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Abstract. Behavior, situations and environmental changes in embed-
ded software, such as robot software, are hard to expect at software
design time. To deal with dynamic behavior, situations and environ-
mental changes at runtime, current software engineering practices are
not adequate due to the hardness of software modification. An approach
to resolve this problem could be making software really “soft” that en-
ables runtime software modification. We developed a practical framework
called SHAGE(Self-Healing, Adaptive, and Growing SoftwarE) to im-
plement reconfigurable software in home service robots. SHAGE enables
runtime reconfiguration of software architecture when a service robot
encounters unexpected situations or new user requirements. This paper
focuses on designing reconfigurable software architecture, so called, dy-
namic software architecture. We also conducted a case study on a home
service robot to show applicability of the framework. The results of the
study shows practicality and usefulness.

1 Introduction

This research issued from the intelligent service robot for the elderly project in
Center for Intelligent Robotics (CIR) at KIST (Korea Institute of Science and
Technology). This project was faced with ‘how to satisfy and adapt changing
requirements more faster at runtime’. Home service robots provides services
such as ‘delivering a newspaper’, ‘reading a book’, ‘making a cup of coffee’, and
so on. These services have its own quality attributes(e.g. speed, accuracy, safety,
and etc). For example, the user gives a command to his/her robot to move with
only a goal position. But situations can be diverse; a) when the user holds a
party, there may be many visitors. They are unrecorded and moving objects for
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the robot. In this case, the robot needs to move more carefully, even though
it may be getting slow. the robot’s software architecture must be reconfigured
to provide high safety a quality attribute, for example, a map-builder that uses
vision, laser sensors, sonar sensors but takes a lot of time to build a map. b) when
the user is home alone, there are only recorded objects. In this case, the robot can
move more quickly. To satisfy this situation, the robot’s software architecture
must be reconfigured to provide high speed as a quality attribute, for example,
a component that uses only laser sensors but takes less time to build a map.

In both cases a) and b), the robot must recognize situations of the environ-
ment and infer the user’s requirements to adapt its software architecture. If there
is no cost limitation, the robot can prepare all possible functionalities to satisfy
all quality attributes. Unfortunately, robots have cost limitation because they
are consumer products. Thus, a robot cannot have all possible software com-
ponents as well as hardware components. In addition to cost limitation, robot
developers cannot predict all possible interrelations between quality attributes
and robot software architecture. This temporal limitation leads to new software
architecture configurations for each new set of quality attributes after the robot
sold.

In this paper, we focuses on dynamic software architecture that enables soft-
ware architecture reconfiguration. To handle this we proposes slot-based two
level software architecture working in SHAGE framework. In section 2, we ex-
plain SHAGE framework which is a basis of slot-based two level software archi-
tecture which is described in section 3. Also, we show the results of a case study
conducted in a robot in section 4. Then, we draw conclusion in section 5.

2 Background

SHAGE? Framework is developed to give a self-managed software capability to
robot software in the project. The Framework consists of two parts which are
separated by a dashed line as depicted in figure 1. The inner part is installed
in each robot and consists of seven modules. The outer part provides repository
services for robots to obtain new knowledge which describes ‘how to adapt’. The
target architecture(beneath the reconfigurator) represents the software architec-
ture of the robot and the target of reconfiguration. This paper addresses how to
design this software architecture.

Seven modules in the inner part of the framework are the Monitor, the Ar-
chitecture Broker, the Component Broker, the Decision Maker, the Learner, the
Reconfigurator, and the Internal Repositories. The monitor is responsible for ob-
serving the current situation of the environment(this is what observer does) and
evaluating the result of adaptation that the framework does(this is what eval-
uator does). The architecture broker searches candidate architectures based on
architecture reconfiguration strategies and composes candidate component com-
positions for the selected architecture by using concrete component retrieved

3 formerly it was AlchemistJ as described in [1]
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Fig. 1. SHAGE Framework consists of two parts; the inner part has seven modules:
the Monitor(not in our scope yet), the Architecture Broker, the Component Broker,
the Decision Maker, the Learner, the Reconfigurator, and (internal) Repositories. The
outer part consists of repository servers that provide repository services.

Learning Data

by the component broker. The component broker finds concrete components
which will be arranged into an architecture and retrieves the components from
repositories. The decision maker determines an best-so-far architecture from a
set of candidate architectures that the architecture broker found and an best-
so-far component composition from candidate component compositions that the
architecture broker composed. The learner accumulates rewards evaluated by
the evaluator in the monitor and the decision maker uses these accumulated
rewards to choose the best-so-far architecture and the best-so-far component
composition. The learning data is a knowledge repository for the learner. The
reconfigurator manages and reconfigures the software architecture of the robot
based on the best-so-far architecture and the best-so-far component composition
which are selected by the decision maker. The internal repositories consists of
the ontology repository and the component repository. The ontology repository
contains architecture reconfiguration strategies that describes functionalities the
robot must have and component ontologies that describes characteristics of a
component. The component repository contains components implemented to be
used in the robot software architecture.

The outer part of the framework is a set of servers containing external repos-
itories. Each server has an ontology repository and a component repository as
the inner part has. Internal repositories in the robot requests new ontologies and
components when the robot cannot adapt its behavior to the current situation



properly. Also External repositories broadcasts new knowledge to update robots’
internal repositories globally. The repository manager is installed in each server
and has tools for addition and removal of ontologies and components. From the
next section, this paper proposes an architectural style to support for designing
dynamic software architecture of robot systems.
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Fig. 2. The Slot-based Two Level Software Architecture Approach consists of the ab-
stract level and the concrete level. In this approach, first, slots are reconfigured in the
abstract level and then, components and connectors are placed in the concrete level.

3 Slot-based Two Level Software Architecture

3.1 Overview

Dynamic software architecture enables runtime changes of software[2,3]. The
slot-based two level software architecture approach provides two level adaptation
mechanism; the abstract level and the concrete level(shown in figure 2). At the
abstract level, there are only slots. A slot represents an abstract component that
describes services. A service describes functionality that a slot should provide.
A service does not indicates a specific method or a concrete component but
describes what messages a slot can be requested and what results a slot returns.

At the concrete level, each slot is filled by one concrete component. A concrete
component is an executable code, for example .class files in Java or .so files



in C++, implemented by predefined component implementation rules(will be
explained from section 3.2 to section 3.4). Every component in the framework
must implement common interfaces which can process messages such as ’start’,
’stop’, and ’suspend’ and specific interfaces which realize services on a slots and
processes component-specific messages that the component can receive and give.
These specific interfaces are described by the component description language
shown in figure 3. The component description language is a XML-based language
and describes required interfaces that contains messages that the component can
request to other components and provided interfaces that can process messages
other components requested.

When the architecture broker requests reconfiguration of the robot software
architecture, the reconfigurator re-organizes the architecture based on the se-
lected architecture reconfiguration strategy(will be explained in section 3.4) and
places components based on the components the decision maker selected and
then selects and places connectors between components based on the compo-
nent descriptions. In detail, the mismatch indicator(will be explained in section
3.3) in the reconfigurator measures mismatches between components and finds
suitable connectors. For example, two components have been deployed in two
different machines, the reconfigurator selects a remote connector which enables
remote communication such as RPC or RMI. After all components are con-
nected, the reconfigurator sends a ‘start’ messages to every new component in
the architecture and reports that reconfiguration is done to the architecture
broker.

From section 3.2 to 3.4, this paper proposes an approach to design adaptable
components and connectors to be used in dynamic software architecture and to
author architecture reconfiguration strategies for runtime reconfiguration of the
architecture.

3.2 Designing Adaptable Software Components

Constructing dynamic software architecture begins with designing adaptable
software components. SHAGE Framework offers templates and guidelines for
designing and implementing adaptable software components. To design software
components in SHAGE Framework, first, a designer must identify services of a
component. There are two types of services for each component; provided and
required services.

A provided service represents what the software component provides to other
software components and a required service represents what the software com-
ponent needs to execute its functionalities. These services of a component is
described by a component description language. SHAGE Framework also pro-
vides a language for describing a component as shown in figure 3. Each service
is described by ‘name’; ‘type’ and ‘msg’ fields. The ‘name’ field represents a
unique service name in a component to be used in implementation. The ‘type’
field describes classification of a service to check compatibility with other ser-
vices. Classification is determined by service ontologies in the ontology reposi-
tory(shown in figure 1). These ontologies depicts generalization relations between



services; from abstract services to specific services, for example, from ‘pathplan-
ning’ to ‘pathplanning.laserbased’, to ‘pathplanning.laserbased.gradient’. The
‘msg’ fields represents requests that a service can push to other services in case
of a required service or requests that a service can receive from other services
in case of a provided service. The ‘msg’ fields consist of argument fields and a
response field. Argument fields describe data which is needed to process a mes-
sage. An argument field consists of a name field of the argument and a type
field of the argument that describes syntactical and semantical type(e.g. double,
float, array of double, robot pose, global map, etc). A response field is provided
when the message has return values.

<?xml version="1.0" encoding="euc—kr"?>
<Component>
<name>Navigator .Mapbui lder :LaserbasedMapbui 1der</name>
<description>Laser sensor-based mapbuilder</description>
<thread value="false"/>
<language value="CPP"/>
<deployment value="MainSBC"/>
<location URI="navigator.mapbui lder.laserbasedmapbui lder .LaserbasedMapbuilder"/>
<provided-interfaces>
<service type="Algorithmic.MapBuilding.LaserbasedMapBuilding"
name="MapBui 1der ">
<msg name='ReadMap'>
<reponse>
<arg name='Map'
type='Primitive.double[5001[500]' />
</reponse>
</msg>
<msg name='UpdateMap'>
<arg name='dRobotPos' type='Primitive.double[3]'/>
<reponse>
<arg name='Map'
type='Primitive.double[5001[500]' />
</reponse>
</msg>
</service>
</provided-interfaces>
<required-interfaces>
</required-interfaces>

</Component>

Fig. 3. An example of a component description. The component description language
is a XML-based language and describes services of components, an implementation
language, a deployment location, the location of executable code, and so on.

While the component description language illustrates external part of a com-
ponent, component implementation templates provides guidelines for inner struc-
ture of a component. As depicted in figure 4, inner structure of a component
consists of provided/required interfaces, a service manager, and component-
specific modules. A required interface encapsulates a message using data from
a component-specific module through the service manage of a component and
sends the message to a required port of a connector(see section 3.3). A provide
interface receives an encapsulated message and elicits data from the message
and calls the service manager to execute the functionality that the message indi-
cates. A service manager has two roles; one is to select an appropriate required
interface and send data to the required interface when a component-specific



module requests a service in other components, and the other is to select an ap-
propriate component-specific module and send data to the component-specific
module. A set of component-specific modules is a group of objects to implement
application-specific functionalities. With this structure, a component interacts
with other components through connectors.
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Fig. 4. A component consists of provided/required interfaces, a service manager, and
component-specific modules.

3.3 Designing Connectors

A connector is responsible for relaying messages between components and trans-
forming data embedded in the messages for components to do their functional-
ities correctly. The project of CIR(see section 1) consists of over thirty labora-
tories at universities and companies. During the project we realized that most
developers in laboratories had diverse backgrounds such as mechanical engineer-
ing, electrical engineering, and so on(few was computer science). This fact caused
a lots of different representations for one notion. They used different data for-
mats for maps, a robot pose, etc. For example, to represent a robot pose, one
group of developers uses a column-major double array that length is three while
the other group uses a row-major integer array that has same length. Another
problem was that they would not unify representations because their compo-
nents are not dedicated to the project and are used to other projects. Moreover,
each group claimed their representation was most appropriate for the project
and some groups complained that they had no time to redesign all components
to follow new unified formats. To handle this situation, SHAGE framework pro-
vides guideline for implementing connectors.
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Fig. 5. A connector consists of provided/required ports and transformation filters for
resolving mismatches between two components.

In the framework, each connector is implemented based on the template de-
picted in figure 5. A connector consists of a provided port, a required port, and
transformation filters. A required port receives messages from required interface
in a component and interprets the messages to prepare transformation. A pro-
vided port encapsulates messages and sends the messages to a provided port in
a component. Transformation filters are composed by the mismatch indicator in
the reconfigurator. The mismatch indicator measures mismatches between two
components by comparing descriptions of the components(see figure 3 and sec-
tion 3.2) when software architecture is reconfigured and new components are in-
troduced in the architecture at runtime. Based on the measured mismatches, the
mismatch indicator composes transformation filters by using pre-implemented
filters in the component repository(see figure 1). A pre-implemented filter is
a predefined conversion rule implemented by developers. We investigated con-
version rules of data such as maps, a robot pose, and so on by interviewing
developers and classified them. Eventually, mismatches in the software archi-
tecture at runtime could be resolved without modifying existing code by using
connectors.

3.4  Authoring Architecture Reconfiguration Strategies

To satisfy user requirements(see section 1), software architecture of a robot
should be reconfigured at runtime without suspension. Architecture reconfig-
uration strategies enables runtime reconfiguration of software architecture on
SHAGE framework. Strategies are described by a XML-based language shown in
figure 6. A strategies illustrates how the current software architecture should be
reconfigured at runtime. A strategy only indicates abstract level reconfiguration,
i.e. reconfiguration of slots shown in figure 2. Once abstract level architecture is
reconfigured, the reconfigurator automatically places components into slots and
selects connectors to link components.



Each strategy consists of ‘description’, ‘profile’, and ‘configuration’ fields.
The ‘description’ field is a natural language description of a strategy. The ‘pro-
file’ field describes minimum constraints that the current software architecture
should have before reconfiguration to prevent failure of reconfiguration(e.g. ex-
istence of slots to prevent replacement slots). The ‘configuration’ field describes
how slots are reconfigured. In the field, Three command are possible, i.e. ‘re-
place’, ‘add’, and ‘remove’. To request slot-replacement or addition , services of
slots should be described. These services are corresponding to the services in
component descriptions described section 3.2. If a new slot is introduced in soft-
ware architecture by slot-replacement or addition, the component broker in the
framework (see figure 1) searches a set of candidate components that can process
indicated services from the component repository. Then, the decision maker se-
lects the most appropriate component in the set of candidate components based
on learning data the learner accumulated. With the selected component, the
reconfigurator reconfigures the current software architecture to a new software
architecture as described in the strategy.

3.5 Related Work on Dynamic Software Architecture

Hillman’s work[4, 5] proposed an open framework for dynamic reconfiguration
which supports component addition, removal, and replacement. This work fo-
cused only on a framework architecture and reconfiguration scripts to support
reconfiguration. There was no concerns on designing components and connector
and constructing software architectures. Hadas[6, 7] framework provides facili-
ties to dynamically change inner structure of a component. Hadas offers a good
methodology for designing adaptable components which contains the way to re-
configure methods and data of a component by using metamethods and metain-
vocation mechanism. But this framework did not concerned architecture-based
reconfiguration so that there was no way to design connectors and software archi-
tectural styles. Oreizy’s work[8,9, 2] is a famous research for architecture-based
reconfiguration which provides the C2 architectural style as a reconfigurable
software architecture style(which contains ways to design components and con-
nectors), xADL as a architectural description language*, and ArchStudio as a
framework to support architecture-based adaptation of software at runtime. But
C2 architectural style has restrictions such that a component can have at most
two connections, upper and bottom and all connectors should be bus style con-
nectors.

4  Experiment

The experiment was designed as follows: 1. initially the user of the robot needs
‘more faster navigation’, so the robot is configured mainly to use faster sen-
sors(say, laser sensors). 2. while moving, the robot is stuck by a table because

4 xADL describes a snapshot of software architecture, not a architecture reconfigura-
tion language



<?xml version="1.0" ?>
<reconfiguarationdescription name="http://sembots.icu.ac.kr/reconf#ToVisionbasedLocalization">
<description>
Change the current robot architecture into vision based Localizer
</description>
<profile>
<required slotName="http://sembots.icu.ac.kr/service#Localizer"
action="http://sembots.icu.ac.kr/action#Replace"/>
<required slotName="http://sembots.icu.ac.kr/service#MapBuilder"
action="http://sembots.icu.ac.kr/action#Remove"/>
</profile>
<configuration>
<script>
<Replace slotName="http://sembots.icu.ac.kr/service#Localizer'>
<services>
<service name="http://sembots.icu.ac.kr/service#VisionbasedLocalization"/>
<service name="http://sembots.icu.ac.kr/service#VisionbasedMapBuilding'/>
</services>
</Replace>
<Remove slotName="http://sembots.icu.ac.kr/service#MapBuilder"/>
</script>
</configuration>
</reconfiguarationdescription>

Fig. 6. Architecture reconfiguration strategies describes abstract level reconfiguration.
A strategy describes replacement, addition, and removal of slots.

the bottom of the table is empty but the current sensors can detect only knee
height objects. Then, the user asks the robot to move 'more carefully’. 3. The
robot tries to reconfigure its software architecture to detect objects that the
current sensors cannot detect.

We implemented a few components and configured the initial software ar-
chitecture of the robot for navigation as shown in figure 7.(a). Each component
can be executed independently. ‘MotionControl’ component controls wheels and
‘Localizer’ measures the current position of the robot based on encoder data
which means how many degrees the wheels rotated. ‘MapBuilder’ makes a map
around the robot based on sensor data from laser sensors. ‘PathPlanner’ plans a
path from the current position to a goal position based on data from ‘Localizer’
and ‘MapBuilder’. ‘Coordinator’ gets the goal position from the user of the robot
and relays data between components. Based on these components the robot can
moves without collisions except tables.

We designed a room as an experimental environment. we placed two tables;
one was covered by a tablecloth and the other was not. The robot was placed
at the same line on which the two tables were placed. In other words, “robot -
table with a cloth - table without a cloth” on the same line in sequence. After
configuring the initial architecture of the robot, The user put a goal position
to ‘Coordinator’ and requested ‘more faster maneuver’. The goal position was
between two tables and the robot verified that the current architecture was
suitable for the user’s requirement. The robot decided the initial architecture is
enough because laser sensors were very fast and precise. Then, the robot started
to move and its laser sensors could detect a tablecloth, so the robot could move
without collisions. This was not an abnormal situation, so the robot did not
need adaptation. Then, we put the other goal position over the second table. In



this case, the robot could not detect the table and rushed to the table. The user
requested the robot to stop and to realize the situation and to adapt it.
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Fig. 7. Various software architectures of the robot during reconfiguration

When the robot was requested to adapt its behavior, the monitor in the
framework detected the current situation. This situation was passed to the ar-
chitecture broker. The architecture broker began the adaptation process. The
situation was the current architecture could not detect all object in the room
so the robot needed to find other functionalities to detect some other objects
which could not be observable with the current architecture. The framework
tried to apply various architectural configurations. First, the framework selected
a strategy that adds a slot which have a localization service and a mapping
service(figure 7.(b)). After abstract level reconfiguration, the reconfigurator suc-
cessfully placed the SLAM(Simultaneous Localization And Mapping) component
and appropriate connectors. A connector named ‘D’ represents two components
around the connector are deployed in the same SBC while a connector named
‘R’ represents they are deployed in two different SBCs. In this case the SLAM
component was deployed in ‘Vision SBC’, so that the connector named ‘R’ was
placed. In detail, the SLAM component used a different format to represent a
robot pose as explained in section 3.3, the mismatch indicator selected a transfor-
mation filter that convert two different format for a robot pose in ‘Coordinator’
and the SLAM component. The reconfigured architecture worked, but it did not
satisfy user’s requirements because the SLAM component also could not detect
the table. In this manner the framework also tried to apply another strategy
shown in figure 7.(c). But the framework realized(and learned) these was not
able to solve the situation, and finally selected a strategy including a slot which
had a vision-based path planning service. Then, the reconfigurator placed a path
planner component that implements a vision-based path planning service(figure
7.(d)). During (a)-(d) the user did not interrupt and put more inputs.

This experiment shows the framework enables the robot to reconfigure robot
software architecture successfully by applying the dynamic software architecture
approach this paper proposed.



5 Conclusions

We proposed the slot-based two level software architecture as a dynamic software
architecture approach for embedded systems especially in robot domain. This
approach offers a method to design adaptable components and connectors and
to author architecture reconfiguration strategy.

In order to verify operations of the framework, we have implemented an
instance of self-adaptive robot software with ’infortainment robot’ and exam-
ined the ability of adaptation of the robot from the experiment. The robot has
adapted its behavior to user’s feedback and the current situation.

As mentioned in section 3.3 the project consists of lots of laboratories and
they have made a number of software components. These components are made
based on different assumptions and platforms. Also these have different inter-
faces, data types, granularity, and scopes. These differences may cause lots of
mismatches when the framework reconfigures the robot’s software architecture.
In order to improve the mismatch indicator, we are classifying types of mis-
matches in robot domain and connector technologies for solving mismatches at
run-time.
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