
Broadcasting Group Information to Ensure

Consistency and Correctness in Mobile

Computing Environments⋆

Daein Kim and Buhyun Hwang

Department of Computer Science Chonnam National University,
300 Yongbong-dong, Gwang-ju, Korea,

{dikim,bhhwang}@chonnam.ac.kr

Abstract. Recent advances in wireless communication technology and
popularity of portable computers have rendered the mobile computing
environments that users access the information via wireless channel, re-
gardless of the situation or the location. In this environments, a mobile
host have a cache to avoid the bandwidth usage and improve the response
time of transactions. However, the cache mechanism does not guarantee
the serializable execution of mobile transactions. In this paper, we pro-
pose the BGI-MT method that mobile hosts can make a commit decision
by using the group information. Also our method can improve the cache
efficiency in the case that the disconnection of mobile hosts is longer
than the broadcast interval of the window report.

1 Introduction

In wireless mobile network, the server may exchange the data items and the
control information with mobile hosts using broadcast strategies, but frequent
broadcast technique requires high communication costs and causes a bottleneck
due to the limited channel[1]. Therefore, caching technique is especially impor-
tant to use the bandwidth efficiently and improve the response time of trans-
actions in mobile computing environments which are characterized by narrow
bandwidth, limited battery, host’s mobility, and frequent disconnection from
the server[3, 7]. In this strategy, a server broadcasts an invalidation report to
ensure the cache consistency. However, it becomes difficult for the mobile hosts
to know whether their cached data items are still valid or not before the ar-
rival of an invalidation report. Thus, this method defers the commit decision of
mobile transactions to ensure theirs serializable execution until the invalidation
report is arrived[5]. In this paper, we find out the problems of cache invalidation
methods and propose the method to solve them while ensuring the serializable
execution of mobile transactions. Our method makes a commit decision by us-
ing the group information before receiving an invalidation report, and avoids
discarding the entire cache in the case that the disconnection of mobile hosts is
longer than the broadcast interval of an invalidation report.

⋆ This work was supported by KOrea Science and Engineering Foundation(KOSEF
R05-2003-000-10532-0)

2 Daein Kim et al.

2 Related Work

In [1], three strategies that use invalidation reports to fulfill the obligations
has been suggested. In these methods, a server periodically broadcasts update
information to ensure the cache consistency of a mobile host. But, these methods
have a problem that the response time of mobile transactions can be long since
mobile transactions is answered after receiving the next report[1].

In [4], UFO(Update First Order) detects inconsistency between cached data
items in mobile hosts and the updated data items in the server. UFO protocol
checks whether there is any overlap between the broadcast data set and the
write set of update transactions during the current data broadcast period. If
there is an overlap, the server knows that any conflicting data items have been
existed and rebroadcasts the overlapped data items. But, this protocol may
require additional cost since the broadcast schedule of conflicting data items
should be reconstructed at the server. Also, if all conflicting data items are not
rebroadcasted in one broadcast period, the similar conflict can be happened.

In [5], OCC-UTS2(Optimistic Concurrency Control with Update TimeStamp
Span) method is devised to guarantee the serializability of mobile transactions.
In OCC-UTS2 method, mobile hosts locally ensure the serializable execution of
mobile transactions without server’s intervention. Also a server does not handle
the commit requests for mobile transactions issued by mobile hosts and thus the
uplink traffic does not affect overall performance seriously. But, this method can
make an incorrect commit decision of mobile transactions, as shown in Fig.1.

3 Problem Statement

Fig.1 shows the example that a mobile transaction reads inconsistent data items
by uncontrolled data broadcast.

MH1 s Cache = {x}, MT1 : R(x)R(y)

Server

Request data y

t2 t3

UT1 : W(y)W(z)CUT1

t0

Bi

t1

BT1

Bi -1

MT1 is submitted to MH 1

Broadcast data y

MH1

The Commit decision
of MT 1 is delayed

IR(B i) = <y,t3> <z,t3>

Broadcast IR (B i)

Fig. 1. Incorrect abort decision of a mobile transaction

In Fig.1, the mobile transaction MT1 wants to read x and y, is submitted to
the mobile host MH1. As MH1 has only data x in its cache, it sends the request
message for y to execute MT1. In the server, the broadcast transaction BT1 is
executed between t0 and t1, and makes the data broadcast schedule containing

Broadcasting Group Information to Ensure Consistency and Correctness 3

y. The server broadcasts y at time t1 and the update transaction UT1 which
updates y and z is executed between t2 and t3. Therefore the execution of MT1

is serializable since MT1 reads y which is not updated in this broadcast period.
However, in the previous methods, the commit decision of MT1 is deferred until
received an invalidation report from the server. At time Bi, MT1 receives the
invalidation report and makes an abort decision since MT1 accesses y which is
involved in the invalidation report. But, it is an incorrect abort decision.

The biggest problem of invalidation report broadcast methods is that mobile
transactions can read data items from theirs cache at any time, even if the data is
being updated at the server. But mobile hosts do not know the update occurrence
until receiving the invalidation report from the server. Therefore, the execution of
mobile transactions have a potential possibility that mobile transactions access
the different timing data, namely inconsistent data. In this paper, we propose the
BGI-MT(Broadcast Group Information-for Mobile Transaction) method. In our
method, a broadcast transaction is executed several times during an invalidation
report broadcast period to improve the response time of mobile transactions.
Also, a mobile host uses the group information to make a commit decision before
receiving the invalidation report.

4 BGI-MT Algorithm

4.1 Discussion on Grouping

In [9], there are many issues that concern data grouping, namely, how data items
should be grouped and the size of each group or the number of groups, and so
on. In [9], entire database is basically grouped into four categories according to
the update rate and the demand rate as shown in Fig.2.

CH HH

CC HC

Update rate

Demand rate

CH : Cold demand Hot update

CC : Cold demand Cold update

HC : Hot demand Cold update

HH : Hot demand Hot update

Fig. 2. Basic data group

In Fig.2, the validity of data including in Hot update group, e. g. CH group
and HH group is lower than data including in other groups since it is frequently
updated. Also, the cache hit ratio of data including in Hot demand group, e. g.
HC group and HH group is higher than data including in other groups. Similar to
[9], we assume that entire database is basically grouped according to the update
rate and the demand rate. Relatively, to improve the cache efficiency of our
scheme, data items including in lower update rate group or higher demand rate
group are divided into a number of groups. That is to say, the number of groups

4 Daein Kim et al.

including HC category is the most, but the number of groups including CH
category is the least. Also, additional data groups can be achieved by analyzing
information about the past usage patterns with data mining techniques, e. g.
association rule[2].

4.2 BGI-MT Method

In BGI-MT, a server broadcasts four types of reports, e. g. the invalidation
report, the window report, the data report, and the group report. A server
broadcasts the invalidation report IR(Bi) to maintain the cache consistency
of mobile hosts where Bi is a time point when the report is broadcast. The
invalidation report IR(Bi) is defined as follows.

Definition 1. Invalidation Report IR(Bi),

IR(Bi) = {[j, TS(j)] |j ∈ D, and Bi − L < TS(j) < Bi}

D is a set of data items in the database, j is an identifier of data item that has
been updated in the server during a broadcast period L, and TS(j) is the most
recent update timestamp of data j.

A server maintains the update information of data items to prepare for the
disconnection of mobile hosts. This update information of data items is defined
as the window report. If the window report broadcast interval is N times of the
invalidation report interval L, the window report includes the update information
of data items during N × L. The window report WR(Bi) is defined as follows.

Definition 2. Window Report WR(Bi),

WR(Bi) = {[j, TS(j)] |j ∈ D, and Bi − W < TS(j) < Bi}

D is a set of data items in the database, j is an identifier of data item that has
been updated in the server during a broadcast period W , and TS(j) is the most
recent update timestamp of data j.

In a server, a broadcast transaction collects the data information requested
by mobile hosts, and makes a schedule for the next data broadcast. A server
broadcasts the data report DR(Bi) where Bi is a time point when data are
broadcast. The data report DR(Bi) is defined as follows.

Definition 3. Data Report DR(Bi),

DR(Bdi) = {[j, TS(j)] |j ∈ D}

D is a set of data items in the database, j is a data item that has been requested
by mobile hosts during the execution of a broadcast transaction, and TS(j) is
the most recent update timestamp of data j.

Broadcasting Group Information to Ensure Consistency and Correctness 5

In our scheme, data items of database are grouped according to the update
rate, access rate, and update pattern, and so on. The group report GR(Bi) is
defined as follows.

Definition 4. Group Report GR(Bi),

GR(Bi) = {[k, TSl(k)] |k ∈ G}

G is a set of data groups, k is a group identifier of data items that have been
updated in the server, and TSl(k) is the most recent update timestamp about data
items of group k.

In our scheme, if the current available bandwidth is sufficient, a server broad-
casts the group report with the data report to improve the response time of a
mobile transaction. Also, the group report is broadcast with the window report
that is composed the most recent update timestamp of entire group to pre-
vent the entire cache dropping. Also, a mobile host MT keeps its read data set
ReadSet(MT) as follows, to decide a immediate commit decision of MT .

Definition 5. ReadSet(MT),

ReadSet(MT) = {d1, d2,, di ∈ D(1 ≤ i ≤ n)}

MT is the mobile host identifier, D is a set of data items in the database, and
di(1 ≤ i ≤ n) is the identifier of data items accessed by MT .

If one of the following three types of condition is satisfied, our algorithm
makes a commit decision and a mobile host commits its mobile transaction im-
mediately. We assume that BIL is the last broadcast time of an invalidation
report and GMT is the list of group including ReadSet(MT).

Immediate Commit Decision Condition

Type 1.All data items in ReadSet(MT) have a equal timestamp.
Type 2.The Timestamps of all data items in ReadSet(MT) are less than BIL.
Type 3.The Timestamps of all data items in ReadSet(MT) are greater than
MAX{TSl(j), j ∈ GMT } or not involved in the group report.

If all data items accessed by a mobile transaction MT have a single times-
tamp TSc, it has accessed the snapshot of database at time TSc. We think that
a snapshot of database is consistent. Thus, in the case of Type 1, MT can be im-
mediately committed. In the case of Type 2, MT sees the snapshot of database
at time BIL. This means that one of the ReadSet(MT) is cached in the current
invalidation report broadcast period, but it is not updated in this period. Thus,
in the case of Type 2, MT can be immediately committed. In the case of Type
3, MT sees the latest snapshot of data items. That is to say, MT cached the
data items after update transactions have been completed. If each data item in
ReadSet(MT) has been cached after the commit of the most recent update trans-
action, its cache timestamp is bigger than the MAX{TSl(j), j ∈ GL}. Thus, if

6 Daein Kim et al.

begin

Step 1: MT executes its all operations

if ReadSet(MT) has a single timestamp then

Commit MT;

else

Delay the commit decision of MT until receiving the group report;

endif

Step 2: MT received the group report from the server

if G
MT

is not included in the group report then

Commit MT;

else if TSc(x) of every data x in ReadSet(MT) < then

Commit MT;

else if TSc(x) of every data x in ReadSet(MT) > MAX{[TS
l
(G

MT
)]} then

Commit MT;

else

Delay the commit decision of MT until receiving an invalidation report;

endif

end

Commit decision of MT Output:

ReadSet(MT) : The read set of a mobile transaction MT

G
MT

: List of groups including ReadSet(MT)

TSc(x) : Timestamp of data x in mobile host

Input: B
IL

: The last broadcast time of an invalidation report

B
IL

Fig. 3. Commit decision algorithm of BGI-MT

Type 3 condition is satisfied, MT sees a consistent snapshot of a database. In
BGI-MT, the commit decision of a mobile transaction is shown in Fig.3.

If the execution of a mobile transaction does not satisfy at least one of three
types of condition, the commit decision of a mobile transaction is delayed until
receiving the invalidation report from the server. Assume that a mobile host MH

only has a data item x included group j in its cache. If MH is disconnected and
reconnected, MH waits for listening a window report from its server to verify the
consistency of cache content. When MH receives a window report, it compares
its disconnection period with the broadcast period of the window report. In [1,
5], if the disconnection period of MH is greater than the broadcast period of a
window report W , MH drops the all cache contents. However, in BGI-MT, if
the data timestamp of included group j is bigger than the timestamp TSl(j) of
group report, we can ensure the validity of data items included group j since
TSl(j) means the last update time of data items of included group j. Fig.4 shows
an example that the disconnection period of a mobile host is longer than the
broadcast period of a window report, but a mobile host avoids discarding the
entire cache contents in our scheme.

We assume that data x and y are included in group G1 and G2, respectively.
Also All update timestamps of G1 and G2, e. g. TSl(G1) and TSl(G2) are t0
initially. In Fig.4, a mobile host MH1 sends the request message of data x and y

and the server broadcasts the data report containing data x and y at time t1 and
t2, respectively. Thus, timestamps of x and y in MH1’s cache are all t0 which
is the initial timestamp in a server. Suppose MH1 disconnects at time t3 and

Broadcasting Group Information to Ensure Consistency and Correctness 7

Cache = { <x, t0><y, t0 > }

Server

Request data x
and y

Broadcast data x
and y

G1 B1

Disconnect

B2 B3

Reconnect

Broadcast WR(B3)
and GR(B3)

t1

GR(B3) <G1 , t0 >,< G2 , t0>

MH1

t2

t3 t4

Broadcast
IR(B1)

Broadcast IR(B2)

Request window
report

< x, t0 > G2

Disconnection
period of MH 1 D

The Broadcast period of a window report w = two times the broadcast period of an invalidation report L

<y, t0 >

Fig. 4. After disconnection, cache management example

reconnects at time t4. Also, a server broadcast the invalidation report IR(B1)
and IR(B2) at time B1 and B2(where t3 < B1 < B2 < t4) during disconnection
of MH1(between t3 and t4), respectively. Let the period of a window report W

is two times the period of an invalidation report L. After reconnection time t4,
MH1 requests the window report to verify the its cache contents. In our scheme,
a server broadcasts the window report WR(B3) and GR(B3) at time B3, and
MH1 verifies its cache validation In BGI-MT, timestamp TSl(Gid) of group
report means the last update time of data items included group Gid. In Fig.4, if
data items of group G1 and G2 are not updated in the disconnection of MH1,
update timestamps of G1 and G2 are t0. Thus, even if the disconnection period
of MH1 D exceeds the period of a window report W , MH1 does not drop x and
y since their timestamps are equal to the timestamps of group report TSl(G1)
and TSl(G2)(t0 = t0), respectively.

5 Analytical Model

In this section, we analyze the response time and the bandwidth usage of mobile
transactions. As a comparison baseline, we choose UFO method and OCC-UTS2

method since two methods ensure the serializable execution of mobile transac-
tions and maintain the cache consistency by receiving the invalidation report
and they are similar to our method. Similar to [1, 5], we begin by stating some
assumptions of our model:
� The server broadcasts an invalidation report per every L seconds.
� Each mobile transaction accesses to n data items in average.
� The access rate of each data item is λ(follow an exponential distribution).
� The update rate of each data item is µ(follow an exponential distribution).
� POCC and PBGI are the probability that the execution of a mobile transaction
meets the immediate commit condition in OCC-UTS2 and BGI-MT, respec-
tively.
� The average data caching time MTcaching for a mobile transaction accessing
n data items can be computed with the following equation, is n × (1 − h) ×
(data transfer time).

8 Daein Kim et al.

5.1 Average Response Time of a Mobile Transaction

If the invalidation report is broadcast per every L seconds, the average delay
time of a mobile transaction is L

2
seconds. In UFO method, the average response

time of mobile transactions RTUFO is computed as:

RTUFO = MTcaching +
L

2
(1)

In OCC-UTS2 method, we can compute the probability that a mobile trans-
action leads to a successful commit by immediate validation. In order for a mobile
transaction to be committed by immediate validation, data items accessed by
a mobile transaction should not be updated, even if cached in current invalida-
tion report period. In OCC-UTS2 method, the average response time of mobile
transactions RTOCC is computed as:

RTOCC = MTcaching +
L

2
× (1 − POCC) (2)

In BGI-MT method, if the execution of a mobile transaction MT meets
at least one of the three types of condition, MT is committed immediately.
Suppose data items of groups including ReadSet(MT) are not updated at least
E1 seconds or E2 seconds such as Fig.5.

No update

No update

E1 seconds

Bi-1 Bi

L seconds

L - E2 seconds

TYPE.2 TYPE.3

E2 seconds

MH caches data items

MH caches data items

Fig. 5. The reason for response time in BGI-MT

In BGI-MT method, immediate commit condition Type 1 is equal to the
immediate commit condition of OCC-UTS2 method. Fig.5 shows the case that
the execution of a mobile transaction meets the immediate commit condition
Type 2 or Type 3. In order for a mobile transaction to meet condition Type 2 or
Type 3, a mobile transaction should cache data items during E1 seconds or E2

seconds, respectively. Assume that cached data items are not updated during E1

seconds or E2 seconds, respectively. Thus, we can compute the average response
time of mobile transactions in BGI-MT method, RTBGI is computed as:

RTBGI = MTcaching +
L

2
× (1 − PBGI) (3)

Based on these analysis, we compute the response time and the commit rate
of mobile transactions on various methods. Similar to the parameter setting of
[1, 5], our analysis is performed based on the scenarios as follows.

Broadcasting Group Information to Ensure Consistency and Correctness 9

Scenario.1

A mobile client access the information, such as weather, stock, location, or traffic
information at the rate of 0.1(λ = 0.1) and this information is changed at the
rate of 0.005(µ = 0.005).

Scenario.2

A mobile client access the information at the rate of 0.01(λ = 0.01) and a mobile
transaction access to three data items.

3.6

3.9

4.2

4.5

4.8

5.1

5.4

5.7

6.0

6.3

6.6

6.9

1 2 3 4 5 6 7 8 9 10

Number of Data Items

E
x
p

e
c
te

d
 A

v
e

ra
g
e
 R

e
s
p
o
n
s
e
 T

im
e

UFO

OCC-UTS

UGR-MT

0

2

4

6

8

10

12

14

16

18

0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Update Rate

E
x
p

e
c
te

d
 C

o
m

m
it
 R

a
te

UFO

OCC-UTS

UGR-MT

(a) The response time of a mobile transaction (b) The commit rate of a mobile transaction

Fig. 6. The response time and the commit rate on various schemes

From the results shown in Fig.6, we observe that the smaller the number of
data items accessed by a mobile transaction n or the update rate µ, the better
performance of BGI-MT. This improvement comes from the two points. First,
our scheme can make a commit decision before receiving the invalidation report
against other schemes. This decision can reduce the possibility of false invalida-
tion and may well improve the response time of a mobile transaction. Second,
immediate commit decision case in our scheme will be a great opportunity for
transaction waited its verification to reduce the possibility of the incorrect abort
decision, such as Fig.1. Incorrect abort decision is a cause that the restart of
mobile transactions and limited bandwidth usage are increased and system per-
formance is lower.

5.2 Bandwidth usage of our scheme

In our scheme, a server will broadcast the additional control information e.g. the
group report to improve the response time of mobile transactions and the cache
efficiency of mobile hosts, against other schemes. This control information may
cause the bottleneck of wireless network by increasing the limited bandwidth
usage. However, in our scheme, this information is selectively transmitted from
the server to mobile hosts if only the current available bandwidth is sufficient.
Also, if the size of group report is large, a server will broadcast partially the
control information which is particular group-centered e.g. the group of HC
category. Thus, the overhead of additional broadcast will not be crucial to the

10 Daein Kim et al.

system performance since it is optional control information. Also, our scheme
can reduce the false invalidation caused by the disconnection of a mobile host.
In previous schemes, these drawbacks lead to transmit the additional data and
increase bandwidth usage, one the other hand our scheme can minimize these
problems.

6 Conclusion and Future Work

In this paper, we have proposed a new method for guaranteeing the serializable
execution of mobile transactions, called BGI-MT, using the data group informa-
tion. BGI-MT method for improving the response time of mobile transactions
makes a commit decision by using the group information of data items before
receiving an invalidation report from the server. Also, our scheme can prevent
the entire cache dropping, even though the disconnection of a mobile host is
longer than the broadcast interval of a window report. Through the analytical
model, we have shown that our method is superior to other methods, in terms
of the average response time and the commit rate of mobile transactions. For
the future work, we have to study a data grouping method which is an impor-
tant issue in our scheme, particularly to improve the response time of mobile
transactions and to reduce the communication.

References

1. D. Barbara and T. Imielinski, ”Sleepers and Workaholics: Caching Strategies in
Mobile Environments(Extended Version),” VLDB Journal Vol.4, No.4, pp.567-602,
1995.

2. J. Han, J. Pei, and Y. Yin, ”Mining Frequent Patterns without Candidate Genera-
tion,” In Proc. ACM SIGMOD Conference on Management of Data, pp.1-12, May
2000.

3. S. Kim, S. Yang and S. Lee, ”Maintaining Mobile Transactional Consistency in
Hybrid Broadcast Environments,” ACTA Information Vol.41 pp.65-81, Aug. 2004.

4. K. Lam, M. Au and E. Chan, ”Broadcasting Consistent Data to Read-Only Trans-
actions from Mobile Clients,” The Computer Journal, Vol.45, No.2, pp.129-146,
2002.

5. S. Lee, ”Caching and Concurrency Control in a Wireless Mobile Computing Environ-
ments,” IEICE Transaction on Information System, Vol.E85-D, No.8, pp.1284-1296,
Aug. 2002.

6. J. B. Lim and A. R. Hurson, ”Transaction Processing in Mobile, Heterogeneous
Database Systems,” IEEE Transactions on Knowledge and Data Engineering,
Vol.14, No.6, pp.1330-1346, Nov. 2002.

7. C. Lin, H. Hu, and D. Lee, ”Adaptive Data Delivery in Wireless Communication
Environment,” Wireless Networks, Vol.10, pp.103-120, March 2004.

8. N. Prabhu, V. Kumar, I. Ray and G. Yang, ”Concurrency Control in Mobile
Database Systems,” Proc. AINA2004 18th International Conference, Vol.2 pp.83-86,
March 2004.

9. K. L. Tan and J. Cai, ”Broadcast-Based Group Invalidation : An Energy-Efficient
Cache Invalidation Strategy,” Information Sciences, Vol.100, pp.229-253, Aug. 1997.

