Design and Implementation of Accounting
System for Information Appliances

Midori Sugaya !, Shuichi Oikawa 2, Tatsuo Nakajima *
! Department of Computer Science, Waseda University

2 Department of Computer Science, University of Tsukuba

{doly,tatsuo}@dcl.info.waseda.ac.jp, shui@cs.tsukuba.ac.jp

Abstract. This paper presents the design and implementation of Ac-
counting System that is a resource monitoring and restriction system.
The system improves the reliability and security of a system. Accounting
System is a generic to offer various services, such as security improve-
ment, overload control, class-based accounting, and resource reservation
that require CPU resource control.

1 Introduction

Information appliances [5] are important elements to realize the ubiquitous com-
puting vision [3]. Nowadays, most consumer electronics appliances have comput-
ing capability in order to retrieve data from sensors, to process the data, and to
control devices. The recent emergence of information appliances requires more
advanced features, such as networking and GUI. Those features dramatically
complicate the appliances, software systems and increase their code sizes.

Networked systems need to be prepared for security attacks through the
Internet. Since we expect users to be system administrators of applications,
their software systems must be more robust than personal computers. Software
bugs can also cause the monopolization of CPU resources. Real-time operating
systems may be vulnerable to bugs of real-time programs that easily consume
the whole CPU resources. For example, a problem can happen when multimedia
applications process continuous media streams. Those multimedia applications
have strict timing constrains, and are given the real-time priority in general.
Therefore, once they process the streams, they can easily monopolize the whole
CPU resources. In such a situation, the GUI process that is usually executed
on the time-sharing scheduler cannot consume necessary CPU capacity, so that
a user cannot control the multimedia applications through the GUI buttons.
Another example is an overload condition. If an overload condition occurs, the
response time of the system becomes worse.

General embedded operating systems have not yet provided a resource pro-
tection mechanism that aims to protect the CPU resources from such monop-
olizations and overload situations. Therefore, it is necessary to offer a generic
mechanism to restrict the use of CPU resources to develop reliable information
appliances. In this paper, we propose Accounting System, a general-purpose re-
source monitoring and restriction system that prevents the excessive use of the
CPU capacity of a process or a group of processes.

The following two points are our design principles.

— Simple design to be applied to various services. Accounting System focuses
on providing a simple and generic model and interface. Therefore, the system

should be able to be easily applied to various kinds of services.
— Accurate resource management by using a fine-grain resolution timer. Future

information appliances require to support a fine-grained rate based execution
that can be realized by the accurate resource management, for offering better

response time and more stable execution.
Information appliances have become very complex. Most of them nowadays con-

tain web browsers, Java Virtual Machines, and many other applications. Im-
plementing these applications in a robust way needs a more powerful operating
system. Linux is an open-source operating system, and supports various CPU
architectures. Those features are very suitable for information appliances. There-
fore, many industries consider adopting Linux for their products. While the use
of Linux is increasing, it does not restrict the resource consumption for their pro-
cesses. We assume Accounting System can solve this problem, and implement it
in the Linux kernel.

The remaining of the paper is structured as follows. Section 2 describes the
design and model of Accounting System. Section 3 presents the architecture and
implementation. Section 4 shows the services that can be implemented by Ac-
counting System, such as the secure resource protection, class-based accounting,
and overload monitoring. Section 5 presents the evaluation results. Finally, in
Section 6, we conclude the paper.

2 Accounting System Model

Accounting System and Accounting Object: Accounting System is a
system to offer the functions that monitor and restrict the execution time of a
process or a group of processes. We have developed it as a part of the kernel
services. Accounting System provides an abstraction to manipulate the CPU
capacity of each process named accounting object. An accounting object repre-
sents a capacity of the CPU resource on a single processor. The CPU time of
each process bound to an accounting object is accumulated in it. Through an
accounting object, a user can control the allocation of CPU resources for each
accounting object. When a user binds a process to an accounting object through
the system call, the process is given the restricted execution time specified by
its accounting object.

Time Management Model: To realize the restriction, an accounting object
has two parameters C and T, where T represents a period that is a constant
period to control the object, and C is the maximum time to be able to execute
processes within T. The process bound to the accounting object cannot consume
the CPU time more than C within T. When processes consume the entire CPU
time within each period T, the process is blocked until the next period comes.

3 Implementation
3.1 Callback hooks

In Accounting System, callback hooks are introduced into the process manage-
ment system in the host kernel for the purpose of catching events about processes.

Those hooks catch the relevant events, and deliver those events to Accounting
System. On our design principle, Accounting System should be independent of
the host kernel, and the only minimum points in the host kernel should be mod-
ified. Accounting System assumes that the four callback hooks as described next
are inserted in the host kernel.

— schedule_hook: 1t catches scheduling events on context switching among
processes. The hook delivers the scheduling events to Accounting System
that changes the state of an accounting object.

— fork_hook: Tt catches events when a new process is created. These events are
required to start the accounting for the newly created processes. If a parent
process has already been bound to an accounting object, its child processes
inherited the same accounting object.

— exit_hook: It catches events on process termination. The events notify the
timing to unbind the termination of a process from its accounting object.

— kernel_callback_hook: Tt catches events when a system call returns from the
kernel mode to the user mode. Accounting System checks the state of an
accounting object for the blocking of the process to execute the system call.

3.2 Timer Management System

The management of timers has an important role of Accounting System. In
Accounting System, there are two types of timers, a replenishment timer and an
enforcement timer. A replenishment timer is a periodic timer for each accounting
object that is constantly expired. An enforcement timer keeps to watch on the
elapsed time of the currently executing process. They are implemented by using
kernel software timers. In the following paragraph, we describe the details of
them.

— Replenishment timer: It manages the periodic time of an accounting object.
Each accounting object has its own replenishment timer. When an account-
ing object is created, the timer is also created. In the replenishment timer,
first the expiration time is set by adding the periodic time to the current
time. If the elapsed time reaches the expiration time, the registered timer
handler is executed to set the next expiration time. These replenishments
are recursively done by the replenishment timer until it is destroyed.

— Enforcement timer: It watches the elapsed time of the currently executing
process. The timer accumulates the execution time of the process, until it
reaches to the maximum execution time of the accounting object. At that
time, the registered timer handler is invoked to change the state of the ac-
counting object. By using schedule_hook, the enforce timer catches the events
about context switching among processes, and stops and starts its timer to
monitor the CPU usage of processes.

3.3 Account Object Management Operations

To manage accounting objects, the system provides the accounting object man-
agement function. It introduces the following accounting object’s basic opera-
tions. To receive the accounting object services, an application firstly invokes
the create operation to allocate the accounting object in the kernel memory.

Each created accounting object has a unique object ID. To bind a process to
the specified accounting object with the object ID, the application invokes the
bind operation. When the application no longer requires the accounting services,
it invokes the destroy operation to terminate the accounting object service and
to free the object memory in the kernel space. The set operation changes the
parameters of an accounting object. The get operation obtains the parameter in
an accounting object.

3.4 State Management

There are three states to represent an accounting object’s status. null status
represents the status that an accounting object is created, but no process is
bound to the accounting object. running status represents the accounting object
is running, and the status also represents that available time are left within
the period time. depleted status represents the status that no more available
time is left within the period time. The depleted status also represents that the
accumulated execution time of a process is reached to the maximum execution
time specified in the accounting object.

The state of an accounting object is changed by events. At first, when a
process binds to a specific accounting object, the state becomes running. If the
sum of the execution time of the bound processes equals to the maximum ex-
ecution time of the accounting object, the object changes its state to depleted.
Accounting System here to take action to stop their execution or deliver the
notice to the bound process which is on the excessive use of the CPU capacity.
The actions are classified into block and signal. If it is block, the system puts the
processes to the wait queue. When the next expiration time comes, the replenish
timer checks the wait queue, and if it finds the processes in the wait queue, sets
the running state to the accounting object, and wakes up the processes. When a
process uses excessive CPU capacity, a signal is delivered to the process. Using
the state transition mechanism, Accounting System restricts the CPU usage of
the processes accurately.

3.5 High Resolution Timer

For Accounting System, the high-precision clock and timestamp counter are
essential to maintain the fidelity of its accuracy. To provide less than 10ms
resolution for monitoring, there are some approaches. The most straightforward
way is to make the clock interrupt frequency higher than 100Hz in order to issue
more interrupts. This allows the kernel to provide a precise timing and to increase
the system responsiveness. However, shorter intervals require CPU to spend a
longer time in the kernel mode. Therefore, user programs run slower because
of the system overhead to handle interrupts. Our system solves the problem
by using the high resolution timer [2]. The high-resolution timer in Intel x86, is
implemented by using the one shot mode of the APIC clock timer chip. Therefore,
the extra timer interrupt overhead will never happen. The high-resolution timer
allows us to specify microsecond granularity parameters in accounting objects.

4 Services Using Accounting System
4.1 Secure Resource Protection

Accounting System protects the CPU resource from downloaded programs that
behave maliciously. We assume that there is a manager process that starts pro-
cesses to execute downloaded programs. The manager process is bound to an
accounting object, of which C and T are 50ms and 100ms, respectively. When
the manager process receives a request to execute a downloaded application, it
creates a new process. The process is automatically bound to the accounting ob-
ject to which the manager process is bound. Therefore, the newly created process
cannot consume more than 50% of CPU capacity, and it cannot monopolize the
CPU resource.

Binding Multiple processes: Accounting System provides the bind operation
that binds a process to the accounting object. We also provide some useful
interfaces to bind multiple processes to an accounting object. For example, if a
malicious program consecutively invokes the fork system call, the whole system
resources may be consumed. We implement the following two methods. The one
is to inherit an accounting object when creating a child process. The other is
to bind an accounting object using group ID. The former function is realized
by using a hook within the fork system call. If a parent process is bound to an
accounting object, the child process who is forked from the parent inherits the
same accounting object. Thus, the same restriction as its parent is applied. The
latter uses UNIX group process ID. The system binds the group of processes to
a specific accounting object. It is safer than binding all processes to the same
accounting object respectively. For example, when several commands connected
by pipes are started, they can be easily bound to the same accounting object by
using group ID.

Access Control: Each accounting object has an owner attribute for controlling
the access to a specific accounting object. The owner attribute of the accounting
object is assigned by a process that creates it. For the consideration of the
security, our system allows them to be manipulated only by their owners except
the privileged user. In resources reservation systems such as Linux/RK [4], there
is no support of access control. Therefore, these previous system cannot be used
for protecting the CPU resource from malicious programs.

Kernel Interface: The following is the kernel interface offerd by Account
System.

— account_create(Eobject_id, Eobject_attr) It creates a new accounting object.
When created, the object is not bound to any processes. A privileged or
owner application program sets the parameters, such as C, T, in the ob-
ject_attr memebers.

— account_destroy(&object_id) It destroys the accounting object specified by
object_id. This deletes the associated timers, and frees the memory of the
accounting object in the kernel address space.

— account_bind /unbind_pid(object_id, pid_t) It binds/unbinds the specified ac-
counting object through object_id to a process whose process ID is pid. An
accounting object can be bound to multiple processes. If the process is ter-
minated, the process is automatically unbound from the accounting object.

— account_get/set(object_id, Eobject_attr) It retrieves/changes the parameters
of the specified accounting object.

4.2 Class-based Accounting

In this section, we propose a class-based accounting as the one of the services
that uses Accounting System. A class is defined here as a group of processes
that belong to a specific scheduling class, such as the real-time scheduling class.
The class-based accounting is realized by binding the processes belonging to the
same scheduling class.

A problem of process starvation: When a user forgets to bind a real-time
process to an accounting object, the real-time process may monopolize the en-
tire CPU resource. Even if most real-time processes are restricted, the only one
real-time process can consume the rest of all the CPU resources; thus, all other
time-sharing processes are starved. To avoid such a situation, the system de-
signer should estimate the total maximum utilization of the accounting objects,
which bind to the all real-time processes. We called the approach class-based
accounting.

Class-based Accounting: The class-based accounting is realized by binding
processes in the specific scheduling class to an accounting object. A class con-
tains all processes that are scheduled by the same scheduling policy. The system
allocates the CPU resources proportionally to each scheduling class. The total
proportions of the classes are set to 100%. For example, a user can allocate 40%
of the CPU capacity for the real-time scheduling class, and the remaining 60%
of the CPU capacity for the time-sharing scheduling class. The system assumes
to have two classes that are necessary to allocate the absolute rate of the CPU
capacity.

The processes bound to each class cannot excessively use the maximum uti-
lization of the CPU resources that are set in each scheduling class. Since the
real-time process cannot use more than the assigned capacity, the time-sharing
process can use the remaining capacity without process starvation.

Implementation: The current class-based accounting allocates the CPU ca-
pacity for the real-time and time-sharing scheduling class. The accounting object
for each scheduling class is created at the boot time. When it is created, all pro-
cesses that belong to the same scheduling class are bound to the same accounting
object. In order to set the parameter easily, class-based accounting adopts weight
as its interface parameters. The weight is the parameter that represents a pro-
portion and can easily be specified like (2,3). If weight (2,3) given, the real-time
class and the time-sharing class are allocated 40% and 60% CPU capacity re-
spectively. In class-based accounting, the accounting object of each scheduling
class should use the same period time. Also, a user needs to set the resolution

time that is a period for the accounting objects. For example, if the resolution
is 100ms and the class proportion is 40%, the class is received 40ms within the
100ms period.

Kernel Interface: We design the kernel interface for class-based accounting
as described as following.

— weight_set (wt_ts, wt_rt, res) Sets the weight and resolution to the accounting
object for respective scheduling classes. When the class accounting object is
started, it monitors the execution time of the bound processes.

4.3 Overload Monitoring

Conceiving the overload situation: For general-purpose operating systems,
controlling overload situations is very important to offer services in a stable way.
In such critical situations, the computational requests from the process will ex-
ceed the time that is available in the system. As for time-sharing processes, the
average response time is increasing. We propose the monitoring function that
keeps to watch the total utilization of the CPU. If the overload condition hap-
pens, the overload monitoring system issues a signal to notify to the registered
administrator process. If there is a notification for the administrator process,
some recovery procedures can be taken to stabilize the system.

Design and Implementation: The overload monitoring can also be realized
by Accounting System. In this system, an accounting object bound to the idle
process is used to monitor the total utilization of the system resources. The idle
process is executed when there is no runnable process. If the system becomes
busy, the idle process consumes a very little CPU capacity. Through monitoring
the CPU usage of the idle processes, the system can detect the overload situation.
Our system allows an application to receive a signal when the CPU usage of the
idle process becomes lower than the specified CPU. The service is available when
a system designer creates an overload accounting object, and sets the parameters
to it. There is the only one overload accounting object in a system. A system
designer should explicitly set the C and T parameter to the overload accounting
object. Suppose the designer sets C and T to 75ms and 100ms respectively, it
monitors the CPU capacity not to exceed 75%. If the designer would like to
check the overload condition every minute, C and T should be set to 45sec and
60sec respectively. If the total usage of CPU utilization exceeds 75%, an overload
notification signal is delivered to a specific process. A system designer also should
set a process as a receiver of the signal. The signal number can be freely decided
by a user. In consideration of the security, only a privileged user can create and
destroy the overload accounting object.

Kernel Interface: The overload monitoring offers the kernel interface as de-
scribed as follows.

— overload_create (€object_attr, pid) The function binds an idle process to the
overload accounting object. The user sets an administrator process ID that
accepts a signal from the system and a signal number that is used to deliver
the signal to the administrator process when an overload condition occurs.

— overload_destroy(void) Tt destroys the overload accounting object.

4.4 Resource Reservation

An application running on our system can request the reservation of a certain
amount of CPU resources. The OS-enforced resource reservation can be intro-
duced similar to CPU capacity reserves [1] [4], which provide the framework for
managing the processor capacity. Accounting System can implement the frame-
work easily by adding a mechanism for the admission control as a user-level
service.

5 Evaluation

We have evaluated Accounting System by running several benchmarks. The
evaluation uses a standard PC that has Celeron 300MHz CPU and 512MB of
RAM, and the results were measured using the built-in high-resolution times-
tamp counter.

——AO (20/100) ms with High Resolution Timer
~+—A0 (25/100) ms with High Resolution Timer
—4-A0 (25/100)ms _ without HRT, round up.

Consumed CPU ratio (%)

200

150

Fig. 1. With/Without High Resolution Timer Support

5.1 Accuracy of Accounting System

This section evaluates the accuracy of Accounting System. To evaluate the effec-
tiveness of high-resolution timer support, we use the benchmark program that
executes the infinite-loop. We create two accounting objects that set 20ms and
25ms of CPU time every 100ms, and bind the program to each accounting object.
Figure 1 shows the result of the consumed CPU ratio with/without the support
of a high-resolution timer. In this figure, the bottom two lines are the results
of the high-resolution timer support. It shows that each 20% and 25% resource
restriction is correctly limited. In the contrast, without the high-resolution timer
support, the program bound to the accounting object whose execution time is
25ms executes 30ms within 100ms. These are apparently due to the fact that
Linux updates its internal timer-clock at the 10ms intervals. Even if a user sets
a parameter whose resolution is less than 10ms, it is impossible to ensure the
resolution. The results shows that the effectiveness of the accurate resource ac-
counting.

5.2 Effectiveness of CPU Protection

This section evaluates the effectiveness of the CPU resource protection in Ac-
counting System. First, we show the effect of the security attacks, then, show
the result of the class-based accounting.

Gonsumed CPU Ratio (%)

Fig. 2. The Numbers of Process and Accounting Object Ratio

Attacks to create multiple processes: Figure 2 shows the consumed CPU
ratio of multiple processes bound to an accounting object. To evaluate the effec-
tiveness for protecting from attacks to create multiple processes, we run an evil
program that invokes fork() consecutively and produces a lot of child processes
that execute their infinite-loops. The response time becomes very bad by this
malicious program because these processes consume the whole CPU resource. In
the evaluation, if the first process is bound to the 30% restricted accounting ob-
ject, the forked processes cannot use more than 30% of the CPU capacity, even
if the numbers of processes are increasing. The result shows the effectiveness of
Accounting System as shown in Figure 2. The loss of the accuracy appears as
the numbers of created process is increased. In the current implementation, a
process that executes a system call is blocked after the system call is returned,
when the execution time of the accounting object is expired. If there are multi-
ple processes that are bound to the same accounting object, and they execute
system calls, the system calls can be executed before blocking themselves. This
is a reason to exceed the specified execution time when the number of process
bound to the same accounting object is increased.

Class-based Accounting: Figure 3 and Figure 4 show the results of the
evaluation of class-based accounting. To evaluate the effectiveness of the class-
based accounting, the benchmark runs a real-time process to execute an infinite
loop with/without the class-based accounting. Figure 3 shows the result when the
class-based accounting is not used. The result shows that all CPU resources are
consumed by the real-time process. Then, we evaluate the class-based accounting
in which each class is set the weight (4,1) where 80% and 20% CPU capacity are
allocated for real-time processes and time-sharing processes respectively. The

——Real-time praces (infinite-loop)

i ——Real-time process (infinite-loop)

—+—Time-sharing process (Xserver)

&

Cormumed CPU Ratio (%)
onsumed CPU Ratio (%)

PR T 1l
VI b K 'MTMM i
LI I\ \HH‘H []\H
.m‘_uHmH “”uum‘\.‘“
WL MILUN UL UL LY

o gy gl g B G S S g

1 2 3 4 s 6 0 8 % 10 10 120 0

Time (sec)

Fig. 3. Without Class-Based Accounting Fig. 4. With Class-Based Accounting

Xserver (X Window System display server) process runs on the time-sharing
scheduler. On Xserver, some game programs are running. Figure 4 shows the
result that the real-time processes can not exceed 80% CPU resources, where
the Xserver process can use 20% CPU resource at a maximum.

6 Conclusion

In this paper, we have proposed Accounting System. This system provides the
generic accounting model that can be applied various services that are used
to increase the system security and reliability. It also supports a fine-grained
resource accounting with the high-resolution timer. This makes the system more
stable because the application can obtain the necessary rate precisely even in
the microsecond resolution. The performance evaluation results have showed
that the system effectively protects the malicious use of CPU resources.

References

1. Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda.: Processor capacity re-
serves: Operating system support for multimedia applications. In Proceedings of
the IEEE Internation Conference on Multimedia Computing and Systems, pages
90-99, May 1994.

2. High Resolution Timer, http://high-res-timers.sourceforge.net/

3. Mark Weiser.: The Computer for the 21st Centriy, Scientific American, Vol 265,
No.3, 1991.

4. Shuichi Oikawa and Ragunathan Rajkumar.: Portable RK: A portable resource
kernel for guaranteed and enforced timing behavior. In Proc. IEEE RTAS, 1999.

5. W. P. Sharpe, S. P. Stenton.: Information Appliances, The Human-Computer In-
teraction Handbook : Fundamentals, Evolving Technologies and Emerging Appli-
cations - Human Factors and Ergonomics, Chapter37, Lawrence Erlbaum Assoc
Inc Published 2002.

