
Kalman Filter based Dead Reckoning Algorithm for
Minimizing Network Traffic between Mobile Nodes in

Wireless GRID

Seong-Whan Kim and Ki-Hong Ko

Department of Computer Science, Univ. of Seoul, Jeon-Nong-Dong, Seoul, Korea
Tel: +82-2-2210-5316, fax: +82-2-2210-5275

{swkim7@uos.ac.kr and jedigo@venus.uos.ac.kr}

Abstract. Conventional GRID service is static (no mobility), and it has many
drawbacks such as continuous connection, waste of bandwidth, and service
overloading. Wireless GRID supports mobility, however it should consider
geographic position to support efficient resource sharing and routing. When the
devices in the GRID are highly mobile, there will be much traffic to exchange
the geographic position information of each mobile node, and this makes
adverse effect on efficient battery usage. To minimize the network traffic
between mobile users, we use dead reckoning algorithm for each mobile nodes,
where each node uses the algorithm to estimates its own movement (also other
node’s movement), and when the estimation error is over threshold, the node
sends the UPDATE (including position, velocity, etc) packet to other devices.
As the estimation accuracy is increased, each node can minimize the number of
UPDATE packet transmission. To improve the prediction accuracy of dead
reckoning algorithm, we propose Kalman filter based dead reckoning approach.
To experiment our scheme, we implement a popular network game (BZFlag)
with our scheme added on each mobile node, and the results show that we can
achieve better prediction accuracy and reduction of network traffic by 12
percents.

Keywords: Dead reckoning, Kalman filter, Wireless GRID

1 Introduction

Conventional GRID service supports no mobility, and results in many drawbacks
such as continuous connection, waste of bandwidth, and service overloading. Wireless
GRID supports mobility and it should consider geographic position to support
efficient resource sharing and routing [1]. However, if the device in the GRID is
highly mobile, there will be much traffic to manage the geographic position of each
mobile node, and this make adverse effect on efficient battery usage. To minimize the
network traffic between networking mobile devices, dead reckoning technique is used
[2]. Each mobile device uses the algorithm to estimates its movement and other
devices’ movement, thereby, each device can minimize the transmission of its
information (position, velocity, etc) to other entities. R. Gossweiler and R. J.

Laferriere introduced the dead reckoning algorithm for the multi-user game [2], and S.
Aggarwal and H. Banavar proposed the use of globally synchronized clocks among
the participating players and a time-stamp augmented dead reckoning vector that
enables the receiver to render the entity accurately [3]. In addition, W. Cai and F. B.S.
Lee proposed a multi-level threshold scheme that adaptively adjusted, based on the
relative distance between entities to reduce the rate of transmitting UPDATE packets
[4].

To improve the prediction accuracy of dead reckoning algorithm, we propose the
Kalman filter based dead reckoning approach. To simulate the mobility of mobile
device scenarios in wireless GRID, we use a simple analogy, network game (BZFlag).
In section 2, we review the dead reckoning and Kalman filter. In Section 3, we
propose a Kalman filter based dead reckoning algorithm. In Section 4, we apply our
Kalman approach on BZFLAG game; show the experimental results with minimized
UPDATE packets between game players. We conclude in section 5.

2 Related Works

The networking server technique can be implemented using three methods: (1) peer to
peer, (2) client server architecture, and (3) distributed server architecture. In peer to
peer, each entity transmits the occurred information to each other. It is suitable for the
small-scale network. In client server (CS) architecture, the server collects all of the
data from the clients, stores the changes in some data, and then sends the results to
each participating client. For large-scale networks, we need distributed server
architecture. To distribute server, we can use load distribution method or map server
method. Networking techniques should minimize (1) network bandwidth and (2)
network delay.

2.1 Location Awareness in Wireless Mobile Networks

In the wireless mobile GRID, the GRID protocol’s core concept partitions the
geographic area into several squares in GRIDs. Each GRID is elected the GRID’s
leader (so called gateway), and GRID leaders perform routing GRID by GRID. This
protocol is location awared because it exploits location information in routing.
Geographic location awareness can be GeoCast, GeoTora, and GeoGrid methods [10].

• GeoCast: GeoCast sends a message to all mobile devices within a designated

geographic area (so called a geo-cast region). This protocol differs from traditional
multicast, because the it uses two zones: forwarding zone and multicast region. In
the forwarding zone, the data packet is sent by unicast to each other’s device, and
in the multicast region, the data packet is sent by multicast to each other’s device.

• GeoTora: GeoTora derives from TORA (temporally ordered routing algorithm).

TORA maintains a DAG (directed acyclic graph) with the destination device as
sink; the data packet is forwarded by the DAG’s direction to sink. GeoTora divides

into TORA (DAG region) and GeoCast region. In GeoCast regions, mobile devices
perform the flooding, and in the DAG region, mobile devices perform an anycast
from the source to any host.

• GeoGrid: GeoGrid is derived by the GRID protocol that have the GRID leader.

GeoGrid uses two methods such as the flooding-based geo-casting and ticket-based
geo-casting. The flooding-based geo-casting allows any grid leader in the
forwarding zone to rebroadcast the messages, and the ticket-based geo-casting
allows only ticket-holding grid leaders to rebroadcast.

2.2 Reviews on Dead Reckoning Algorithms

Since each mobile device is physically distributed, updating states (e.g. each mobile
device’s position, etc) of the mobile devices may generate a large amount of
communication and thus saturate network bandwidth. To reduce the number of state
UPDATE packets, the DR technique is used [4]. In addition to the high fidelity model
that maintains the accurate position about its entities, each mobile device also has a
dead reckoning model that estimates the position of all entities (both local and
remote). Therefore, instead of transmitting state UPDATE packets, the estimated
position of a remote mobile device can be readily available through a simple and
localized computation [4]. The mobile device compares real position with DR
position. If the difference between real position and DR position is greater than a
threshold, the mobile device informs others remote entities to update their ghost
object position [2]. We can describe the simple dead reckoning algorithm as follows.

Algorithm : Dead Reckoning

for every received packet of remote entity do
 switch received packet type {
 case UPDATE
 fix ghost position of remote entity
 break;
 case PLAYER_QUITING
 remove remote entity
 break;
 }

[Extrapolation] Extrapolate all ghost position based
on the past state information;

if (local entity’s true position - local entity’s
extrapolated position) > Threshold {
 Broadcast an UPDATE packet to the group
}
Draw all ghost

3 Kalman filter based dead reckoning algorithm

In wireless GRID environment, each mobile device is geographically distributed. A
technique referred to as dead reckoning (DR) is commonly used to exchange
information about movement among the mobile devices [6, 7, 8]. Each mobile device
sends information about its movement as well as the movement of the entities it
controls to the other mobile devices using a dead reckoning vector (DRV). A DRV
typically contains information about the current position of the entity in terms of x, y
and z coordinates (at the time the DRV sent) as well as the trajectory of the entity in
terms of the velocity component in each of the dimensions [3].

In this paper, we use the mobility of network game users to simulate the real
geographically distributed mobile device environments. For the network game, we
present a Kalman filter based dead reckoning to optimize the network traffic. A
Kalman filter is a recursive procedure to estimate the states sk of a discrete-time
controlled process governed by the linear stochastic difference equation, from a set of
measured observations tk. The mathematical model is shown in in Equation (1) and
Equation (2).

11 −− += kkk wAss (1)

kkk rHst += (2)

The NxN matrix A represents an state transition matrix, wk is an Nx1 process noise

vector with N(0,), t
2
wσ

k is Mx1 measurement vector, H is MxM measurement matrix,

and rk is Mx1 measurement noise vector with N(0,). To estimate the process,
Kalman filter uses a form of feedback control as shown in Figure 1 [5]. We define

 , , and as the priori state estimate, posteriori state estimate, priori

estimate error covariance, and posteriori estimate error covariance, respectively.

2
rσ

−
kŝ kŝ −

kp kp

K
is the Kalman gain.

Measurement Update
Time Update (Correct)

(Predict)

2
1

1ˆˆ

w
T

kk

kk

AApp

sAs

σ+=

=

−
−

−
−

 []
[]

[] −

−−

−

−

−=

−+=

+
=

kkk

kkkkk

r
T

k

T
k

k

pHKIp

sHtKss

HHp
HpK

ˆ ˆˆ

2σ

Fig. 1. Kalman filter cycle [5].

To evaluate our scheme, we used simple dead reckoning scenarios (scheme 1) and
optimized dead reckoning algorithm for game logic (scheme 3) for comparison. For
scheme 1 and scheme 3, we use Kalman filter approach (scheme 2 and scheme 4) to
improve the prediction performance of scheme 1 and scheme 3 as shown in Figure 2.

Scheme 1:

Scheme 2:

Scheme 3:

Scheme 4:

(x, y, z)(x, y, z)

(vx, vy, vz) DR(vx, vy, vz)DR

Fig. 2. Kalman filter approach for dead reckoning algorithm.

Scheme 1 and scheme 2 use DRV, which includes only position and velocity
information of each mobile device. In scheme 3 and scheme 4, we added the angle
which is a direction of mobile device for prediction improvements, and the DRV is (x,
y, z, vx, vy, vz, angle, t). Scheme 3 is real dead reckoning algorithm, which is
optimized for BZFlag game logic. The details of each schemes are as follows.

Scheme 1: We compute the extrapolated position using last position, last velocity,

and time step as follows. We performed the extrapolation until the difference between
the extrapolated position and the true position is under threshold.
Extrapolated position = last position + last velocity *
time step;

vx, vy, vz
angle BZFlag DR

x, y, z

Kalman filter

extrapolated (angle)
extrapolated (x, y, z)

extraploated (vx, vy, vz)

extrapolated (x, y, z)

Kalman filterextrapolated (x, y, z)

x, y, z

BZFlag DR
vx, vy, vz,

angle

extrapolated (angle)
extrapolated (x, y, z)

extraploated (vx, vy, vz)

Scheme 2: Scheme 2 uses Kalman filter after computing the extrapolated position
as scheme 1. We performed the extrapolation until the difference between the
extrapolated position and the true position is under threshold.
Extrapolated position = Kalman Filter (last position +
last velocity * time step);

Scheme 3: To get a new extrapolated position, the scheme uses two equations
depending on the game entity’s motion type as follows. We performed the
extrapolation until the difference between the extrapolated position and the true
position is under threshold.
if (linear motion) {
 extrapolated position = last position + last velocity
* time step;
} else {
 extrapolated position = BZFlag function(angle);
}

Scheme 4: Scheme 4 adds Kalman filter after computing the extrapolated (position,
velocity, and angle) as scheme 3. Our dead reckoning algorithm (scheme 4) is
described as follows.

float speed = (vx * cosf(angle)) + (vy * sin(angle));
// speed relative to the tank's direction
radius = (speed / angular_velocity);

float inputTurnCenter[2]; // tank turn center
float inputTurnVector[2]; // tank turn vector
inputTurnVector[0] = +sin(last_angle) * radius;
inputTurnVector[1] = -cos(last_angle) * radius;
inputTurnCenter[0] = last_position-inputTurnVector[0];
inputTurnCenter[1] = last_position-inputTurnVector[1];

// compute new extrapolated angle using Kalman filter
float angle = Kalman (time step * angular_velocity);
float cos_val = cosf(angle);
float sin_val = sinf(angle);

// compute new extrapolated position
const float* tc = inputTurnCenter;
const float* tv = inputTurnVector;
new_x = tc[0]+((tv[0] * cos_val) - (tv[1] * sin_val));
new_y = tc[1]+((tv[1] * cos_val) + (tv[0] * sin_val));
new_z = last_position + (vz * time step);

// compute new extrapolated velocity
float vx = Kalman ((vx * cos_val) - (vy * sin_val));
float vy = Kalman ((vy * cos_val) + (vx * sin_val));
float vz = Kalman (vz);

4 Experimental Results

In this paper, we use a simple analogy: a popular on-line game BZFlag to simulate
geographically distributed mobile devices. BZFlag (Battle Zone Flag) is a first-person
shooter game where the players in teams drive tanks and move within a battlefield.
The aim of the players is to navigate and capture flags belonging to the other team
and bring them back to their own area. The players shoot each other’s tanks using
“shooting bullets” The movements of the tanks (players) as well as that of the shots
(entities) exchanged among the players using DR vectors [3, 9].

The experimental data are the position value and the velocity value gotten in
BZFlag game. We used the experimental data of 8301 numbers, and the threshold to
0.09. We compared the number of DRV packet transmission and the average
prediction error E as shown in (3). (x, y, z) represent the true position, (newx, newy,
newz) represent the extrapolated position, and (n) represent the number of data.

n

newzznewyynewxx
E

n

i
iiiiii∑

=

=

−+−+−
=

8301

1

222)()()(
 (3)

Table 1 shows the experimental result. Table 1 shows that the number of DRV

transmission of scheme 2 and scheme 4 is smaller than that of scheme 1 and scheme 3,
respectively.

Table 1. Font sizes of headings. Table captions should always be positioned above the tables.

 Scheme 1 Scheme 2 Scheme 3 Scheme 4
of DRV

transmission 4657 3965 703 611

E 4.511 2.563 0.4745 0.4048

In BZFlag game, it uses the game optimized dead reckoning algorithm, which

means that it considers the two more vectors (orientation and angle) to predict the
position more accurately. Scheme 3 improves the simple dead reckoning approaches:
scheme 1 and scheme 2. In scheme 4, we used Kalman filter prediction on velocity
and angle, and Figure 3 compares the scheme 3 and scheme 4 over 8000 time steps.
For better comparison, we computed moving average for each 20 samples. The dotted
line and the solid line show the result of scheme 3 and scheme 4, respectively.

Average error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 41 81 121 161 201 241 281 321 361 401

Time steps

E
rr

o
r

scheme 3

scheme 4

Fig. 3. Comparison of prediction accuracy for 8301 time step duration.

Figure 4 shows the prediction errors in X and Y direction, respectively. Scheme 3,
which uses BZFlag game optimized logic, shows fluctuations, and when the
prediction error is over than 0.9, the BZFlag clients should send dead reckoning
packets. Minimizing dead reckoning packets also minimized network latency and the
game responses time. Even in the detailed view, the prediction errors of scheme 4 are
smaller than the prediction errors of scheme 3.

5 Conclusions

In this paper, we propose the Kalman filter approach to improve the dead reckoning
algorithm for geographically oriented networking between mobile nodes in wireless
GRID environments. Our scheme improves the accuracy of dead reckoning prediction,
and minimizes the network traffic among the mobile devices. Instead of
experimenting geographically distributed mobile devices, we use a popular on-line
game BZFlag, and compare our scheme with the state-of-the-art dead reckoning
algorithm optimized for game logic. Our Kalman filter based dead reckoning scheme
reduces more than 10% of network traffic over game optimized dead reckoning
algorithms. Reduced network traffic can make efficient battery usage.

(a)

(b)

Fig. 4. Error in X and Y prediction: (a) errors in X direction, (b) errors in Y direction

References

1. Zhang W., Zhang J., Ma D., Wang B., Chen Y.: Key technique research on GRID mobile
servie. Proc. 2nd Int. Conf. Information Technology (2004)

2. Gossweiler, R., Laferriere, R.J., Keller, M.L., Pausch, R.: An introductory tutorial for
developing multi-user virtual environments. Tele-operators and Virtual Environments, vol. 3.
no. 4 (1994) 255-264

3. Aggarwal, S., Banavar, H., Khandelwal, A., Mukherjee, S., Rangarajan, S.: User experience:
accuracy in dead-reckoning based distributed multi-player games. Proc. ACM SIGCOMM
2004 Workshops on Net-Games. Network and System Support for Games (2004)

4. Cai, W., Lee, F.B.S., Chen, L.: An auto-adaptive dead reckoning algorithm for distributed
interactive simulation. Proc. of the thirteenth Workshop on Parallel and Distributed
Simulation (1999)

5. Welch, G., Bishop, G.: An introduction to the Kalman filters. available in http://www.
cs.unc.edu/~welch/Kalman/index.html

6. Gautier, L., Diot, C.: Design and Evaluation of MiMaze, a Multiplayer Game on the Internet.
Proc. IEEE Multimedia. ICMCS (1998)

7. Mauve, M.: Consistency in Replicated Continuous Interactive Media. Proc. of the ACM
Conference on Computer Supported Cooperative Work (2000) 181–190

8. Singhal, S.K., Cheriton, D.R.: Exploiting Position History for Efficient Remote Rendering in
Networked Virtual Reality. Tele-operators and Virtual Environments. vol. 4. no. 2 (1995)
169-193

9. Schoeneman, C., Riker, T.: BZFlag (Battle Zone capture Flag), available in http://
www.bzflag.org

10. Tseng, Y.-C., Wu, S.-L., Liao, W.-H., Chao, C.-M.: Location awareness in ad hoc wireless
mobile networks. IEEE Computer. vol. 34, no. 6, (2001) 46-52

