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Abstract. Context-awareness is one of the most important technologies for the 
ubiquitous computing. To embed such a technology into applications, first of 
all, a well-defined architectural framework is required to support applications to 
obtain necessary contexts. Several studies have been proposed, but most of 
them overlooked one fundamental feature that contexts are subjective things 
and context-awareness is subjective behavior. Thus, providing pre-defined, pre-
programmed operators which generate contexts by combining a couple of 
sensed data is very impractical. Instead, in this paper, we provide a well-defined 
programmable interface to applications, so that they can obtain and use contexts 
according to their own ideas. To evaluate our architecture and context interface, 
we implement all components comprising of the context infrastructure and per-
form several experiments. The results show the proposed method provides a 
flexible and expressive interface, but does not countervail the performance.  

1   Introduction 

Ubiquitous computing [11] is being considered as a next generation computing para-
digm these days. Computer-based technologies will be embedded into our casual life 
ubiquitously, so that we can use a variety of smart services anytime and anywhere. 
One of the most important technologies of the ubiquitous computing is context-
awareness. If a service perceives our situational contexts, it will operate much smarter 
without any artificial intelligence stuff.  

The most fundamental idea is to insert various sensors into an application. Then, the 
application can be aware of our situation by analyzing sensed data. However, such a 
sensor-driven approach gives developers pain because the developers have to know 
about all the sensors in detail. They have to spend more time on sensors than the core 
logics of applications. Several approaches have been proposed to overcome the prob-
lem. They attempted to separate context handling modules from applications and pro-
vided convenient toolkits and frameworks to develop sensor-driven smart applications 
much easier [1, 2, 7, 15, 16]. However, they are not sufficient enough to support the 
development of enormous context-aware applications. Nowadays, thus, an approach to 
establish a context infrastructure for innumerable context-aware applications is on the 
rise. When a context infrastructure is constructed, we can share a lot of sensors, in-
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formation sources, and processing components. Consequently, we will design smart 
applications without any difficulty [8]. 

Some studies are based on the infrastructure approach [4, 12, 13]. They assume a 
worldwide model and consider various and enormous context-aware applications 
which use shared sensors in the world. Although they addressed some infrastructure 
issues such as scaling up, information dissemination, and unified sensor abstraction, 
they overlooked one important feature that contexts are subjective things rather than 
objective. To generate a context, several sensed data have to be aggregated. However, 
the problem is that the developers of the context infrastructure and developers of ap-
plications are different. Even though a well-defined component in the context infra-
structure aggregates sensed data and generates contexts with a novel algorithm, they 
cannot be accepted to some applications. Thus, it is required to support applications 
by specifying their ideas to generate and use contexts.  

In this paper, we propose an architecture for the context infrastructure and describe 
how applications obtain and use contexts subjectively. Our context interface provides 
a context description language (CDL) for applications to specify their requests. Thus, 
based on the CDL given by the application, the infrastructure discovers proper sensors, 
aggregates sensed data, generates contexts, and sends them to the applications. To 
evaluate our architecture and context interface, we implemented all components com-
prising of the context infrastructure and did several experiments. Experimental results 
show that the proposed method provides a flexible and expressive interface, but does 
not countervail the performance. Rest of the paper is organized as follows: In Section 
2, we introduce several related work. Section 3 describes our context infrastructure 
and Section 4 explains the programmable context interface which is the core of our 
infrastructure. Section 5 provides several experimental results to evaluate our research. 
Finally, we conclude in Section 6.  

2   Related work 

There are several studies to support development of context-aware applications. The 
Context Toolkit [1] is a pioneering work of this area. It suggested a well-defined con-
ceptual framework that supports context-aware applications and provided several 
software components which aggregate and manage sensed data. Thus, developers can 
make context-aware applications rapidly by using the Context Toolkit. Since the ad-
vent of the Context Toolkit, a number of researches have been appearing. [2, 5, 7, 9, 
15, 16].  

Those are very convenient to develop a few number of applications in a domain, but 
not sufficient to support a large number of applications in multiple domains. Hong’s 
article pointed out such a problem and introduced an infrastructure approach to de-
velop a large number of context-aware applications [8]. There are several projects 
based on the infrastructure approach. Chen et al. proposed Solar, an infrastructure for 
context-aware applications [4]. Solar generates contexts by using an operator graph, 
where an operator is a self-contained data-processing component. A higher-level op-
erator can be made by composing existing operators. Because Solar considered a 



large-scale context fusion network, it addressed several infrastructure issues, scalabil-
ity and addressing. Contextor Infrastructure [6] took up the similar fashion. It sug-
gested contextors as a building block of the infrastructure, where a contextor is a 
component which can provide contextual information. Either a sensor or a processing 
unit like an operator of Solar can be a contextor. They suggested applications re-
trieved contexts by composing several contextors. SCINet (Strathclyde Context Infra-
structure) [13] and NEXUS [12] designed local context servers and extended it to be 
used for global areas by composing network of servers. SCINet comprises of CSs 
(Context Server) which maintains a central store of contexts and provides the access 
point for the applications. When a CS receives a query from an application, a query 
resolver in the CS generates a path to make the required context. In NEXUS, they 
defined an AHSS (Aware Home Spatial Service), a kind of context server, which is 
suitable for mid-size home environments and bridged AHSSs by using a query inter-
face named AWQL. Semantic Space [17] and Gaia’s context infrastructure [3] are 
also aimed to construct an infrastructure for context-aware applications. Semantic 
Space used context wrappers as a building block of the infrastructure. It also lever-
aged technologies from the Semantic Web. It provides RDF-based query language to 
combine sensors and existing semantic web information. Gaia project also assumed 
that there would be a lot of context providers and defined how context providers gen-
erate contexts.  

Our work has the same perspective with above researches which are based on the 
infrastructure approach, but we do not agree with them in terms of context fusion and 
context inference in the infrastructure. We do not allow any kind of data composition 
predefined in the infrastructure. Instead, we provide more flexible and programmable 
interface to applications, so that they can obtain and use subjective contexts.  

3   Architecture for a Context Infrastructure 

Most of all, a well-defined architecture is required to build a context infrastructure for 
worldwide smart applications. In infrastructure approach, sensors are not for a specific 
application. Thus, we should define a bottleneck protocol to glue sensors onto an 
application. Figure 1 shows our architecture for the context infrastructure. We divide 
the bottleneck protocol into two layers. One is abstraction layer and the other is col-
lective layer. The abstraction layer hides complexity of the actual sensors by wrapping 
them with a single software interface and publishes sensors to the outside. Typically, 
sensors use different I/O interfaces and express sensed data by using different data 
models and formats. Thus, it is quite difficult for an application to understand several 
kinds of I/O interfaces, data models, and formats. When sensors are abstracted, upper-
layer components can access to the sensors through a single interface without deep 
knowledge of each sensor. 

Our virtual sensor is based on Web services. It is based on fully open and standard 
protocols and does not depend on the physical communication method. A virtual sen-
sor expresses sensed data as a tuple which comprises of entity, location, time, attribute, 
and value. The value is actual sensed data and others are kind of meta-information to 



help applications to understand the value. Upper-leyer components have only to know 
the Web service interface and the tuple model of the virtual sensor to access various 
sensors.  
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Fig. 1. The proposed architecture for the context infrastructure.  

However, abstraction layer is not sufficient to support context-aware applications. 
First of all, applications do not know where proper sensors are. Thus, discovery ser-
vice has to be provided to applications. Also, most of sensors are immature. They 
provide imperfect information and lack the confidence of information. Thus, they have 
to be combined to provide necessary information to applications. Both functionalities, 
i.e., sensor fusion and sensor discovery, are provided by the collective layer. It re-
ceives a request for contexts from an application, aggregates information from pub-
lished virtual sensors, generates contexts by analyzing the information, and sends the 
contexts to the application. At this point, we should remind that contexts are subjec-
tive representation of information and context-awareness is a subjective behavior. If 
the collective layer generates contexts with its own algorithm, the contexts are not 
subjective products of the application but of the collective layer. Therefore, contexts 
can be used to only a few applications which agree with them. When we make a single 
application, it does not matter, but it cannot be used for the context infrastructure. 
Thus, it is more efficient to provide a method for applications to specify how to ag-
gregate and generate necessary contexts. It is the programmable context interface 
(PCI) proposed in this paper. Figure 2 shows the difference between two. When the 
collective layer provides predefined operators, they are not a part of an application. 
Applications have to decide whether they use the operators or not. When using the 
PCI, operators can be a part of applications. Thus, applications can generate their own 
contexts subjectively.  
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(a) Predefined operators                            (b) the proposed PCI model 

Fig. 2. Predefined operators vs. the PCI model.  

4   Programmable Context Interface 

As pointed out in the previous sections, the core of the context infrastructure is the 
programmable context interface. By using it, applications can generate and utilize 
contexts subjectively. In this section, we describe the PCI and its components in detail.   

It consists of three major components: application context managers (ACMs), the 
context broker (CB), and the channel manager (CM). The ACM is responsible for 
managing contexts for an application. At first, an application should generate a CDL 
to specify its request and submit to the context interface (1). The ACM factory re-
ceives the CDL and creates an ACM for the application (2). The ACM parses the 
CDL and constructs a tree structure based on the CDL (3). The CDL tree collects 
events from sensors, generates contexts, and sends them to the application. In the CDL, 
a sensor is specified by using either an end-point address of the sensor or a query to 
discover the sensor. If a query is used to describe a sensor, it will be sent to the CB 
after the ACM constructs the tree (4). Then, the CB discovers a proper sensor and 
sends the end-point address of the sensor to the ACM (5). When this stage is over, all 
sensor descriptions are filled with the specific addresses of sensors. It is called the 
grounded CDL. After that, the ACM sends the grounded CDL to the CM (6). The CM 
subscribes virtual sensors instead of the ACM (7). When an event from a virtual sen-
sor arrives at the CM (8), it sends the event to the ACM (9). The CDL tree in the 
ACM receives the event and operates it according to the operation defined in the CDL 
(10). This operation flow is shown in Figure 3.  
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Fig. 3. Operation flow of the Programmable Context Interface. 

 
The specification of the CDL is the most important part of the PCI. By using the CDL, 
application can specify a lot of things to generate contexts by using the CDL. They 
can specify which sensors they use, how aggregate sensed data, and how generate the 
context from the sensed data. Thus, it has to be simple, but expressive enough to spec-
ify any operation required for applications. Figure 4 shows an example of the CDL. 

 

 
Fig. 4. An example of the CDL. It represents a kind of person presence sensor 

 



A CDL comprises of three parts, a list of sensors, a list of operators, and a list of re-
quests. <cdl:sensorList> specifies sensors which are going to be used. Sensors can be 
categorized into two types, i.e., subscription and constant. The constant means that the 
sensor retrieves sensed data only once, but the subscription means that the sensor 
retrieves data continuously. A sensor can be specified by either <cdl:query> or 
<cdl:address>. When the application already knows the sensor, <cdl:address> is used. 
If the application does not know about the sensor, <cdl:query> has to be used to dis-
cover a group of proper sensors. The query is based on the context tuple we defined. 
The query element is sent to the context broker (CB) and the CB transforms the query 
element into an address element. In this example, we specified two sensors. One is 
specified by a query element. The other is specified by an address element.  

<cdl:operatorList> specifies operators. An operator is a kind of processing module. 
It receives data from sensors or other operators and processes the data with own op-
eration. It can be defined by <cdl:inputs>  and <cdl:operation>. The <cdl:inputs> 
specifies sensors and operators that have to send data to the operator. Only input ele-
ments marked as the driver can trigger the operation.  The operation in an operator is 
specified by the <cdl:operation>. Current version of the CDL supports five types of 
operations. Those are mapping, selection, integration, calculation, and manual. Finally, 
<cdl:Request> is used to mark sensors or operations whose output would be sent to  
the application. When all nodes marked as request finish their operation, the ACM 
makes a result by combining events generated from requested nodes and sends it to 
the application.  

4 Evaluation  

In this section, we evaluate the proposed context infrastructure based on the pro-
grammable context interface. The main difference between previous approaches and 
our approach is that we do not use pre-defined operations. Instead, we provide an 
interface to applications to program operations that they need to obtain necessary 
contexts. Thus, we have to show that our operations can be performed in the same way 
as the pre-defined and pre-programmed operations.  

In our approach, an ACM should construct a CDL tree on the fly. If there is heavy 
overhead to construct a tree, it cannot be used even though it provides a very flexible 
and convenient interface. This is because contexts are time-sensitive information. 
Following experimental results show the construction of a CDL tree does not take 
much time although there are a number of nodes specified in a CDL. They also show 
that overall response time of the PCI is as fast as other systems which use predefined, 
pre-programmed model.  

4.1 Experimental results  

All components comprising of the context infrastructure are implemented by using 
Java SDK 1.5 and WSDP (Web Services Development Package) on Window XP 
machines. ACMs, the CB, the CM are located in the same machine, and each sensor 



and application are placed in different machines. A machine with the PCI components 
is Pentium IV 1.33GHz with 1GB main memory. All machines are connected by local 
area networks.  We firstly make a CDL which consists of two sensors and one opera-
tor, and measure the time at several points to see the basic timing diagram. Figure 5 
shows the result of the experiment. It takes about 400ms from an application submit-
ted a CDL to the application received the result. Specifically, such a time delay is 
quite feasible because valid time period of a sensed data is generally a couple of sec-
onds. The time from application launched to the time the ACM received the CDL 
stands for the communication time between two machines. It is not related to the PCI 
and depends on the network status. From the time to the CDL tree constructed stands 
for the tree construction time. It is very important to evaluate the ACM. Thus, we will 
show other experimental results about the construction time. The next one is the time 
to discover sensors. It depends on the ability of the CB. The next is the time to sub-
scribe to the sensors. It is very simple operation and depends on the network status 
rather than the ability of the CM. The time from all events arrived to the result stands 
for the processing time. It is also very important. The operator generated in the ACM 
interprets the operation specified in the CDL on the fly. Thus, it takes much more time 
compared to the pre-programmed operations. Finally, the time for the application to 
receive the result is also a kind of communication time between the PCI host and the 
application.  
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Fig. 5. The timing diagram when an application submits a CDL consisting of two sensors and 
one operation.  

 The most important point in this time diagram is the construction time, because our 
approach generates operation trees in running time, which may not exist in other ap-
proaches. To measure the construction time, we perform additional experiments. We 
measure only construction time with changing the number of nodes. Figure 6 shows 
the result of these experiments. When the number of nodes is two, it takes only 97ms. 
It takes more time as the number of nodes increases. When the number of nodes be-
comes more than one hundred, the construction time will be less than one second. 
However, one CDL include about 10 to 20 sensors typically. It takes only 120ms, so 
that it does not cause any heavy overhead to the application  
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Fig. 6. CDL tree construction time as changing the number of nodes (left). Response time 
compared to other models (right) 

Finally, four context-aware applications are designed by using several context acquisi-
tion models. The first model is pre-programmed and pre-defined model. In this model, 
operators are already developed and published, and applications already know about 
the operators. Probably, the programmer of operators and the programmer of applica-
tions should be same. The Context Toolkit uses this approach. The next one is pre-
programmed and not-defined model. Several useful operators are provided by some 
participants, but the application should discover the operators. A lot of approaches 
based on the infrastructure such as Solar and GAIA use this model. Our PCI model is 
not-programmed and not-defined model. There is no pre-programmed operator. In-
stead, applications have to generate subjective operators by submitting CDLs. We 
compare the response time of three models. Definitely, the first model shows the best 
performance as shown in Figure 6. It is because there is no additional overhead in the 
model such as construction time and discovery time. The second model only has dis-
covery time as overhead. However, there is no huge difference between three models 
in terms of the performance. Simply, it means that the construction time and discovery 
time occupy a small portion of the response time. But, the PCI model provides more 
convenient and flexible interfaces than other models. Thus, it is more feasible ap-
proach to support a number of context-aware applications.  

5 Conclusion 

In this paper, we have presented an architecture for supporting context-aware applica-
tions based on the infrastructure approach. The contribution of this paper is that we 
suggest a method that applications obtain and use contexts subjectively. When an 
infrastructure provides predefined and pre-programmed operators to extract contexts 
by using sensed data, it cannot be used for many applications. It is more efficient to 
provide a programmable interface to applications to specify their requests for contexts. 
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Experimental results show that it provides feasible response time compared to other 
context acquisition models.  
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