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Abstract. This paper presents an innovative DVS technique to reduce the 
energy dissipation. Our objective is to minimize the transitions between power 
modes by maximizing the idle periods of functional units with instruction 
scheduling. Our work first analyzes the control flow graph of the application, 
which contains many regions. Second, we collect the power information and 
build its power model for each region. Then two regions with the same 
functional units will be merged if no dependencies exist between them. The 
process is repeated until no further mergings can be performed.  Next, the idle 
functional units will be turned off and each region will be assigned a power 
mode based on the power model. Finally, the application is rescheduled to 
merge the regions to reduce the transitions between power modes. The 
experimental results show that our work can save the energy by 26%.    

1   Introduction 

As most embedded systems are portable, how to reduce the energy dissipation when 
running applications to extend the lifetimes of batteries has become a crucial issue. 
The energy dissipation is closely related to voltage and clock frequency [11]. The 
architectures of modern processors provide several power modes to reduce energy 
dissipation by adjusting the voltage and the clock frequency at run time.  

Previous work showed the switching overheads of power modes make a significant 
impact on energy dissipation [1,14]. In this paper, we reduce the energy dissipation 
with instruction scheduling to minimize the transitions between power modes by 
maximizing the idle periods of functional units. To exploit the maximum potential for 
instruction scheduling, for an application, we first use the SUIF compiler 
infrastructure to build its control flow graph (CFG) and data flow graph (DFG) [9,14]. 
Then these graphs are divided into many basic blocks. Each basic block is composed 
of several regions, each of which will contain at least one functional unit. The power 
model of the application is also built in this step by profiling the CFG. Second, to 
minimize the transitions between power modes, two regions that contain the same 
functional units will be merged if no dependencies exist between them by referring to 
DFG. Then for each region, the idle functional units in it will be turned off and it is 
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assigned one power mode by referring to the power model. Afterward, instruction 
scheduling is applied again so that the regions with the same power modes will be 
merged if no dependencies exist in them. Finally, we assign the power modes to basic 
blocks to further optimize energy and performance. The experiments will show how 
much this potential can be exploited for our benchmarks.  

The remainder of this paper is organized as follows. Section 2 presents our main 
idea with a motivating example. Section 3 describes our compilation flow, system 
architecture, and the algorithm in detail. The experimental results are shown in 
Section 4. Section 5 is the related work. Finally, section 6 concludes our work briefly. 

2   Motivating Example 

Figure 1 shows a motivating example to explain the basic idea of our work. Figure 1b 
is the optimized code segment for Figure 1a. In Figure 1a, There are four regions: two 
loops and two multiplication expressions. We assume that the adder is turned on, the 
multiplier is turned off, the default power mode is the normal mode, and two loops 
are assigned power down mode. To reduce energy dissipation, the functional units 
will be turned off. In Figure 1a, the adder will be turned on and the multiplier will be 
turned off in two loops, and the adder will be turned off and the multiplier will be 
turned on when doing multiplications. In Figure 1b, two loops and two expressions 
can be merged into two regions respectively since they contain the same functional 
unit and no dependences exist in them. Then the multiplier is turned off in the newly 
loop then the adder is turned off in the expressions. Finally, we assign the loop region 
power down mode and the expression region normal mode. In contrast with Figure 1a, 
Figure 1b can reduce more power consumption since it maximize the idle periods of 
functional units and save two transitions of power modes. 

 
Fig. 1. Motivating example 

3   Power-Aware Compilation 

In this section, we first describe compilation flow and system architecture of our 
work and then present our algorithm. 



3.1   Compilation Flow and System Architecture  

Figure 2 shows our compilation flow and system architecture. Our approach is 
implemented on the basis of the SUIF2 compiler infrastructure and the Wattch 
simulator. SUIF2 helps us to build the control flow graph (CFG) and the data flow 
graph (DFG) and then we perform our low-power optimizations. First, we build the 
power model by profiling the graphs of the application. Meanwhile, the control flow 
graph will be divided into many regions according to the usage of functional units. 
Then each region will be assigned a power mode by referring to its power model. 
Next, the idle functional units in a region will be turned off. Then two regions will be 
merged to reduce the transitions of power modes with instruction scheduling, if the 
functional units in them have the same statuses, they have the same power modes, 
and no dependencies exist in them. The process will repeat until no further mergings 
can be performed. Finally, the resulted DVS'ed program is compiled and linked with 
run-time library to produce an executable code running on the Wattch simulator [3]. 

 
 

Fig. 2. Compilation flow and system architecture 

3.2  Architectural Support  

To turn on and off the functional units, we add new instructions into the Alpha 
instruction set in the Wattch simulator, which is listed below. In this paper, we only 
consider the adders and the multipliers for integer and floating point.  

alu.on     switch ON  one  integer ALU functional unit 
alu.off     switch OFF one  integer ALU functional unit 
mdu.on  switch ON one integer multiplier/divide functional unit 



mdu.off  switch ON  off  integer multiplier/divide functional unit 
alu.s.on  switch ON  one  float ALU functional unit 
alu.s.off  switch OFF one  float ALU functional unit 
mdu.s.on   switch ON  one  float multiplier/divide functional unit 
mdu.s.off  switch OFF  one  float multiplier/divide functional unit 

In our algorithm, to perform the optimizations on an application, we define the 
following symbols that are used in this paper. For a basic block B and a region R in 
the basic block B,  

N(B) is the number of times when B is executed, 
FU(B) is the set of functional unit used in B, 
FU(R) is the set of functional unit used in R,  
fmem is the ratio of memory accesses to total  instructions in B,  
Tper(R) is the ratio of the execution time to that of B,  
f (B) indicates the power mode of B, and   
f (R) indicates the power mode of R. 

After the program is partitioned into regions, two regions, say Ri and Rj, will be 
merged if the following conditions are satisfied. (1) FU(Ri) = FU(Rj). It implies these 
two regions use the same functional units. (2) D (Ri , Rj ) = ∅ .  It means that no 
dependencies exist in them. The merging process will be repeated until no regions 
satisfy the above two conditions. Here we first give the definitions of the following 
parameters used in this paper.  

 γ is the threshold that used to turn on or off a functional unit and 
 α and β are the thresholds that used to assign a region a power mode. 

   Next, for a region R, we decide to turn on or off the functional units in it if Tper(R) 
is larger than the threshold γ , which is the default number of clock cycles. In our 
work, two power modes are implemented in the Wattch simulator by referring to the 
Crusoe TM5800 processor of Transmeta [15]. One is normal mode with voltage 1.5V 
and clock frequency 600MHz, and the other represented by fdown is the power down 
mode with voltage 0.3V and clock frequency 300MHz. Note that in this paper, the 
default power mode of a region is the normal mode. Moreover, we determine the 
assignment of power modes in the following two steps. In the first step, we first 
assign each region a power mode depending on the threshold α and then perform the 
merging repeatedly until no further mergings can be performed. Formally, the regions 
Ri and Rj satisfying f(Ri) = f(Rj) and D (Ri , Rj ) = ∅   will be merged across basic 
blocks. In the second step, the basic block will be assigned a power mode depending 
on the threshold β.  

Now we use a code segment selected from 8x8 IDCT, which is used frequently in 
digital signal processing, as an example to demonstrate our idea. Figure 3 shows its 
control flow graph and power model. For simplicity, we use another code segment 
selected from 8x8 IDCT shown in Figure 4 to explain our algorithm. The original 
code segment shown in Figure 4a consists of five regions. Notice that regions R1, R3 
and R5 use adder only, and regions R2 and R4 use both adder and multiplier. Initially, 
we assume that the adder is turned on since some instructions such as load and store 
will use it to calculate the target address and the multiplier is turned off.  



   
Fig. 3. Control flow graph and power model for a code segment selected from 8x8 IDCT 

 
(a)                                                          (b) 

Fig. 4. The sample and optimized code segment selected from 8x8 IDCT 

 
Fig. 5. Dependence graph between R2 and R3-5 



According to the DFG of Figure 4a, we can merge R3 and R5 into a new region R3-5 
shown in Figure 4b after applying our approach to it. R1 cannot be merged with R3 
and R5 due to the dependences, although they use the same functional unit. In 
addition, region R2 and R3-5 cannot be merged further into a region. Figure 5 shows 
the dependence graph between R2 and R3-5 and it explains why they cannot be merged. 
Thus, we can apply our algorithm to reschedule the code so that the regions with the 
same statuses can be merged. However, R3 and R5 can be merged into a new one, 
because multiplier can be shut down in them and no dependences exist between them. 
Figure 4b shows the optimized code segment. 

4   Experimental Results 

In this section, we present the experimental results of our work. Our work is 
implemented on the basis of the SUIF2 compiler infrastructure and the Wattch 
simulator. The applications are complied into the Alpha 21264 instructions by a cross 
compiler. The Alpha 21264 is one of the most advanced processors. It has four ALUs, 
aggressive branch predictor, two-level cache, TLB (translation look-aside buffer), and 
other modern designs [2]. The experiments are measured using SPEC2000, DSPstone, 
and Mediabench as benchmarks by setting three thresholds α = 0.3, β = 10, and 
γ = 3. With our experiences, these settings are better choices after applying our work 
to the above benchmarks. The impact of the settings on our work will be discussed 
further in the near future. In this section, we use “with scheduling” to represent all 
optimizations of our work and “without scheduling” to represent the optimizations 
without applying instruction scheduling.    

4.1   Energy Evaluation 

To demonstrate the effect of our work, we first show the power reductions after 
applying our approach to Dspstone, SPEC 2000, and Mediabench benchmarks, which 
are plotted with columns on the left axis of Figure 6 to Figure 8.   

In Figure 6, our work can achieve an average energy reduction of 24% with 
scheduling and an average energy reduction of 19% without scheduling. For 
DSPstone, the effect of scheduling is small since the code sizes of applications in it 
are smaller. Basically, for a benchmark, our method will save more energy if its 
complexity is higher or its length is longer. For the matrix, the energy reduction 
caused by using scheduling can achieve up to 23% since it has a higher instruction 
level parallelism. It contains a 10 x 10 x 10 nested loop that calculates the 
multiplication of matrices. In this loop, several multiplications are calculated in 
different places. Our algorithm can work very well for "matrix" by grouping these 
multiplications together to maximize the idle period of the multiplier. So we can 
reduce the energy dissipation of a program. Figure 7 shows the experimental results 
after applying our approach with and without scheduling for the SPEC2000 
benchmark. On average, the energy reduction can achieve up to 27%. The average 
energy reduction caused by the scheduling is around 11% that is larger than that of 
DSPstone. The reason is that the code sizes of applications in SPEC2000 are larger in 



comparison with those of DSPstone and consequently we can exploit more 
instruction level parallelism to optimize. Figure 8 shows the experimental results after 
applying our approach with and without scheduling for the Mediabench benchmark. 
The average energy reductions with and without can achieve 25% and 18%. In 
Mediabench, applications like Jpeg, epic, and pgpwit have less dependences in them, 
thus the effects are better. In fact, with our experiences, our work can acquire better 
energy saving if the number of multipliers in the CPU is large.  

 

Fig. 6. Energy reduction and performance evaluation for DSPstone 

 
Fig. 7. Energy reduction and performance evaluation for SPEC2000 



 

Fig. 8. Energy reduction and performance evaluation for Mediabench 

4.2   Performance Evaluation 

The performance impact on Dspstone, SPEC2000, and Mediabench with our 
approach is plotted with lines on the right axis of Figure 6 to Figure 8 It shows that 
our approach leads to performance degradation since our optimizations take some 
time to save energy. In DSPstone, the code sizes of most applications in DSPstoneit 
are smaller. Thus, the performance degradation caused by slowing down the CPU is 
smaller except matrix since its code size is large and it uses too many macros. By 
contrast, due to the larger code sizes of applications, the performance degradation of 
SPEC2000 is around 12.6% and 14.1% on average with and without scheduling. For 
Mediabench, the code sizes of most applications in it are larger, which results in 
worse performance. On average, the performance degradations are 14.9% and 16.4% 
with and without scheduling, respectively. The performance degradation of adpcm is 
better since its size is very small. In our experiments, no performance degradations of 
benchmarks will exceed 20% if "with scheduling" is applied. For the remaining cases, 
the performance degradations are under 10% except 'gzip'. In addition, with our 
knowledge, no previous DVS algorithms that use compilation techniques have shown 
the impact on the performance. 



5   Related Work 

Previous work reduced the energy dissipation by proposing various DVS techniques 
[1,4,6,7,8,10,12,13,14]. Some work [8,10] focused on scheduling the tasks using 
DVS to meet the real-time constraint to lower energy consumption. Shin et al. also 
aimed at the intra-task scheduling under the real-time constraint based on the power 
information generated by compiler [12]. Previous work addressed the DVS issue by 
slowing down the frequency with a low voltage in the regions containing many 
memory accesses [6,7]. In their work, the issue was modeled as the minimization 
problem with the performance and the transition constraints. Although they took the 
transition overheads into account, they did not reschedule the program to exploit the 
potential of reducing the transitions between power modes. Rele et al. devised a 
region-based approach to reduce the energy dissipation by turn off the idle functional 
units for superscalar processors [11]. Their work only showed the impacts on the 
utilization of functional units and performance after applying their work to programs, 
but it did not demonstrate the experimental results about power dissipation. By 
contrast, on the one hand our work extends the period of idle functional units and on 
the other hand we performs instruction scheduling on the programs to reduce the 
number of transitions between power modes. In comparison with previous work [5,6], 
they also divided an application into regions and adjust voltages and frequencies of 
power modes, but their approaches did not consider turning off the idle functional 
units and the transitions between power modes to save energy.  You et al. presented 
three low-power optimizations with respect to a basic block [16]. One is to turn off 
the idle functional units in a basic block and the other two are to adjust the voltage of 
an execution path according to their two different power constraints.  Their approach 
is partially similar to ours. But ours differs with theirs in the following two ways. (1) 
Our work targets at Alaph 21264 with four ALUs, while theirs was performed on a 
virtual architecture proposed by themselves. (2) Our work can maximize the idle 
periods of functional units with instruction scheduling and minimize the transitions 
between power modes, while theirs just turned off the idle functional unit without 
doing further optimizations.  

6   Conclusions and Future Work 

This paper presents an effective DVS approach at compiler time to reduce energy 
dissipation by attempting to minimize the transitions between power modes by 
maximizing the idle periods of functional units with instruction scheduling. To reduce 
energy dissipation when executing an application, we first implement new 
instructions to turn off the idle functional units and two power modes to adjust 
voltage and clock frequency of CPU. Then we apply instruction scheduling to 
maximize the idle periods of functional units and minimize transitions between power 
modes .Our work is performed with DSPstone, SPEC2000, and Mediabench 
benchmarks on the basis of the SUIF2 compiler infrastructure and the Wattch 
simulator. On average, the experimental results show that our work can save the 
energy by around 26% and lead to the performance degradation less than 18% for 



most benchmarks. Our future research will focus on the settings of three thresholds to 
see how they influence the optimizations of our work.  
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