 35% to 77% (an average of 50%)
with CAX, but only 2% to 24% (an average of 11%) with MDMX. Increasing area
and energy efficiencies yield greater component utilization and sustainable battery
life, respectively, for given system capabilities.

 Furthermore, CAX improves the performance and efficiency with a mere 3%
increase in the silicon area and a 5% increase in the system power, while MDMX
requires a 14% increase in the silicon area and a 16% increase in the system power.

 In the future, a heuristic compiler support will be explored that extracts both data-
level parallelism and color subword parallelism from high level language programs to
overcome tedious hand optimization and/or special programming libraries.

References

1. V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards: Algorithms
and Architectures, Kluwer Academic Publishers (1997)

2. H. H. Cat, A. Gentile, J. C. Eble, M. Lee, O. Verdier, Y. J. Joo, D. S. Wills, M. Brooke, N.
M. Jokerst, A. S. Brown, and R. Leavitt, SIMPil: An OE integrated SIMD architecture for
focal plane processing applications, in Proc. Massively Parallel Processing Using Optical
Interconnection (MPPOI-96), pp. 44-52 (1996)

3. S. M. Chai, T. M. Taha, D. S. Wills, and J. D. Meindl, Heterogeneous architecture models
for interconnect-motivated system design, IEEE Trans. VLSI Systems, special issue on
system level interconnect prediction, vol. 8, no. 6, pp. 660-670 (2000)

4. A. Gentile and D. S. Wills, Portable Video Supercomputing, IEEE Trans. on Computers, vol.
53, no. 8, pp. 960-973 (2004)

5. J. Kim, Architectural enhancements for color image and video processing on embedded
systems. PhD dissertation, Georgia Inst. of Technology (2005)

6. J. Kim and D. S. Wills, Evaluating a 16-bit YCbCr (6:5:5) color representation for low
memory, embedded video processing, in Proc. of the IEEE Intl. Conf. on Consumer
Electronics, pp. 181-182 (2005)

7. J. Kim and D. S. Wills, Efficient processing of color image sequences using a color-aware
instruction set on mobile systems, in Proc. of the IEEE Intl. Conf. on Application-Specific
Systems, Architectures, and Processors, pp. 137-149 (2004)

8. S. Nugent, D. S. Wills, and J. D. Meindl, A hierarchical block-based modeling methodology
for SoC in GENESYS, in Proc. of the 15th Ann. IEEE Intl. ASIC/SOC Conf., pp. 239-243
(2002)

9. A. Peleg and U. Weiser, MMX technology extension to the Intel architecture, IEEE Micro,
vol.16, no. 4, pp. 42-50 (1996).

10. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications
(2000)

11. MIPS extension for digital media with 3D. Technical Report http://www.mips.com, MIPS
technologies, Inc. (1997)

12. N. Slingerland and A. J. Smith, Measuring the performance of multimedia instruction sets,
IEEE Trans. on Computers, vol. 51, no. 11, pp. 1317-1332 (2002)

13. J. Suh and V. K. Prasanna, An efficient algorithm for out-of-core matrix transposition,
IEEE Trans. on Computers, vol. 51, no. 4, pp. 420-438 (2002)

14. M. Tremblay, J. M. O’Connor, V. Narayanan, and L. He, VIS speeds new media processing,
IEEE Micro, vol. 16, no. 4, pp. 10-20 (1996)

