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Abstract. In this paper, we focus on power-aware network devices, and
propose a stochastic model to evaluate their performance quantitatively.
More precisely, applying the Markovian additive process (MAP) to the
arrival stream for network devices, we develop a stochastic dynamic
power management (DPM) model with shutdown policy. Two perfor-
mance measures for power-saving and processing; steady-state power
consumption and throughput, are derived analytically for the DPM model.
In numerical examples, we investigate the performance of the power-
aware communication device with shutdown in terms of power-saving
and processing.

1 Introduction

Energy consumption is a critical issue for ubiquitous computing such that a huge
number of computer systems are embedded everywhere. Since most ubiquitous
systems have to process the tasks imposed with the limited amount of power
supplied by battery packs, both technologies on power reduction and power sav-
ing are important to design the ubiquitous systems with embedded, portable
and wearable architecture. Thus the power management to reduce energy con-
sumption has received considerable attention for recent years.

Generally speaking, since computer systems, including ubiquitous systems,
consist of a number of electric components and devices, the main issues on power
management are to reduce energy consumption in each component such as IC
chip, microprocessor, CPU, disk drive, display etc. To save energy consumption
for a lot of devices, the software-based power management technique seems to
be more effective than the hardware-based power reduction from the view points
of cost and flexibility. In fact, note that the devices installed in most systems
are capable to reconfiguration by software control. The simplest but effective
idea for saving electricity is to stop the electricity supply for the devices when
they become idle. In other words, when the devices terminate their own tasks,
the controller of software-based power management, i.e. a power manager (PM),
should shut down the devices immediately. Such a software-based power man-
agement is often called dynamic power management (DPM). DPM is a control
scheme that reconfigures components dynamically to serve the tasks imposed



with a minimum number of active components [1, 3]. In DPM, two approaches
on reduction of power consumption are available: shutdown and variable-voltage.
The shutdown approach is the simplest way for the power reduction, and is to
shut down a device when it has been idle for long time. On the other hand, the
variable-voltage approach is to reduce the supply voltage for processors. That is,
adjusting system speed at the minimum level necessary to processing the tasks
leads to drastically reducing energy consumption.

Benini et al. [1] discuss the system-level DPM. In their modeling, the sys-
tem can be mainly classified into three states: active, idle and sleep. In this
framework, by taking account of trade-off relationship between processing per-
formance and energy consumption, PM can control the system under the DPM.
For instance, when applying the shutdown and the variable-voltage, we can carry
out the performance evaluation under these basic DPM models. In particular,
Benini et al. [3] describe that the control with fixed shutdown timing takes an
advantage of the implementation, but in the fixed shutdown policy, the inade-
quate (shorter or longer) timing of shutdown, may cause a failure for reducing
energy consumption. That is, it implies that there is an optimal control policy
to save energy consumption effectively in DPM. Srivastava et al. [12] propose
predictive shutdown policies to improve the fixed shutdown timing by making
decisions as soon as the device becomes idle, based on the successive observa-
tions for active and idle states. The shutdown policy by Hwang and Wu [5] uses
the weighted sum of the last idle period and the last prediction as the upcoming
prediction of the idle period, and improves ones in [12]. Unlike these models,
the stochastic DPM models are considered in [2, 4, 10]. Qiu and Pedram [10] and
Benini et al. [2] study DPM models with shutdown by applying the Markov de-
cision processes. In their models, the workload is modeled by a simple two-state
Markov chain, and the problem is formulated as choosing the optimal strategies
on each state. Chung et al. [4] point out that the policy optimization in [2, 10] is
based on a priori knowledge of the system and its workload statistics, but that
the workload is generally much harder to characterize in advance. Since work-
loads should be often non-stationary in general, they consider a DPM model
for non-stationary service requests. Similar shutdown approaches can be applied
to the hard disk power management on personal computers. Sandoh et al. [11]
develop a simple renewal reward model and derive the optimal timing at which
the hard disk device should go to the sleep state. Lu and De Micheli [6] and Lu
et al. [7] present the computation algorithms for controlling the power states of
a hard disk device. On the other hand, as the DPM models based on stochastic
processes, Okamura et al. [8, 9] develop some shutdown models based on the re-
newal structure and queueing theory to represent the number of arrival requests,
i.e. arrival stream of requests, more strictly. In their works, under the circum-
stance that the arrival process of requests is according to the Poisson process, it
is optimal to shut down the device just after each task is terminated, or not to
shut the device at all, depending on the arrival rate.

This paper focuses on power-aware communication network devices such as a
wireless LAN. In such devices, the problem on power reduction is critical, because



the energy consumption of network devices cannot be ignored for the total con-
suming electricity for mobile system. After developing a stochastic DPM model
for the network device and the mobile communication environment, we derive
analytically some performance measures on both power-saving and processing.
As mentioned before, if the arrival stream is given by the Poisson process, it
is proved that the optimal shutdown timing becomes zero or infinity. However,
in the practical communication network, the arrival stream for devices might
not obey a simple Poisson process, because there is the correlation of requests.
This implies that there are the states of high and low arrival rates in the com-
munication network. Thus it is worth noting to consider the modeling with the
correlation of requests. For the modeling with correlation, the Markov modulated
Poisson process (MMPP) is often used. The MMPP is the stochastic process in
which the arrival rate changes according to a continuous-time Markov chain
(CTMC), and is one of the simplest stochastic processes to represent correlation
of accesses. Since the Markovian additive process (MAP) includes the MMPP
as a special case and allows the arrival rate to change at the occurrence of an
arrival, it can model the more complex correlation of accesses.

2 Model Description

2.1 Modeling of Arrival Stream

First we model an arrival stream of requests in the underlying network device.
Suppose that an arrival stream for the underlying device has a number of internal
states which are called phases, and that the transition of phases occurs according
to a CTMC. Let {J(t); t ≥ 0} be the CTMC which indicates the phase at time
t, and the corresponding infinitesimal generator is given by

M =




−∑
j µ1,j µ1,2 · · · µ1,m

µ2,1 −∑
j µ2,j · · · µ2,m

...
...

. . .
...

µm,1 µm,2 · · · −∑
j µm,j


 . (1)

For sake of simplification, the number of phases, m (≥ 1), is to be finite. The
arrival rate of requests depends on the phase, and is governed by a CTMC of
phases. That is, from the Markovian property, the arrival rate can be determined
only by the current phase. Define the following matrix whose element indicates
the arrival rate of request on the corresponding phase:

D =




λ1,1 λ1,2 · · · λ1,m

λ2,1 λ2,2 · · · λ2,m

...
...

. . .
...

λm,1 λm,2 · · · λm,m


 . (2)

The diagonal elements of the matrix D indicate the occurrence rates of requests
corresponding to each phase. This rate does not include the occurrence rate of



phase transition, i.e. the corresponding event is that one request occurs but the
phase does not change. On the other hand, non-diagonal elements represent the
rates of the simultaneous events that a request occurs and the phase changes.

Let {N (t); t ≥ 0} denote the cumulative number of requests before time t
and P (t) be the matrix whose (i, j)-element is given by

pi,j(t) = Pr{N (t) = n, J(t) = j | N(0) = 0, J(0) = i} i, j = 1, 2, . . . , m. (3)

From the matrix-based Markovian analysis, we obtain the following differential-
difference equations:

d

dt
P 0(t) = P 0(t)C, (4)

d

dt
P k(t) = P k(t)C + P k−1(t)D, k = 1, 2, . . . (5)

and
C = M − diag(De), (6)

where e is the column vector whose elements are 1 and diag(a) gives a matrix
with the elements of a on the leading diagonal. Then the stochastic process N(t)
is called the Markovian additive process (MAP) with parameters C and D.

For example, letting C = −λ and D = λ, the corresponding MAP is reduced
to the homogeneous Poisson process with the arrival rate λ. Also, we can rep-
resent the switched Poisson process (SPP), interrupted Poisson process (IPP)
and the Markov modulated Poisson process (MMPP) with the same framework.
Further the MAP models an arrival stream in the practical situation. Actually,
if we set the parameters as,

C =
(

0 0
µ − (λa + µ)

)
, D =

(
0 λs

0 λa

)
, (7)

then the associated MAP can represent the situation where a communicative
session starts and terminates at the rates λs and µ, respectively, and the requests
arrive at the underlying network device with the rate λa while the session is alive.

An advantage of the MAP is to represent convolutional of arrival streams eas-
ily. Let Ck and Dk, k = 1, . . . , K denote the parameters of MAPs representing
the arrival streams by respective peripheral devices. Then the total number of
requests for the underlying devices is given by the convolutional of these MAPs
with the parameters

C = C1 ⊕ · · · ⊕ CK , D = D1 ⊕ · · · ⊕ DK , (8)

where ⊕ is the Kronecker sum.

2.2 Modeling of the network device

Consider a network device which has the three energy consumption states: active,
idle and inactive (sleep). The total number of requests from other devices follows



phase 1 phase 2 phase m

idle state

phase 1 phase 2 phase m

inactive state

phase 1 phase 2 phase m

active state

termination

shutdown

starting communication
with delay time

starting communication

Fig. 1. Configuration of state transition in DPM model.

the MAP with parameters M and D. To simplify the discussion, the arrival
stream has m (> 0) different states of phases. When a request arrives at the
underlying network device, the device communicates with the corresponding
device. The time required to communicate the other is given by a random variable
S having the probability distribution function F (t). During the communication,
the other succeeding requests are completely refused. After the communication is
terminated, the device waits for next request in the idle state. If no access occurs
for a limited time period t0, PM shuts down the device to save the electricity, i.e.
the state of device becomes inactive. In the inactive state, when a request occurs,
the device starts to communicate with the other device, where it takes a random
time delay D to set up for the communication, having the probability distribution
function H(t). On energy consumption, it is assumed that the amounts of energy
consumption per unit time in active, idle and inactive states are given by P1 (>
0), P2 (0 < P2 < P1) and 0, respectively. Figure 1 shows the state transition
diagram of DPM model.

3 Performance Measures

Here two kinds of performance measures will be considered in terms of power
saving and processing: (i) Steady-state power consumption and (ii) Throughput.
To derive these performance measures, we apply the hidden Markovian method.
Define the time period between two successive terminations of communication
as one cycle. Taking account of the state transition of phase at each termination,
the temporal behavior of phase transition is described by a discrete-time Markov
chain (DTMC). Let G0(t0) denote the transition probability matrix for phases at
time instance of communicative termination, provided that the shutdown time



is given by t0. From the matrix-based Markovian analysis [13], the transition
probability matrix is given by

G0(t0) =
∫ t0

0

exp(Ct)dtDF +
∫ ∞

t0

exp(Ct)dtDHF

= {I − exp(Ct0)}(−C)−1DF + exp(Ct0)(−C)−1DHF

= (−C)−1DF − exp(Ct0)(−C)−1D{I − H}F . (9)

In this equation, the matrices H and F denote the transition probability ma-
trices for the delay time and the communication time, respectively, where

H =
∫ ∞

0

exp(Qt)dH(t), F =
∫ ∞

0

exp(Qt)dF (t), (10)

and Q = C + D. Let us define the steady-state probabilities for phases on the
hidden Markov chain, provided that the shutdown timing is t0 as

π(t0) = [π1(t0), π2(t0), . . . , πm(t0)]. (11)

Then it is evident that

π(t0) = π(t0)G0(t0), π(t0)e = 1. (12)

In fact, the computation in Eq. (12) can be reduced into the problem on eigen-
value and eigenvectors for matrices.

(i) Steady-state power consumption
First, we consider the expected time length of one cycle. Since the expected

time length depends on the state of phase at the beginning of cycle, i.e., the ter-
mination of communication, the expected time length of one cycle is represented
by a column vector. When the shutdown timing is given by t0, the expected time
length of one cycle becomes

τ (t0) =
∫ t0

0

{t + E[S]} exp(Ct)Dedt

+
∫ ∞

t0

{t + E[D] + E[S]} exp(Ct)Dedt

= (−C)−2De + E[S]De + E[D] exp(Ct0)(−C)−1De. (13)

Similarly, the expected power consumption during one cycle also depends on the
state of phases at the beginning of cycle, and is given by

ξ(t0) =
∫ t0

0

{P1t + P2E[S]} exp(Ct)Dedt

+
∫ ∞

t0

{P1t0 + P2(E[D] + E[S])} exp(Ct)Dedt



= P1(−C)−2De + P2E[S](−C)−1De

+ {P2E[D]I − P1(−C)−1} exp(Ct0)(−C)−1De. (14)

From the renewal reward argument on the Markov renewal process [14], the
steady-state power consumption is given by

Css(t0) = lim
t→∞

E[the amount of consuming electricity during [0, t)]
t

=
π(t0)ξ(t0)
π(t0)τ (t0)

. (15)

(ii) Throughput
The throughput for the network device is defined as

Tss(t0) = lim
t→∞

E[the number of achieved tasks during [0, t)]
t

. (16)

Similar to the steady-state power consumption, since the network device always
processes only one task requested during one cycle, the throughput can be de-
rived as

Tss(t0) =
1

π(t0)τ (t0)
. (17)

4 Performance Evaluation

In this section, we investigate the effectiveness of shutdown policy on the network
device under the performance measures. In particular, we consider the following
four kinds of arrival streams:

Case 1: Poisson process with the parameters:

C = −λ, D = λ. (18)

Case 2: IPP with 2-phases

C =
(−µ1 µ1

µ2 − (µ2 + λ)

)
, D =

(
0 0
0 λ

)
. (19)

Case 3: IPP with 2-phases and the first arrival causes succeeding requests

C =
(−µ1 0

µ2 − (µ2 + λ)

)
, D =

(
0 µ1

0 λ

)
. (20)

Case 4: Convolutional of two IPPs in Case 3

C =




−2µ1 0 0 0
µ2 −(µ1 + µ2 + λ) 0 0
µ2 0 −(µ1 + µ2 + λ) 0
0 µ2 µ2 −2(µ2 + λ)


 , (21)



D =




0 µ1 µ1 0
0 λ 0 µ1

0 0 λ µ1

0 0 0 2λ


 . (22)

As shown in Section 3, the arrival stream in Case 3 represents the situation
where a communicative session starts and terminates at the rates µ1 and µ2,
respectively, and where the requests occur at the rate λ while the session is
alive. In Case 4, we consider the convolutional of such two arrival streams. Also,
it is assumed that both communication time and delay time obey the Gamma
distributions with respective shape and scale parameters; (ms, ηs) and (md, ηd),
i.e.,

F (t) =
∫ t

0

ηms
s ums−1e−ηsu

Γ (ms)
du, H(t) =

∫ t

0

ηmd

d umd−1e−ηdu

Γ (md)
du. (23)

Under these assumptions, the mean times of communication and delay are given
by

E[S] =
ms

ηs
, E[D] =

md

ηd
. (24)

If PM does not perform the shutdown, then the traffic intensity is given by

ρ = π0DeE[S]. (25)

Note that this is not an actual traffic intensity, because the additional arrivals
are canceled while the network device communicates with one device, but is a
appropriate measure to evaluate the busyness of network device. In this paper,
we set the above traffic intensity as ρ = 0.3, 0.5 by adjusting the parameter λ in
each case.

The basic parameters are set as follows.

ρ = 0.3, 0.5, µ1 = 0.05, µ2 = 0.05, ms = 2.0, E[S] = 1.0,
md = 2.0, E[D] = 1.0, P1 = 1.0, P2 = 10.0

Figure 2 shows the behavior of steady-state power consumption and through-
put. Especially, we illustrate the dependence of each measure on varying shut-
down timing. From Fig. 2, except for Case 1, i.e., Poisson arrival stream case,
there is a unique optimal shutdown timing which minimizes the steady-state
power consumption. Also, the minimum expected power consumptions in Case
2 and Case 3 are lower than those in the other cases, so that the effectiveness
of power-saving in Case 2 and Case 3 is relatively higher. Next, we focus on
the throughput. In this result, the processing performance of network device be-
comes higher as the shutdown timing is longer. Although the traffic intensities
are fixed as 0.3 in all the cases, the throughput in Case 1 is better than the other
cases. In other words, the evaluation of performance is considerably optimistic.
This is because the Poisson arrival stream has no correlation of arrivals. Figure
3 shows the results in the case of ρ = 0.5. For these results, we can make similar
observations to the case of ρ = 0.3. Thus the optimal shutdown timing strongly
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Fig. 2. Performance measures (ρ = 0.3).
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Fig. 3. Performance measures (ρ = 0.5).

depends on the correlation of arrivals, rather than the quantities of network traf-
fic. In the situation where the arrival streams are IPPs, the optimal shutdown
timing leads to higher power-saving performance in the network device.

5 Conclusion

In this paper, we have considered the power-saving for network devices. Applying
the MAP to the arrival stream, we have proposed the DPM model with shut-
down policy. Furthermore, based on the DPM model, two performance measures
for power-saving and processing have been delivered from the renewal reward
theory. In the numerical examples, for four kinds of arrival streams, we have ex-
amined the difference on the steady-state power consumption and throughput.
As a result, the power-saving performance strongly depends on the correlation of
arrival requests. In future, we will develop the DPM model for the network de-
vice with communication buffer and the computation algorithm for the optimal
shutdown timing.
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