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Abstract. Embedded systems have strict timing and code size require-
ments. Retiming is one of the most important optimization techniques
to improve the execution time of loops by increasing the parallelism
among successive loop iterations. Traditionally, retiming has been ap-
plied at instruction level to reduce cycle period for single loops. While
multi-dimensional (MD) retiming can explore the outer loop parallelism,
it introduces large overheads in loop index generation and code size due
to loop transformation. In this paper, we propose a novel approach, that
combines iterational retiming with instructional retiming to satisfy any
given timing constraint by achieving full parallelism for iterations in
a partition with minimal code size. The experimental results show that
combining iterational retiming and instructional retiming, we can achieve
37% code size reduction comparing to applying iteration retiming alone.

1 Introduction

Constant advance in gate capacity and reduction in chip feature size made it pos-
sible to implement system-on-chip (SoC) that allows parallel embedded systems.
Parallel embedded systems, typically with VLIW or multi-core architecture, are
becoming more widely used in computation-intensive applications. A large group
of such applications are multi-dimensional problems, i.e., problems involving
more than one dimension, such as computer vision, high-definition television,
medical imaging, and remote sensing. There are usually stringent requirements
in timing performance and code size for these applications. How to design par-
allel embedded systems that conforms timing performance requirements while
minimizing code size is an interesting research topic. This paper combines itera-
tional retiming with instructional retiming, to achieve given timing requirements
for nested loops with minimal code size overhead.

There has been a lot of research on program transformations to enhance par-
allelism for loops. Many forms of program transformations have been proposed,
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a catalog of which can be found in a survey by Bacon, Graham, and Sharp [3].
Numerous techniques have been proposed for one-dimensional loops [1] [4] [5]
[8]. Renfors and Neuvo have proved that there is a lower bound of iteration
period for one-dimensional loops [10]. Optimal scheduling for one-dimensional
loops could reach this lower bound[5], but can not do better than this lower
bound. In this paper, we show that there is no lower bound of iteration period
for multi-dimensional loops. Using our proposed technique, we can achieve any
given timing requirement.

A lot of works also have been done for nested loops to increase parallelism.
Majority of these works are based on wavefront transformation [2][7], which
achieves higher level of parallelism for nested loops by changing the execution
sequence of the nested loops. This sequence of execution is commonly associated
with a schedule vector s, also called an ordering vector, which affects the order
in which the iterations are performed. The iterations are executed along hyper-
planes defined by s. When the execution of a hyperplane reaches the boundaries
of the iteration space, it advances to the next hyperplane according to the direc-
tion of s. All the iterations on the same hyperplane can be executed in parallel.

Iterational retiming first partitions the iteration space into basic partitions,
and then retiming is performed at iteration level so that all the iterations in
each partition can be executed in parallel. In this way, we achieve higher level
of parallelism while maintaining simple loop bounds and loop indexes with min-
imal overhead. Two main techniques are applied in iterational retiming, namely
loop partitioning and retiming. Various techniques have been proposed for loop
partitioning [6] [11]. most of the loop partitioning algorithm are targeting better
data locality. In our algorithm, partition is used to increase parallelism. Retim-
ing [8] [9] has been widely applied to increase instruction level parallelism. We
apply the retiming technique to iterations instead of instructions, and we show
that full-parallelism for iterations in each partition can always be achieved by
iterational retiming. Experimental results show that our proposed technique can
always reach the given timing requirement. While iterational retiming can al-
ways satisfy the timing requirement, it is best to be combined with instructional
retiming. We show that when instructional retiming is combined with iterational
retiming, code size is reduced 37% in average, while achieving the same given
timing performance constraint.

The remainder of this paper is organized as follows. Section 2 introduces basic
concepts and definitions. The algorithm for instructional timing is presented in
Section 3. The algorithm for iterational retiming is proposed in Section 4. Section
5 proposes the algorithm that combines iterational retiming and instructional
retiming. Experimental results and concluding remarks are provided in Section 6
and 7, respectively.

2 Basic Concepts and Definitions

In this section, we introduce some basic concepts which will be used in the
later sections. First, we introduce the model and notions that we use to analyze



nested loops. Second, loop partitioning technique is introduced. In this paper, our
technique is presented with two dimensional notations. It can be easily extended
to multi-dimensions.

2.1 Modeling Nested Loops

Multi-dimensional Data Flow Graph is used to model nested loops and
is defined as follows. A Multi-dimensional Data Flow Graph (MDFG) G =
(V,E,d,t) is a node-weighted and edge-weighted directed graph, where V is
the set of computation nodes, E C V %V is the set of dependence edges, d is a
function and d(e) is the multi-dimensional delays for each edge e € E which is
also known as dependence vector, and t is the computation time of each node.
We use d(e) = (d.x, d.y) as a general formulation of any delay shown in a two-
dimensional DFG (2DFG ). An example is shown in Figure 1.

1.0

3
fori=0ton do A
for j=0 to m do 2

Ali,j] = B[i,j-1] + B[i-1,j]; Q @
B[i.j] = A[i.j] + A[i-1,j+1]; 1
end for (1-1)
end for

Fig. 1. A nested loop, its MDFG and its iteration space.

An iteration is the execution of each node in V exactly once. The compu-
tation time of the longest path without delay is called the iteration period. For
example, the iteration period of the MDFG in Figure 1 is 2 from the longest
path, which is from node A to B. If a node v at iteration j, depends on a node u
at iteration i, then there is an edge e from u to v, such that d(e) = j - i. An edge
with delay (0,0) represents a data dependence within the same iteration. A legal
MDFG must not have zero-delay cycles. Iterations are represented as integral
points in a Cartesian space, called iteration space , where the coordinates are
defined by the loop control indexes.

A schedule vector s is the normal vector for a set of parallel equitemporal
hyperplanes that define a sequence of execution of an iteration space. By default,
a given nested loop is executed in a row-wise fashion, where the schedule vector
s =(1,0).

Retiming [8] can be used to optimize the cycle period of a DFG by evenly
distributing the delays in it. Given a MDFG G = (V, E, d, t), retiming r of G is
a function from V to integers. For a node u € V, the value of r(u) is the number
of delays drawn from each of its incoming edges of node u and pushed to all of
its outgoing edges. Let G, = (V| E,.,d,,t) denote the retimed graph of G with
retiming 7, then d,.(¢) = d(e) + r(u) — r(v) for every edge e(u — v) € E, in G,..



2.2 Partitioning the Iteration Space

Instead of executing the entire iteration space in the order of rows and columns,
we can first partition it and then execute the partitions one by one. The two
boundaries of a partition are called the partition vectors. We will denote them by
P, and P,. Due to the dependencies in the MDFG, partition vectors need to be
carefully chosen to ensure there is no two-way dependency so that the partition
is a legal partition.

Iteration Flow Graph is used to model nested loop partitions and is defined
as follows. An Iteration Flow Graph (IFG) G; = (V;, E;, d;, t;) is a node-weighted
and edge-weighted directed graph, where V; is the set of iterations in a partition.
The number of nodes |V;| in an IFG G; is equal to the number of nodes in a
partition. F; C V;*V; is the set of iteration dependence edges. d; is a function and
d;(e) is the multi-dimensional delays for each edge e € F;. t; is the computation
time for each iteration. An iteration flow graph G; = (V;, E;, d;,t;) is realizable
if the represented partition is legal.

3  The Instructional Retiming for Nested Loops

We propose an algorithm to do maximum instructional retiming while maintain-
ing the original execution sequence in this section.

The instructional retiming we are applying in this setting is unique. We are
retiming along one dimension of a multi-dimensional loop. This is because we
wish to maintain either row-wise or column-wise execution after the retiming.
The problem is equivalent to removing all the (i,j)-delays, where both i and j
are none zero values, and producing a retiming such that all the edges are non-
zero-delay edges if possible. If there is at least one (i,j)-delay, we can always find
a retiming solution because the cycle becomes a DAG after removing (i,j)-delay
edge. If there is no (i,j)-delay, then no retiming solution exists because the total
delay of a cycle is a constant according to retiming property. In this case, the
total delay of the cycle is always (0,k). According to retiming theory, DAG can
always be retimed such that any edge has at least one delay. In the other words, a
cycle with any (4, 7) delay, ¢ > 0, can be fully parallelized using schedule vector
s = (1,0). Thus, we can directly apply one-dimensional retiming to minimize
the cycle period after removing the (i,j)-delay edges. Detail of our instructional
retiming algorithm is shown in 3.1.

4  Iterational Retiming

In this section, we propose a new loop transformation technique, iterational re-
timing. First the basic concepts and the theorems related to iterational retiming
are discussed. Then the procedures and algorithms to transform the loops are
presented in the second section.



Algorithm 3.1 INSTRUCTIONAL-RETIME Algorithm

Require: MDFG G = (V, E,d, t), schedule vector* s.
Ensure: Retiming function r(v), retimed MDFG G, = (V, E,d,,t), minimum cycle
period c.
/* Check the legality of s. */
if d(e)-s <0 then
Report: s is unfeasible.
Break.
end if
/* For the feasible clock-period test algorithm */
Compute D(u,v) and T(u,v) for any two nodes u and v on G'.
Sort the elements in the range of T'(u,v).
for all Elements in the range of T'(u,v) do
Binary search to find the minimum achievable cycle period c.
/* Determine if cycle period c is feasible */
r < (0,1); s — (1,0);
/* Remove the edges that are not parallel to r. */
E' «— E—{e|d(e) [fr,Ve € E}
d'(e) «— d(e)/r, Ve € E'
/* The feasible clock-period test algorithm */
Compute D(u,v) and T (u,v) for any two nodes v and v on G.
Construct the constraint graph according to the legality and feasible conditions of
retiming with the desired cycle period c.
Use the shortest path algorithm to find a solution.
if There exists a retiming r’ of G’ such that #(G,,) < ¢ then
/* Update the retimed graph */
r(v) «— 7' (v) - r(v), Vv €V
c feasible; Use retiming r to retime the MDFG G.
else
Error: Unfeasible cycle period.
end if
end for

4.1 Definitions and Theorems

Iterational retiming is carried out in the following steps. Given a MDFG, first the
directions of legal partition vectors will be decided. Second, partition size will
be determined to meet the input timing constraint. Third, iterational retiming
will be applied to create the retimed partition.

Among all the delay vectors in a MDFG, two extreme vectors, the clock-
wise (CW) and the counterclockwise (CCW), are the most important vectors
for deciding the directions of the legal partition vectors. Legal partition vector
cannot lie between CW and CCW. In other words, they can only be outside
of CW and CCW or be aligned with CW or CCW. For the basic partition in
our algorithm, we choose P, to be aligned with x-axis, and P, to be aligned
with CCW. This is a legal choice of partition vectors because the y elements of
the delay vectors of the input MDFG are always positive or zero, which allows



the default row-wise execution of nested loops. For convenience, we use P,q and
Pyo to denote the base partition vectors. The actual partition vectors are then
denoted by P, = fy Py and P, = f, Py, where f, and f, are called partition
factors, which are related to the size of the partition.

After basic partition is identified via P,, and Py, an IFG G; = (V;, E;, d;,
t;) can be constructed. An iterational retiming v is a function from V; to Z"
that redistributes the iterations in a partition. A new IFG G, , is created, such
that the number of iterations included in the partition is still the same. The
retiming vector r(u) of an iteration u € G; represents the offset between the
original partition containing u, and the one after iterational retiming. When all
the edges e € F; have non-zero delays, all the nodes v € V; can be executed
in parallel, which means all the iterations in a partition can be executed in
parallel. We call such a partition a retimed partition. Properties, algorithms and
supporting theorems for iterational retiming are presented below. We will first
show how to choose f, so that retimed partition can be achieved.

Given a MDFG G, let mins be the minimum k of all the (0, k) delays in
G. Let f, be the size of partition in the x dimension. Given an Iteration Flow
Graph (IFG) after we partition the iteration space with f, and f,, we want to
make sure that the IFG can be retimed to be fully parallel using basic retiming
r = (0,1). There are two types of cycles in an IFG, one with delay d(c) = (0,y)
and the other with delay d(c) > (1, —o0). The cycles with delays d(c) > (1, —o0)
can be easily retimed to be fully parallel by using r = (0,1). But for cycles
with delays d(¢) = (0,y), y must be > n(c), where n(c) denotes the number of
nodes in cycle ¢, in order to distribute (0, 1) delay to each edge in cycle c¢. To
simplify notations, we just focus on the (0, k) cycles and delays, so when we say
d(c) > n(c), it means that d(c) = (0,y), y > n(c).

Property 1. Given f,, an edge with d(e) = (0, b) in DFG will become f, edges
in IFG from iteration node i (here we use i to denote (0, 1)), 0 < i < f;, to node
(i+b) mod f, with delay = (i +b) div f,.

Theorem 1. If f, > miny, in the resulting Iteration Flow Graph (IFG), there
exists a cycle ¢ where d(c) < n(c) and n(c) denotes the number of nodes in cycle
c.

Theorem 2. If f, < miny, for each cycle ¢ in IFG, d(c) must be > n(c).

As aresult of the above theorems, we know that let f, < ming, and r = (0,1)
as the retiming function, a basic partition can be retimed into retimed partition.
After the iterational retiming transformation, the new program can still keep
row-wise execution, which is an advantage over the loop transformation tech-
niques that need to do wavefront execution and need to have extra instructions
to calculate loop bounds and loop indexes.



4.2 The Iterational Retiming Technique

In this section, the iterational retiming algorithm is presented and explained.
The complexity of the algorithm is given at the end of this section.

Algorithm 4.1 ITERATIONAL-RETIME
Require: MDFG G = (V, E, d, t), timing requirement T
Ensure: A retimed partition that meets timing requirement
/* Step 1. Based on the input MDFG, find a basic partition that is legal and have
enough number of iterations to meet the timing requirement T; */
¢ < cycle period of MDFG ;
Py —(0,1) ; /* 1.1 find Pyo */
P,o «— CCW vector of all delays; /* 1.2 find Pyo*/
fo = { k| (0,k) is smallest (0,z) delays }; /* 1.3 find f.*/
fu= |z |s /e 1 tind g,
P, = fu - Pyo; /* 1.5 find P, and P,*/
Py = fy - Pyo;
obtain basic partition with Py, Py;
/* Step 2. Call iterational retiming to transform the basic partition into a retimed
partition; */
/* use r=(0,1) repeatedly to achieve full parallelism. */
Step 2.1 Apply r=(0,1) to any node that has all incoming edges with non-zero delays
and at least one zero-delay outgoing edge.
Step 2.2 Since the resulting IFG is still realizable, if there are zero delay edges, go
back to step 2.1.

The requirement for f, is discussed in detail in section 4.1. We want f, to
be as large as possible. The larger f, is, the smaller the prolog and epilog will
be. Since f, < ming, so we pick f, = ming. Once f, is identified, we can find
fy with the given timing requirement T and the original cycle period c. Since
we need to meet the timing constraint 7,

c

= fy 2 77
= by =75

Let G; be a realizable IFG, the iterational retiming algorithm transforms G;
to G, in at most |V| iterations, such that G, , is fully parallel.

For algorithm 4.1, in step 1, it takes O(|V|) to find the cycle period, O(|E|)
to find Py, and O(|E|) to find f,. So it takes O(|V| + |E|) to execute step 1. In
step 2, it takes at most |V| iterations, and each iteration takes at most O(|E|)
time. So it takes O(|V||E|) to execute step 2. As a result, algorithm 4.1 takes
O(]V||E|) to complete.



5 Combining Iterational and Instructional Retiming

The COMBINE-RETIME algorithm is presented in this section. It combines
instructional retiming with iterational retiming to optimize nested loops for both
timing performance and code size.

Algorithm 5.1 COMBINE-RETIME
Require: MDFG G = (V, E, d, t), timing requirement T
Ensure: A retimed MDFG that meets timing requirement with smallest overheads
/* Step 1. apply instructional retiming */
if apply INSTRUCTIONAL-RETIME algorithm with s = (0, 1) can satisfy T then
return s = (0, 1);
else if apply INSTRUCTIONAL-RETIME algorithm with s = (1,0) can satisfy T
then
return s = (1,0);
else
if s = (1,0) is legal and INSTRUCTIONAL-RETIME with s = (1,0) give a
smaller cycle period then
apply loop index interchange;
end if
/* Step 2. apply iterational retiming reach timing requirement T */
call ITERATIONAL-RETIME algorithm;
end if

The COMBINE-RETIME algorithm first applies the INSTRUCTIONAL-
RETIME algorithm in one dimension to minimize the cycle period. Row-wise
execution sequence, i.e. schedule vector s = (0,1) is first attempted. Then
column-wise execution sequence is attempted if schedule vector s = (1,0) is
legal. When both instructional retiming failed to meet the required timing con-
straint T, ITERATIONAL-RETIME algorithm is called to perform iterational
retiming. When column-wise execution sequence is legal and it gives a smaller
cycle period after iterational retiming, loop index interchange is applied before
performing iteration retiming. Applying instructional retiming reduces iteration
period before iterational retiming is applied. Smaller partition size is needed in
iterational retiming process, hence code size is reduced given the same timing
performance requirement.

6 Experiments

In this section, we conduct experiments based on a set of DSP benchmarks with
two dimensional loops: WDF (Wave Digital Filter), ITR (the Infinite Impulse
Response Filter), 2D (the Two Dimensional filter), Floyd (Floyd-Steinberg al-
gorithm), and DPCM (Differential Pulse-Code Modulation device).



Table 1 shows the code size comparison between applying iterational retiming
alone and applying both iterational retiming and instructional retiming trans-
formation, while achieving the same timing performance. In this table, code size
is measure in the number of iterations included in each partition, which equals
fz X fy. Column “ITER-RE” represents the code size by applying iterational
retiming alone. Column “COM-RE” represents the code size by applying both
instructional retiming and iterational retiming. From this table, we can see that
by applying instructional retiming before iterational retiming, we can reduce
code size in an average of 37%.

Bench. || Code Size (Iterations)
Iteration Period = 1
Bench. ||f.f, ITER-RE.|f,|f,[COM-RE
IIR 115 5 1|2 2
WDF 61 6 1|1 1
FLOYD|| 1 |10 10 1|8 8
DPCM |15 5 1|2 2
2D(1) |19 9 1)1 1
2D(2) 1|4 4 1|4 4
MDFGI1| 1|7 7 1|7 7
MDFG2|| 1|10 10 1|10 10
Iteration Period = 1/2
Bench. ||f,f, ITER-RE.|f,|f,[COM-RE
IIR 1|10 10 1|4 4
WDF 12| 1 12 2|1 2
FLOYD|| 1 |20 20 1|16 16
DPCM |1 |10 10 1|4 4
oD(1) | 1[18] 18 12 2
2D(2) |18 8 1]8 8
MDFG1|| 1|14 14 1|14 14
MDFG2|| 1|20 20 1120 20
Iteration Period = 1/4
Bench. |f.|/, ITER-RE.|f.|f,|[COM-RE.
IIR 1120 20 1|8 8
WDF |[24|1 24 411 4
FLOYD|| 1 |40 40 1132 32
DPCM || 120 20 1|8 8
oD(1) | 1[36] 36 1]4 4
2D(2) 1|16 16 1|16 16
MDFG1|| 128 28 1128 28
MDFG2|| 1 |40 40 1140 40
| Avg.Tter. | 163 [ [ | 102 |
| Avglmpv | 37% | | | |

Table 1. Comparison of code size between iterational retiming only and combined
retiming.



From our experiment results, we can clearly see that combining iterational re-
timing with instructional retiming can reduce code size significantly while achiev-
ing the same timing performance constraints.

7 Conclusion

In this paper, we propose a new loop transformation approach that combines
iterational retiming with instructional retiming to optimize both timing perfor-
mance and code size. We believe iterational retiming is a promising technique
and can be applied to different fields for nested loop optimization. Combining in-
structional retiming and iterational retiming, we can achieve timing performance
requirement for nested loops with minimal code size.
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