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Abstract. Future embedded imaging applications will be more demanding 
processing performance while requiring the same low cost and low energy 
consumption. This paper presents and evaluates a color-aware instruction set 
extension (CAX) for single instruction, multiple data (SIMD) processor arrays 
to meet the computational requirements and cost goals. CAX supports parallel 
operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit datapath 
processor, providing greater concurrency and efficiency for color image and 
video processing. Unlike typical multimedia extensions (e.g., MMX, VIS, and 
MDMX), CAX harnesses parallelism within the human perceptual color space 
rather than depending solely on generic subword parallelism. Moreover, the 
ability to reduce data format size reduces system cost. The reduction in data 
bandwidth also simplifies system design. Experimental results on a 
representative SIMD array architecture show that CAX achieves a speedup 
ranging from 5.2× to 8.8× (an average of 6.3×) over the baseline SIMD array 
performance. This is in contrast to MDMX (a representative MIPS multimedia 
extension), which achieves a speedup ranging from 3× to 5× (an average of 
3.7×) over the same baseline SIMD array. CAX also outperforms MDMX in 
both area efficiency (a 52% increase versus a 13% increase) and energy 
efficiency (a 50% increase versus an 11% increase), resulting in better 
component utilization and sustainable battery life. Furthermore, CAX improves 
the performance and efficiency with a mere 3% increase in the system area and 
a 5% increase in the system power, while MDMX requires a 14% increase in 
the system area and a 16% increase in the system power. These results 
demonstrate that CAX is a suitable candidate for application-specific embedded 
multimedia systems. 

1   Introduction 

As multimedia revolutionizes our society, its applications are becoming some of the 
most dominant computing workloads. Color image and video processing in particular 
has garnered considerable interest over the past few years since color features are 
valuable in sensing the environment, recognizing objects, and conveying crucial 
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information [10]. These applications, however, demand tremendous computational 
and I/O throughput. Moreover, increasing user demand for multimedia-over-wireless 
capabilities on embedded systems places additional constraints on power, size, and 
weight.  

Single instruction, multiple data (SIMD) architectures have demonstrated the 
potential to meet the computational requirements and cost goals by employing 
thousands of inexpensive processing elements (PEs) and distributing and co-locating 
PEs with the data I/O to minimize storage and data communication requirements. The 
SIMD Pixel (SIMPil) processor [2, 4], for example, is a low memory, monolithically 
integrated SIMD architecture that efficiently exploits massive data parallelism 
inherent in imaging applications. It reduces data movement through a processing-in-
place technique in which image data are directly transported into the PEs and stored 
there. Two-dimensional SIMD arrays, including SIMPil, are well suited for many 
imaging tasks that require processing of pixel data with respect to either nearest-
neighbor or other 2-D patterns exhibiting locality or regularity.  However, they are 
less amenable to vector (multichannel) processing in which each pixel computation is 
performed simultaneously on 3-D YCbCr (luminance-chrominance) channels [1], 
which are widely used in the image and video processing community. More 
specifically, since the 3-D vector computation is performed within innermost loops, 
its performance does not scale with larger PE arrays. 

This paper presents a color-aware instruction set extension (CAX) for such SIMD 
arrays as a solution to this performance limitation by supporting two-packed 16-bit 
(6:5:5) YCbCr data in a 32-bit register, while processing these color data in parallel. 
(CAX was introduced previously for superscalar processors [7], but this paper is 
investigating its use in SIMD image processing architectures.) The YCbCr space 
allows coding schemes that exploit the properties of human vision by truncating some 
of the less important data in every color pixel and allocating fewer bits to the high-
frequency chrominance components that are perceptually less significant. Thus, it 
provides satisfactory image quality in a compact 16-bit color representation that 
consists of a six-bit luminance (Y) and two five-bit chrominance (Cr and Cb) 
components [6]. In addition, CAX offers greater concurrency with minimal hardware 
modification. Fig. 1 shows an example of how a 32-bit ALU functional unit can be 
used to perform either a 32-bit baseline ALU or two 6:5:5-bit ALUs. The 32-bit ALU 
is divided into two six-bit ALUs and four five-bit ALUs. When the output carry 
(Cout) is blocked (i.e., Cin = 0), the six smaller ALUs can be performed in parallel.  
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Fig. 1. An example of a partitioned ALU functional unit that exploits color subword parallelism 



 

This paper evaluates CAX in comparison to a representative multimedia extension, 
MIPS MDMX [11], in a specified SIMD array architecture. MDMX was chosen as a 
basis of comparison because it provides an effective way of dealing with reduction 
operations, using a wide packed accumulator that successively accumulates the results 
produced by operations on multimedia vector registers. Other multimedia extensions 
(e.g., Intel MMX [9] and Sun VIS [14]) provide more limited support of vector 
processing in a 32-bit datapath processor without accumulators. To handle vector 
processing on a 64-bit or 128-bit datapath, they require frequent packing/unpacking of 
operand data, deteriorating their performance. 

This evaluation shows that CAX outperforms MDMX in performance and 
efficiency metrics on the same SIMD array because CAX benefits from greater 
concurrency and reduced pixel word storage which can consume a large percentage of 
silicon area. In particular, the key findings are the following. MDMX achieves a 
speedup ranging from 3× to 5× (an average of 3.7×) over the baseline performance. 
However, MDMX requires a 14% increase in the system area and a 16% increase in 
the system power. As a result, MDMX improves energy efficiency from only 2% to 
24% and area efficiency from 6% to 22% over the baseline. On the other hand, CAX 
achieves a speedup ranging from 5.2× to 8.8× (an average of 6.3×) over the baseline 
performance because of greater subword parallelism. Moreover, the higher 
performance is achieved with a mere 3% increase in the system area and a 5% 
increase in the system power. As a result, CAX improves area efficiency from 36% to 
68% and energy efficiency from 35% to 77% over the baseline. These results 
demonstrate that CAX provides an efficient mechanism for embedded imaging 
systems. 

The rest of the paper is organized as follows. Section 2 presents a summary of the 
CAX instruction set. Section 3 describes the modeled architectures and a 
methodology infrastructure for the evaluation of CAX. Section 4 evaluates the system 
area and power of our modeled architectures, and Section 5 analyzes execution 
performance and efficiency for each case. Section 6 concludes this paper. 

2   Color-Aware Instruction Set for Color Imaging Applications 

The color-aware instruction set (CAX) efficiently eliminates the computational 
burden of vector processing by supporting parallel operations on two-packed 16-bit 
(6:5:5) YCbCr data in a 32-bit datapath processor. In addition, CAX employs a 128-
bit color-packed accumulator that provides a solution to overflow and other issues 
caused by packing data as tightly as possible by implicit width promotion and 
adequate space. Fig. 2 illustrates three types of operations: (1) a baseline 32-bit 
operation, (2) a 4 × 8-bit SIMD operation used in many general-purpose processors, 
and (3) a 2 × 16-bit CAX operation employing heterogeneous (non-uniform) subword 
parallelism. 

For color images, the band data may be interleaved (e.g., the red, green, and blue 
data of each pixel are adjacent in memory) or separated (e.g., the red data for adjacent 
pixels are adjacent in memory). Although the band separated format is the most 
convenient for SIMD processing, a significant amount of overhead for data alignment 
is expected prior to SIMD processing. Moreover, traditional SIMD data 
communication operations have trouble with the band data that are not aligned on 



boundaries that are powers of two (e.g., adjacent pixels from each band are visually 
spaced three bytes apart) [12]. Even if the SIMD multimedia extensions store the 
pixel information in the band-interleaved format (i.e., |Unused|R|G|B| in a 32-bit 
register), subword parallelism cannot be exploited on the operand of the unused field. 
Furthermore, since the RGB space does not model the perceptual attributes of human 
vision well, the RGB to YCbCr conversion is required prior to color image processing. 
Although the SIMD multimedia extensions can handle the color conversion process in 
software, the hardware approach would be more efficient.  

CAX solves problems inherent to packed RGB extensions by properly aligning 
two-packed 16-bit data on 32-bit boundaries and by directly supporting YCbCr data 
processing, providing greater concurrency and efficiency for processing color image 
sequences. The CAX instructions are classified into four different groups: (1) parallel 
arithmetic and logical instructions, (2) parallel compare instructions, (3) permute 
instructions, and (4) special-purpose instructions. 
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Fig. 2. Types of operations: (a) a baseline 32-bit operation, (b) a 32-bit SIMD operation, and 
(c) a 32-bit CAX operation 

2.1   Parallel Arithmetic and Logical Instructions 

Parallel arithmetic and logical instructions include packed versions of addition 
(ADD_CRCBY), subtraction (SUBTRACT_CRCBY), and average (AVERAGE_CRCBY). 
The addition and subtraction instructions include a saturation operation that clamps 
the output result to the largest or smallest value for the given data type when an 
overflow occurs. Saturating arithmetic is particularly useful in pixel-related 
operations, for example, to prevent a black pixel from becoming white if an overflow 
occurs. The parallel average instruction, which is useful for blending algorithms, 
takes two packed data types as input, adds corresponding data quantities, and divides 
each result by two while placing the result in the corresponding data location. The 
rounding is performed to ensure precision over repeated average instructions. 



 

2.2   Parallel Compare Instructions 

Parallel compare instructions include CMPEQ_CRCBY, CMPNE_CRCBY, 
CMPGE_CRCBY, CMPGT_CRCBY, CMPLE_CRCBY, CMPLT_CRCBY, CMOV_CRCBY 
(conditional move), MIN_CRCBY, and MAX_CRCBY. These instructions compare 
pairs of sub-elements (e.g., Y, Cb, and Cr) in the two source registers. Depending on 
the instructions, the results are varied for each sub-element comparison. The first 
seven instructions are useful for a condition query performed on the incoming data 
such as chroma-keying [9]. The last two instructions, MIN_CRCBY and MAX_CRCBY, 
are especially useful for median filtering, which compare pairs of sub-elements in the 
two source registers while outputting the minimum and maximum values to the target 
register. 

2.3   Parallel Permute Instructions 

Permute instructions include MIX_CRCBY and ROTATE_CRCBY. These instructions 
are used to rearrange the order of quantities in the packed data type. The mix 
instruction mixes the sub-elements of the two source registers into the operands of the 
target register, and the rotate instruction rotates the sub-elements to the right by an 
immediate value. These instructions are useful for performing a vector pixel 
transposition or a matrix transposition [13]. 

2.4   Special-Purpose Instructions 

Special-purpose CAX instructions include ADACC_CRCBY (absolute-differences-
accumulate), MACC_CRCBY (multiply-accumulate), RAC (read accumulator), and 
ZACC (zero accumulator), which provide the most computational benefits of all the 
CAX instructions. The ADACC_CRCBY instruction, for example, is frequently used in 
a number of algorithms for motion estimation. The MACC_CRCBY instruction is 
useful in DSP algorithms that involve computing a vector dot-product, such as digital 
filters and convolutions. The last two instructions RAC and ZACC are related to the 
managing of the CAX accumulator. 

3   Methodology 

This section describes modeled architectures and a methodology infrastructure for the 
evaluation of the CAX instruction set. 

3.1   Modeled Architectures  

The SIMD Pixel (SIMPil) processor is used as the baseline SIMD image processing 
architecture for this study. Fig. 3 shows the microarchitecture of the SIMD array, 
along with its interconnection network. When data are distributed, the processing 
elements (PEs) execute a set of instructions in a lockstep fashion. With 4×4 pixel 
sensor sub-arrays, each PE is associated with a specific portion (4×4 pixels or 16 
pixel-per-processing-element) of an image frame, allowing streaming pixel data to be 
retrieved and processed locally. Each PE has a reduced instruction set computer 
(RISC) datapath with the following minimum characteristics:  

 Small amount of local storage (128 32-bit words),  
 Three-ported general-purpose registers (16 32-bit words), 



 ALU − computes basic arithmetic and logic operations, 
 Barrel shifter − performs multi-bit logic/arithmetic shift operations, 
 MACC − multiplies 32-bit values and accumulates into a 64-bit accumulator, 
 Sleep − activates or deactivates a PE based on local information, 
 Pixel unit − samples pixel data from the local image sensor array, 
 ADC unit − converts light intensities into digital values, 
 RGB2YCC and YCC2RGB unit− converts RGB to/from YCbCr, and 
 Nearest neighbor communications through a NEWS (north-east-west-south) 

network and serial I/O unit. 
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Fig. 3. Block diagram of a SIMD array and a processing element 

 
To improve the performance of vector processing of color image sequences, CAX 

instructions are included in the instruction set architecture (ISA) of the SIMPil array. 
For a performance comparison, MDMX-type instructions are also included in the 
SIMPil ISA. Table 1 summarizes the parameters of the modeled architectures. An 
overall simulation infrastructure is presented next. 

Table 1. Modeled architecture parameters 

Parameter Value 

System Size 44×38 (1,584 PEs) 

Image Sensor per PE (vertor pixel per PE ratio)  4×4 (16 VPPE) 

VLSI Technology  100 nm 

Clock Frequency 80 MHz 

Interconnection Network Mesh 

intALU/intMUL/Barrel Shifter/intMACC/Comm 1 / 1 / 1 / 1 / 1 

MDMX/CAX: intALU/intMACC 1 / 1 

Local Memory Size (baseline/MDMX/CAX) 128 32-bit/ 128 32-bit/ 64 32-bit word 



 

3.2   Methodology Infrastructure    

Fig. 4 shows a methodology infrastructure that is divided into three levels: application, 
architecture, and technology. 
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Fig. 4. A methodology infrastructure for exploring the design space of three modeled 
architectures: baseline SIMPil, MDMX-SIMPil, and CAX-SIMPil 
 

At the application level, an instruction-level SIMD simulator, called SIMPilSim, 
has been used to profile execution statistics, such as cycle count, dynamic instruction 
frequency, and PE utilization, for the three different versions of the programs: (1) 
baseline ISA without subword parallelism (SIMPil), (2) baseline plus MDMX ISA 
(MDMX-SIMPil), and (3) baseline plus CAX ISA (CAX-SIMPil). The benchmark 
suite includes five imaging applications (see more details at [5]): a chroma-keying 
program (CHROMA), color edge detection using a vector Sobel operator (VSobel), 
the vector median filter (VMF), vector quantization (VQ), and the full-search vector 
block-matching algorithm of motion estimation (FSVBMA) within the MPEG 
standard. 

At the architecture level, the heterogeneous architectural modeling (HAM) of 
functional units for SIMD arrays, proposed by Chai et al. [3], has been used to 
calculate the design parameters of modeled architectures. For the design parameters 
of the MDMX and CAX functional units (FUs), Verilog models for the baseline, 
MDMX, and CAX FUs were implemented and synthesized with the Synopsys design 
compiler (DC) using a 0.18-micron standard cell library. The reported area 
specifications of the MDMX and CAX FUs were then normalized to the baseline FU, 
and the normalized numbers were applied to the HAM tool for determining the design 
parameters of MDMX- and CAX-SIMPil. The design parameters are then passed to 
the technology level.  

At the technology level, the Generic System Simulator (GENESYS) developed at 
Georgia Tech [8] has been used to calculate technology parameters (e.g., latency, area, 
power, and clock frequency) for each configuration. Finally, the databases (e.g., cycle 
times, instruction latencies, instruction counts, area, and power of the functional units) 



obtained from the application, architecture, and technology levels are combined to 
determine execution times, area efficiency, and energy efficiency for each case. The 
next section presents the system area and power of the modeled architectures. 

4   System Area and Power Evaluation Using Technology Modeling 

Fig. 5 shows the system area and power of MDMX-SIMPil and CAX-SIMPil, 
normalized to the baseline SIMPil. Experimental results indicate that MDMX requires 
a 14% increase in the entire system area and a 16% increase in the peak system power. 
However, CAX only requires a 3% increase in the system area and a 5% increase in 
the system area and power because of the reduced pixel word storage (local memory). 
These system area and power results are combined with application simulations for 
determining processing performance, area efficiency, and energy efficiency for each 
case, which is presented next. 
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Fig. 5. System area and power of CAX-SIMPil and MDMX-SIMPil, normalized to the baseline 
SIMPil 

5   Experimental Results 

Cycle accurate simulation and technology modeling have been used to determine the 
performance and efficiency characteristics of modeled architectures for each 
application task. Each application was developed in its respective assembly languages 
for the SIMPil system, in which all three versions for each program have the same 
parameters, data sets, and calling sequences. In the experiment, the overhead of the 
color conversion was not included in the performance evaluation for all the versions. 
In other words, this study assumes that the baseline, MDMX, and CAX versions 
directly support YCbCr data in the band-interleaved format (e.g., |Unused|Cr|Cb|Y| 
for baseline and MDMX and |Cr|Cb|Y|Cr|Cb|Y| for CAX). The metrics of the 
execution cycle count, corresponding sustained throughput, energy efficiency, and 
area efficiency of each case form the basis of the study comparison, defined in Table 
2.  



 

Table 2. Summary of evaluation metrics 

execution 
time sustained throughput area efficiency energy efficiency 

ck
exec f

Ct =  
exec

PEexec
sust t

NUOTh ⋅⋅
= ]

mms
Gops[ 2⋅

=
Area
Thsust

Aη ]
Joule
Gops[

Energy
NUO PEexec

E
⋅⋅

=η  

C is the cycle count, 
ckf is the clock frequency, execO is the number of executed operations, 

U is the system utilization, and NPE is the number of processing elements. Note that since each 
CAX and MDMX instruction executes more operations (typically six and three times, 
respectively) than a baseline instruction, we assume that each CAX, MDMX, and baseline 
instruction executes six, three, and one operation, respectively, for the sustained throughput 
calculation. 

5.1   Performance Evaluation Results  

This section evaluates the impact of CAX on processing performance for the selected 
color imaging applications on the SIMPil system.  

Overall Results. Fig. 6 illustrates execution performance (speedups in executed 
cycles) attained by CAX and MDMX when compared with the baseline performance 
without subword parallelism. The results indicate that CAX outperforms MDMX for 
all the programs in terms of speedup, indicating a speedup ranging from 5.2× to 8.8× 
(an average of 6.3×) with CAX, but only 3× to 5× (an average of 3.7×) with MDMX 
over the baseline. The next section discusses the sources for the reductions in the 
issued instructions are discussed next. 
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Fig. 6. Speedups for the SIMPil system with CAX and MDMX, normalized to the baseline 
performance. Note that HARMEAN is the harmonic mean 
 

Benefits of CAX for Color Imaging Applications. Fig. 7 shows the distribution of 
issued vector instructions for the SIMPil system with CAX and MDMX, normalized 
to the baseline version. Each bar divides the instructions into the arithmetic-logic-unit 
(ALU), memory (MEM), communication (COMM), PE activity control unit (MASK), 
image pixel loading (PIXEL), MDMX, and CAX. The use of CAX reduces a 
significant number of the instruction counts for all of the programs, ranging from 
88.6% (VMF) to 80.7% (FSVBMA) over the baseline. In particular, CAX reduces a 



significant number of ALU and memory instruction counts due to its instruction 
definition. An interesting observation is that the FSVBMA program has the smallest 
reduction in the instruction count with CAX. This is because it involves high inter-PE 
communication operations that are not affected by CAX. For example, each PE 
cannot directly support a macroblock size of 16×16 pixels because 4×4 pixels are 
mapped to each PE. As a result, the 4×4 distortions are computed in each PE 
separately. Each result is then combined through NEWS communication instructions 
for the final distortion between the 16×16 input and reference blocks. 
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Fig. 7. The distribution of issued vector instructions for the SIMPil system with CAX and 
MDMX, normalized to the baseline version 
 

5.2   Energy Evaluation Results 

Fig. 8 shows energy efficiency, the task throughput achieved per unit of Joule, for the 
SIMPil system with MDMX and CAX, normalized to the baseline version. CAX 
outperforms MDMX across all the programs in the energy efficiency, indicating a 
50% increase with CAX, but only an 11% increase with MDMX. This is because 
CAX achieves higher sustained throughputs with a smaller increase in the system 
power. Increasing energy efficiency improves sustainable battery life for given system 
capabilities. 
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Fig. 8. Energy efficiency for the SIMPil system with CAX and MDMX, normalized to the 
baseline version 



 

5.3   Area Evaluation Results 

Fig. 9 shows area efficiency, the task throughput achieved per unit of area, for the 
SIMPil system with MDMX and CAX, normalized to the baseline version. As with 
energy efficiency, CAX outperforms MDMX for all the programs in the area 
efficiency, indicating a 52% increase with CAX, but only a 13% increase with 
MDMX. This is because CAX achieves higher sustained throughput with smaller area 
overhead. Increasing area efficiency improves component utilization for given system 
capabilities.  
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 Fig. 9. Area efficiency for the SIMPil system with CAX and MDMX, normalized to the 
baseline version 

6   Conclusions 

As emerging portable multimedia applications demand more and more tremendous 
computational throughput with limited area and power, the need for high efficiency, 
high throughput embedded processing is becoming an important challenge in 
computer architecture. In this regard, this paper has addressed application-, 
architecture-, and technology-level issues in an existing processing system to 
efficiently support vector processing of color image sequences. In particular, this 
paper has focused on the color-aware instruction set (CAX) for memory- and 
performance-hungry embedded applications in a representative SIMD image 
processing architecture. Unlike typical multimedia extensions, CAX harnesses 
parallelism within the human perceptual color space (e.g., YCbCr). Rather than 
depending solely on generic subword parallelism, CAX supports parallel operations 
on two-packed 16-bit YCbCr data in a 32-bit datapath processor, providing greater 
concurrency and efficiency for color image and video processing. The key findings 
are as follows: 

 CAX achieves a speedup ranging from 5.2× to 8.8× (an average of 6.3×) over the 
baseline SIMD array performance without subword parallelism. This is in contrast 
to MDMX, which achieves a speedup ranging from only 3× to 5× (an average of 
3.7×) over the same baseline SIMD array.  

 CAX reduces energy consumption from 80% to 89%, but MDMX reduces energy 
consumption from only 60% to 79% over the baseline version. 

 Moreover, CAX benefits from reduced pixel word storage in addition to greater 



concurrency. As a result, CAX outperforms MDMX for all the programs in area 
efficiency and energy efficiency. The area efficiency increases from 36% to 68% 
(an average of 52%) with CAX, but only 6% to 22% (an average of 13%) with 
MDMX. The energy efficiency increases from 35% to 77% (an average of 50%) 
with CAX, but only 2% to 24% (an average of 11%) with MDMX. Increasing area 
and energy efficiencies yield greater component utilization and sustainable battery 
life, respectively, for given system capabilities. 

 Furthermore, CAX improves the performance and efficiency with a mere 3% 
increase in the silicon area and a 5% increase in the system power, while MDMX 
requires a 14% increase in the silicon area and a 16% increase in the system power.  

 In the future, a heuristic compiler support will be explored that extracts both data-
level parallelism and color subword parallelism from high level language programs to 
overcome tedious hand optimization and/or special programming libraries. 
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