
A Programmable Context Interface to Build a Context
Infrastructure for Worldwide Smart Applications

Kyung-Lang Park, Chang-Soon Kim, Chang-Duk Kang, and Shin-Dug Kim

 Super Computing Lab, Department of Computer Science, Yonsei University 120-749,
134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea

{lanx, flsoon, niceguy, sdkim}@yonsei.ac.kr
http://supercom.yonsei.ac.kr

Abstract. Context-awareness is one of the most important technologies for the
ubiquitous computing. To embed such a technology into applications, first of
all, a well-defined architectural framework is required to support applications to
obtain necessary contexts. Several studies have been proposed, but most of
them overlooked one fundamental feature that contexts are subjective things
and context-awareness is subjective behavior. Thus, providing pre-defined, pre-
programmed operators which generate contexts by combining a couple of
sensed data is very impractical. Instead, in this paper, we provide a well-defined
programmable interface to applications, so that they can obtain and use contexts
according to their own ideas. To evaluate our architecture and context interface,
we implement all components comprising of the context infrastructure and per-
form several experiments. The results show the proposed method provides a
flexible and expressive interface, but does not countervail the performance.

1 Introduction

Ubiquitous computing [11] is being considered as a next generation computing para-
digm these days. Computer-based technologies will be embedded into our casual life
ubiquitously, so that we can use a variety of smart services anytime and anywhere.
One of the most important technologies of the ubiquitous computing is context-
awareness. If a service perceives our situational contexts, it will operate much smarter
without any artificial intelligence stuff.

The most fundamental idea is to insert various sensors into an application. Then, the
application can be aware of our situation by analyzing sensed data. However, such a
sensor-driven approach gives developers pain because the developers have to know
about all the sensors in detail. They have to spend more time on sensors than the core
logics of applications. Several approaches have been proposed to overcome the prob-
lem. They attempted to separate context handling modules from applications and pro-
vided convenient toolkits and frameworks to develop sensor-driven smart applications
much easier [1, 2, 7, 15, 16]. However, they are not sufficient enough to support the
development of enormous context-aware applications. Nowadays, thus, an approach to
establish a context infrastructure for innumerable context-aware applications is on the
rise. When a context infrastructure is constructed, we can share a lot of sensors, in-

mailto:@yonsei.ac.kr
http://supercom.yonsei.ac.kr

formation sources, and processing components. Consequently, we will design smart
applications without any difficulty [8].

Some studies are based on the infrastructure approach [4, 12, 13]. They assume a
worldwide model and consider various and enormous context-aware applications
which use shared sensors in the world. Although they addressed some infrastructure
issues such as scaling up, information dissemination, and unified sensor abstraction,
they overlooked one important feature that contexts are subjective things rather than
objective. To generate a context, several sensed data have to be aggregated. However,
the problem is that the developers of the context infrastructure and developers of ap-
plications are different. Even though a well-defined component in the context infra-
structure aggregates sensed data and generates contexts with a novel algorithm, they
cannot be accepted to some applications. Thus, it is required to support applications
by specifying their ideas to generate and use contexts.

In this paper, we propose an architecture for the context infrastructure and describe
how applications obtain and use contexts subjectively. Our context interface provides
a context description language (CDL) for applications to specify their requests. Thus,
based on the CDL given by the application, the infrastructure discovers proper sensors,
aggregates sensed data, generates contexts, and sends them to the applications. To
evaluate our architecture and context interface, we implemented all components com-
prising of the context infrastructure and did several experiments. Experimental results
show that the proposed method provides a flexible and expressive interface, but does
not countervail the performance. Rest of the paper is organized as follows: In Section
2, we introduce several related work. Section 3 describes our context infrastructure
and Section 4 explains the programmable context interface which is the core of our
infrastructure. Section 5 provides several experimental results to evaluate our research.
Finally, we conclude in Section 6.

2 Related work

There are several studies to support development of context-aware applications. The
Context Toolkit [1] is a pioneering work of this area. It suggested a well-defined con-
ceptual framework that supports context-aware applications and provided several
software components which aggregate and manage sensed data. Thus, developers can
make context-aware applications rapidly by using the Context Toolkit. Since the ad-
vent of the Context Toolkit, a number of researches have been appearing. [2, 5, 7, 9,
15, 16].

Those are very convenient to develop a few number of applications in a domain, but
not sufficient to support a large number of applications in multiple domains. Hong’s
article pointed out such a problem and introduced an infrastructure approach to de-
velop a large number of context-aware applications [8]. There are several projects
based on the infrastructure approach. Chen et al. proposed Solar, an infrastructure for
context-aware applications [4]. Solar generates contexts by using an operator graph,
where an operator is a self-contained data-processing component. A higher-level op-
erator can be made by composing existing operators. Because Solar considered a

large-scale context fusion network, it addressed several infrastructure issues, scalabil-
ity and addressing. Contextor Infrastructure [6] took up the similar fashion. It sug-
gested contextors as a building block of the infrastructure, where a contextor is a
component which can provide contextual information. Either a sensor or a processing
unit like an operator of Solar can be a contextor. They suggested applications re-
trieved contexts by composing several contextors. SCINet (Strathclyde Context Infra-
structure) [13] and NEXUS [12] designed local context servers and extended it to be
used for global areas by composing network of servers. SCINet comprises of CSs
(Context Server) which maintains a central store of contexts and provides the access
point for the applications. When a CS receives a query from an application, a query
resolver in the CS generates a path to make the required context. In NEXUS, they
defined an AHSS (Aware Home Spatial Service), a kind of context server, which is
suitable for mid-size home environments and bridged AHSSs by using a query inter-
face named AWQL. Semantic Space [17] and Gaia’s context infrastructure [3] are
also aimed to construct an infrastructure for context-aware applications. Semantic
Space used context wrappers as a building block of the infrastructure. It also lever-
aged technologies from the Semantic Web. It provides RDF-based query language to
combine sensors and existing semantic web information. Gaia project also assumed
that there would be a lot of context providers and defined how context providers gen-
erate contexts.

Our work has the same perspective with above researches which are based on the
infrastructure approach, but we do not agree with them in terms of context fusion and
context inference in the infrastructure. We do not allow any kind of data composition
predefined in the infrastructure. Instead, we provide more flexible and programmable
interface to applications, so that they can obtain and use subjective contexts.

3 Architecture for a Context Infrastructure

Most of all, a well-defined architecture is required to build a context infrastructure for
worldwide smart applications. In infrastructure approach, sensors are not for a specific
application. Thus, we should define a bottleneck protocol to glue sensors onto an
application. Figure 1 shows our architecture for the context infrastructure. We divide
the bottleneck protocol into two layers. One is abstraction layer and the other is col-
lective layer. The abstraction layer hides complexity of the actual sensors by wrapping
them with a single software interface and publishes sensors to the outside. Typically,
sensors use different I/O interfaces and express sensed data by using different data
models and formats. Thus, it is quite difficult for an application to understand several
kinds of I/O interfaces, data models, and formats. When sensors are abstracted, upper-
layer components can access to the sensors through a single interface without deep
knowledge of each sensor.

Our virtual sensor is based on Web services. It is based on fully open and standard
protocols and does not depend on the physical communication method. A virtual sen-
sor expresses sensed data as a tuple which comprises of entity, location, time, attribute,
and value. The value is actual sensed data and others are kind of meta-information to

help applications to understand the value. Upper-leyer components have only to know
the Web service interface and the tuple model of the virtual sensor to access various
sensors.

Context Interface

Virtual
Sensor

Virtual
Sensor

Virtual
Sensor

Application

Events

Sensor
Layer

Abstraction
Layer

Collective
Layer

Virtual
Sensor

Single interface

Various interface

Application Application
Layer

Request Contexts

Applications

Sensors

Bottleneck
protocols

Fig. 1. The proposed architecture for the context infrastructure.

However, abstraction layer is not sufficient to support context-aware applications.
First of all, applications do not know where proper sensors are. Thus, discovery ser-
vice has to be provided to applications. Also, most of sensors are immature. They
provide imperfect information and lack the confidence of information. Thus, they have
to be combined to provide necessary information to applications. Both functionalities,
i.e., sensor fusion and sensor discovery, are provided by the collective layer. It re-
ceives a request for contexts from an application, aggregates information from pub-
lished virtual sensors, generates contexts by analyzing the information, and sends the
contexts to the application. At this point, we should remind that contexts are subjec-
tive representation of information and context-awareness is a subjective behavior. If
the collective layer generates contexts with its own algorithm, the contexts are not
subjective products of the application but of the collective layer. Therefore, contexts
can be used to only a few applications which agree with them. When we make a single
application, it does not matter, but it cannot be used for the context infrastructure.
Thus, it is more efficient to provide a method for applications to specify how to ag-
gregate and generate necessary contexts. It is the programmable context interface
(PCI) proposed in this paper. Figure 2 shows the difference between two. When the
collective layer provides predefined operators, they are not a part of an application.
Applications have to decide whether they use the operators or not. When using the
PCI, operators can be a part of applications. Thus, applications can generate their own
contexts subjectively.

Sensor Sensor Sensor

Operator Operator

App App…

Sensor Sensor Sensor

Operator Operator

…App App

PCI

(a) Predefined operators (b) the proposed PCI model

Fig. 2. Predefined operators vs. the PCI model.

4 Programmable Context Interface

As pointed out in the previous sections, the core of the context infrastructure is the
programmable context interface. By using it, applications can generate and utilize
contexts subjectively. In this section, we describe the PCI and its components in detail.

It consists of three major components: application context managers (ACMs), the
context broker (CB), and the channel manager (CM). The ACM is responsible for
managing contexts for an application. At first, an application should generate a CDL
to specify its request and submit to the context interface (1). The ACM factory re-
ceives the CDL and creates an ACM for the application (2). The ACM parses the
CDL and constructs a tree structure based on the CDL (3). The CDL tree collects
events from sensors, generates contexts, and sends them to the application. In the CDL,
a sensor is specified by using either an end-point address of the sensor or a query to
discover the sensor. If a query is used to describe a sensor, it will be sent to the CB
after the ACM constructs the tree (4). Then, the CB discovers a proper sensor and
sends the end-point address of the sensor to the ACM (5). When this stage is over, all
sensor descriptions are filled with the specific addresses of sensors. It is called the
grounded CDL. After that, the ACM sends the grounded CDL to the CM (6). The CM
subscribes virtual sensors instead of the ACM (7). When an event from a virtual sen-
sor arrives at the CM (8), it sends the event to the ACM (9). The CDL tree in the
ACM receives the event and operates it according to the operation defined in the CDL
(10). This operation flow is shown in Figure 3.

Application A

Channel ManagerChannel Manager

Context BrokerContext Broker

VSVS VSVS VSVS

Query

Application Context Manager for A

Programmable Context Interface

Application Context Manager for B

ACM FactoryACM Factory

Application B

CDL

Address

Address

Event

Contexts Contexts

Event Subscription

CDLTree

1

2

4

discovery

5

6

7

8

9

10

11

3

Fig. 3. Operation flow of the Programmable Context Interface.

The specification of the CDL is the most important part of the PCI. By using the CDL,
application can specify a lot of things to generate contexts by using the CDL. They
can specify which sensors they use, how aggregate sensed data, and how generate the
context from the sensed data. Thus, it has to be simple, but expressive enough to spec-
ify any operation required for applications. Figure 4 shows an example of the CDL.

Fig. 4. An example of the CDL. It represents a kind of person presence sensor

A CDL comprises of three parts, a list of sensors, a list of operators, and a list of re-
quests. <cdl:sensorList> specifies sensors which are going to be used. Sensors can be
categorized into two types, i.e., subscription and constant. The constant means that the
sensor retrieves sensed data only once, but the subscription means that the sensor
retrieves data continuously. A sensor can be specified by either <cdl:query> or
<cdl:address>. When the application already knows the sensor, <cdl:address> is used.
If the application does not know about the sensor, <cdl:query> has to be used to dis-
cover a group of proper sensors. The query is based on the context tuple we defined.
The query element is sent to the context broker (CB) and the CB transforms the query
element into an address element. In this example, we specified two sensors. One is
specified by a query element. The other is specified by an address element.

<cdl:operatorList> specifies operators. An operator is a kind of processing module.
It receives data from sensors or other operators and processes the data with own op-
eration. It can be defined by <cdl:inputs> and <cdl:operation>. The <cdl:inputs>
specifies sensors and operators that have to send data to the operator. Only input ele-
ments marked as the driver can trigger the operation. The operation in an operator is
specified by the <cdl:operation>. Current version of the CDL supports five types of
operations. Those are mapping, selection, integration, calculation, and manual. Finally,
<cdl:Request> is used to mark sensors or operations whose output would be sent to
the application. When all nodes marked as request finish their operation, the ACM
makes a result by combining events generated from requested nodes and sends it to
the application.

4 Evaluation

In this section, we evaluate the proposed context infrastructure based on the pro-
grammable context interface. The main difference between previous approaches and
our approach is that we do not use pre-defined operations. Instead, we provide an
interface to applications to program operations that they need to obtain necessary
contexts. Thus, we have to show that our operations can be performed in the same way
as the pre-defined and pre-programmed operations.

In our approach, an ACM should construct a CDL tree on the fly. If there is heavy
overhead to construct a tree, it cannot be used even though it provides a very flexible
and convenient interface. This is because contexts are time-sensitive information.
Following experimental results show the construction of a CDL tree does not take
much time although there are a number of nodes specified in a CDL. They also show
that overall response time of the PCI is as fast as other systems which use predefined,
pre-programmed model.

4.1 Experimental results

All components comprising of the context infrastructure are implemented by using
Java SDK 1.5 and WSDP (Web Services Development Package) on Window XP
machines. ACMs, the CB, the CM are located in the same machine, and each sensor

and application are placed in different machines. A machine with the PCI components
is Pentium IV 1.33GHz with 1GB main memory. All machines are connected by local
area networks. We firstly make a CDL which consists of two sensors and one opera-
tor, and measure the time at several points to see the basic timing diagram. Figure 5
shows the result of the experiment. It takes about 400ms from an application submit-
ted a CDL to the application received the result. Specifically, such a time delay is
quite feasible because valid time period of a sensed data is generally a couple of sec-
onds. The time from application launched to the time the ACM received the CDL
stands for the communication time between two machines. It is not related to the PCI
and depends on the network status. From the time to the CDL tree constructed stands
for the tree construction time. It is very important to evaluate the ACM. Thus, we will
show other experimental results about the construction time. The next one is the time
to discover sensors. It depends on the ability of the CB. The next is the time to sub-
scribe to the sensors. It is very simple operation and depends on the network status
rather than the ability of the CM. The time from all events arrived to the result stands
for the processing time. It is also very important. The operator generated in the ACM
interprets the operation specified in the CDL on the fly. Thus, it takes much more time
compared to the pre-programmed operations. Finally, the time for the application to
receive the result is also a kind of communication time between the PCI host and the
application.

Application Launched

ACM received the CDL

CDL tree was constructed

CB Found all sensors

CM Subscribed all sensors

The first event arrivedThe second event arrived

The result was made

the application received the result

0

50

100

150

200

250

300

350

400

T
im

e
 d

e
la

y
(m

s)

Fig. 5. The timing diagram when an application submits a CDL consisting of two sensors and
one operation.

 The most important point in this time diagram is the construction time, because our
approach generates operation trees in running time, which may not exist in other ap-
proaches. To measure the construction time, we perform additional experiments. We
measure only construction time with changing the number of nodes. Figure 6 shows
the result of these experiments. When the number of nodes is two, it takes only 97ms.
It takes more time as the number of nodes increases. When the number of nodes be-
comes more than one hundred, the construction time will be less than one second.
However, one CDL include about 10 to 20 sensors typically. It takes only 120ms, so
that it does not cause any heavy overhead to the application

0

200

400

600

800

1000

1200

1400

1600

1800

2000

basic example (2
nodes)

In-door positining
(10 nodes)

decision make (10
nodes)

decision make (20
nodes)

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Model 1 Model 2 PCI

Fig. 6. CDL tree construction time as changing the number of nodes (left). Response time
compared to other models (right)

Finally, four context-aware applications are designed by using several context acquisi-
tion models. The first model is pre-programmed and pre-defined model. In this model,
operators are already developed and published, and applications already know about
the operators. Probably, the programmer of operators and the programmer of applica-
tions should be same. The Context Toolkit uses this approach. The next one is pre-
programmed and not-defined model. Several useful operators are provided by some
participants, but the application should discover the operators. A lot of approaches
based on the infrastructure such as Solar and GAIA use this model. Our PCI model is
not-programmed and not-defined model. There is no pre-programmed operator. In-
stead, applications have to generate subjective operators by submitting CDLs. We
compare the response time of three models. Definitely, the first model shows the best
performance as shown in Figure 6. It is because there is no additional overhead in the
model such as construction time and discovery time. The second model only has dis-
covery time as overhead. However, there is no huge difference between three models
in terms of the performance. Simply, it means that the construction time and discovery
time occupy a small portion of the response time. But, the PCI model provides more
convenient and flexible interfaces than other models. Thus, it is more feasible ap-
proach to support a number of context-aware applications.

5 Conclusion

In this paper, we have presented an architecture for supporting context-aware applica-
tions based on the infrastructure approach. The contribution of this paper is that we
suggest a method that applications obtain and use contexts subjectively. When an
infrastructure provides predefined and pre-programmed operators to extract contexts
by using sensed data, it cannot be used for many applications. It is more efficient to
provide a programmable interface to applications to specify their requests for contexts.

0

100

200

300

400

500

600

700

800

2 10 20 40 60 80 100

of Nodes

C
o

n
s

tr
u

c
ti

o
n

 T
im

e
 (

m
s

)

Experimental results show that it provides feasible response time compared to other
context acquisition models.

References

1. A. K. Dey, D. Salber, and G. D. Abowd,: A Conceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-Aware Applications, Human Computing Interac-
tion. Vol. 16. (2001) 97-166

2. A. Schemidt, U. Karlsruhe, K. V. Laerhoven,: How to build Smart Applications, IEEE Per-
sonal Communications. (2001)

3. A. Ranganathan and R. H. Campbell.: An infrastructure for Context-awareness based on first
order logic, Personal and Ubiquitous Computing, Vol. 7. Springer-Verglag London (2003)
353-364

4. G. Chen, M. Li, and D. Kotz.: Design and Implementation of a Large-Scale Context Fusion
Network. In Proc. IEEE Internation Conference on Mobile and Ubiquitous Systems. (2004)

5. G. Judd and P. Steenkiste.: Providing Contextual Information to Ubiquitous Computing
Applications. In Proc. IEEE Conference on Pervasive Computing and Communiations.
(2003)

6. G. Rey and J. Coutaz.: The Contextor Infrasturcture for Context-aware Computing. In Proc.
Workshop on the Component-oriented approach to context-aware systems (ECOOP04).
(2004)

7. H. Lei, D. Sow, J. Davis, G. Banavar, and M. Ebling.: The Design and applications of a
Context Service. Mobile Computing and Communications Review, Vol 6, Num. 4.

8. J. Hong and J.A. Landay.: An Infrastructure Approach to Context-Aware Computing, Hu-
man Computer Interaction, Vol. 16. (2001) 287-303

9. K. Koh, C. Choi, K. Park, S. Lim and S. Kim.: A Multilayered Context Engine for the
smartHome. In Proc. International Conference on Computer Science, Software Engineering,
Information Technology, E-business, and Applications. (2004)

10. M. Benerecetti, P. Pouquet, M. Bonifacio.: Distributed Context-Aware Systems. Human
Computer Interaction. Vol. 16 (2001) 218-228.

11. M. Weiger.: The computer for the 21st Century. Scientific American, Vol. 265, No. 3.
(1991) 66-75

12. O. Lehmann, M. Bauer, C. Becker, and D. Nicklas.: From Home to World – Supporting
Context-aware Applications through World Models. In Proc. IEEE Conference on Pervasive
Computing and Communications. (2004)

13. R. Glassey, G. Stevenson, M. Richmond, P. Nixon, S. Terzis, F. Wang, and I. Ferguson.:
Towards a Middleware for Generalised Context Managerment. In Proc. MPAC (2003)

14. S. Jang and W. Woo.: Ubi-UCAM: A Unified Context-Aware Application Model. Lecture
Notes in Artificial Intelligene, Vol. 2680. Spring-Verlag. (2003) 178-189.

15. T. Winograd.: Architectures For Context. Human Computing Interaction, Vol. 16. (2001)
401-419

16. W. N. Shilit.: A System Architecture for Context-Aware Mobile Computing. Ph.D. Thesis,
Columbia University (1995)

17. X. Wang, J.S. Dong, C. Chin, S. Hettiarachchi, and D. Zhang.: Semantic Space: An infra-
structure for Smart Spaces, Pervasive Computing IEEE, Vol 03, Issue 3. (2004)

