
Power-Aware Instruction Scheduling

Tzong-Yen Lin and Rong-Guey Chang ∗

 Department of Computer Science
National Chung Cheng University

Chia-Yi, Taiwan

lty93@cs.ccu.edu.tw and rgchang@cs.ccu.edu.tw

Abstract. This paper presents an innovative DVS technique to reduce the
energy dissipation. Our objective is to minimize the transitions between power
modes by maximizing the idle periods of functional units with instruction
scheduling. Our work first analyzes the control flow graph of the application,
which contains many regions. Second, we collect the power information and
build its power model for each region. Then two regions with the same
functional units will be merged if no dependencies exist between them. The
process is repeated until no further mergings can be performed. Next, the idle
functional units will be turned off and each region will be assigned a power
mode based on the power model. Finally, the application is rescheduled to
merge the regions to reduce the transitions between power modes. The
experimental results show that our work can save the energy by 26%.

1 Introduction

As most embedded systems are portable, how to reduce the energy dissipation when
running applications to extend the lifetimes of batteries has become a crucial issue.
The energy dissipation is closely related to voltage and clock frequency [11]. The
architectures of modern processors provide several power modes to reduce energy
dissipation by adjusting the voltage and the clock frequency at run time.

Previous work showed the switching overheads of power modes make a significant
impact on energy dissipation [1,14]. In this paper, we reduce the energy dissipation
with instruction scheduling to minimize the transitions between power modes by
maximizing the idle periods of functional units. To exploit the maximum potential for
instruction scheduling, for an application, we first use the SUIF compiler
infrastructure to build its control flow graph (CFG) and data flow graph (DFG) [9,14].
Then these graphs are divided into many basic blocks. Each basic block is composed
of several regions, each of which will contain at least one functional unit. The power
model of the application is also built in this step by profiling the CFG. Second, to
minimize the transitions between power modes, two regions that contain the same
functional units will be merged if no dependencies exist between them by referring to
DFG. Then for each region, the idle functional units in it will be turned off and it is

∗ This work was supported in part by National Science Council, Taiwan, under Grant NSC 94-

2220-E-194-011-

assigned one power mode by referring to the power model. Afterward, instruction
scheduling is applied again so that the regions with the same power modes will be
merged if no dependencies exist in them. Finally, we assign the power modes to basic
blocks to further optimize energy and performance. The experiments will show how
much this potential can be exploited for our benchmarks.

The remainder of this paper is organized as follows. Section 2 presents our main
idea with a motivating example. Section 3 describes our compilation flow, system
architecture, and the algorithm in detail. The experimental results are shown in
Section 4. Section 5 is the related work. Finally, section 6 concludes our work briefly.

2 Motivating Example

Figure 1 shows a motivating example to explain the basic idea of our work. Figure 1b
is the optimized code segment for Figure 1a. In Figure 1a, There are four regions: two
loops and two multiplication expressions. We assume that the adder is turned on, the
multiplier is turned off, the default power mode is the normal mode, and two loops
are assigned power down mode. To reduce energy dissipation, the functional units
will be turned off. In Figure 1a, the adder will be turned on and the multiplier will be
turned off in two loops, and the adder will be turned off and the multiplier will be
turned on when doing multiplications. In Figure 1b, two loops and two expressions
can be merged into two regions respectively since they contain the same functional
unit and no dependences exist in them. Then the multiplier is turned off in the newly
loop then the adder is turned off in the expressions. Finally, we assign the loop region
power down mode and the expression region normal mode. In contrast with Figure 1a,
Figure 1b can reduce more power consumption since it maximize the idle periods of
functional units and save two transitions of power modes.

Fig. 1. Motivating example

3 Power-Aware Compilation

In this section, we first describe compilation flow and system architecture of our
work and then present our algorithm.

3.1 Compilation Flow and System Architecture

Figure 2 shows our compilation flow and system architecture. Our approach is
implemented on the basis of the SUIF2 compiler infrastructure and the Wattch
simulator. SUIF2 helps us to build the control flow graph (CFG) and the data flow
graph (DFG) and then we perform our low-power optimizations. First, we build the
power model by profiling the graphs of the application. Meanwhile, the control flow
graph will be divided into many regions according to the usage of functional units.
Then each region will be assigned a power mode by referring to its power model.
Next, the idle functional units in a region will be turned off. Then two regions will be
merged to reduce the transitions of power modes with instruction scheduling, if the
functional units in them have the same statuses, they have the same power modes,
and no dependencies exist in them. The process will repeat until no further mergings
can be performed. Finally, the resulted DVS'ed program is compiled and linked with
run-time library to produce an executable code running on the Wattch simulator [3].

Fig. 2. Compilation flow and system architecture

3.2 Architectural Support

To turn on and off the functional units, we add new instructions into the Alpha
instruction set in the Wattch simulator, which is listed below. In this paper, we only
consider the adders and the multipliers for integer and floating point.

alu.on switch ON one integer ALU functional unit
alu.off switch OFF one integer ALU functional unit
mdu.on switch ON one integer multiplier/divide functional unit

mdu.off switch ON off integer multiplier/divide functional unit
alu.s.on switch ON one float ALU functional unit
alu.s.off switch OFF one float ALU functional unit
mdu.s.on switch ON one float multiplier/divide functional unit
mdu.s.off switch OFF one float multiplier/divide functional unit

In our algorithm, to perform the optimizations on an application, we define the
following symbols that are used in this paper. For a basic block B and a region R in
the basic block B,

N(B) is the number of times when B is executed,
FU(B) is the set of functional unit used in B,
FU(R) is the set of functional unit used in R,
fmem is the ratio of memory accesses to total instructions in B,
Tper(R) is the ratio of the execution time to that of B,
f (B) indicates the power mode of B, and
f (R) indicates the power mode of R.

After the program is partitioned into regions, two regions, say Ri and Rj, will be
merged if the following conditions are satisfied. (1) FU(Ri) = FU(Rj). It implies these
two regions use the same functional units. (2) D (Ri , Rj) = ∅ . It means that no
dependencies exist in them. The merging process will be repeated until no regions
satisfy the above two conditions. Here we first give the definitions of the following
parameters used in this paper.

 γ is the threshold that used to turn on or off a functional unit and
 α and β are the thresholds that used to assign a region a power mode.

 Next, for a region R, we decide to turn on or off the functional units in it if Tper(R)
is larger than the threshold γ , which is the default number of clock cycles. In our
work, two power modes are implemented in the Wattch simulator by referring to the
Crusoe TM5800 processor of Transmeta [15]. One is normal mode with voltage 1.5V
and clock frequency 600MHz, and the other represented by fdown is the power down
mode with voltage 0.3V and clock frequency 300MHz. Note that in this paper, the
default power mode of a region is the normal mode. Moreover, we determine the
assignment of power modes in the following two steps. In the first step, we first
assign each region a power mode depending on the threshold α and then perform the
merging repeatedly until no further mergings can be performed. Formally, the regions
Ri and Rj satisfying f(Ri) = f(Rj) and D (Ri , Rj) = ∅ will be merged across basic
blocks. In the second step, the basic block will be assigned a power mode depending
on the threshold β.

Now we use a code segment selected from 8x8 IDCT, which is used frequently in
digital signal processing, as an example to demonstrate our idea. Figure 3 shows its
control flow graph and power model. For simplicity, we use another code segment
selected from 8x8 IDCT shown in Figure 4 to explain our algorithm. The original
code segment shown in Figure 4a consists of five regions. Notice that regions R1, R3
and R5 use adder only, and regions R2 and R4 use both adder and multiplier. Initially,
we assume that the adder is turned on since some instructions such as load and store
will use it to calculate the target address and the multiplier is turned off.

Fig. 3. Control flow graph and power model for a code segment selected from 8x8 IDCT

(a) (b)

Fig. 4. The sample and optimized code segment selected from 8x8 IDCT

Fig. 5. Dependence graph between R2 and R3-5

According to the DFG of Figure 4a, we can merge R3 and R5 into a new region R3-5
shown in Figure 4b after applying our approach to it. R1 cannot be merged with R3
and R5 due to the dependences, although they use the same functional unit. In
addition, region R2 and R3-5 cannot be merged further into a region. Figure 5 shows
the dependence graph between R2 and R3-5 and it explains why they cannot be merged.
Thus, we can apply our algorithm to reschedule the code so that the regions with the
same statuses can be merged. However, R3 and R5 can be merged into a new one,
because multiplier can be shut down in them and no dependences exist between them.
Figure 4b shows the optimized code segment.

4 Experimental Results

In this section, we present the experimental results of our work. Our work is
implemented on the basis of the SUIF2 compiler infrastructure and the Wattch
simulator. The applications are complied into the Alpha 21264 instructions by a cross
compiler. The Alpha 21264 is one of the most advanced processors. It has four ALUs,
aggressive branch predictor, two-level cache, TLB (translation look-aside buffer), and
other modern designs [2]. The experiments are measured using SPEC2000, DSPstone,
and Mediabench as benchmarks by setting three thresholds α = 0.3, β = 10, and
γ = 3. With our experiences, these settings are better choices after applying our work
to the above benchmarks. The impact of the settings on our work will be discussed
further in the near future. In this section, we use “with scheduling” to represent all
optimizations of our work and “without scheduling” to represent the optimizations
without applying instruction scheduling.

4.1 Energy Evaluation

To demonstrate the effect of our work, we first show the power reductions after
applying our approach to Dspstone, SPEC 2000, and Mediabench benchmarks, which
are plotted with columns on the left axis of Figure 6 to Figure 8.

In Figure 6, our work can achieve an average energy reduction of 24% with
scheduling and an average energy reduction of 19% without scheduling. For
DSPstone, the effect of scheduling is small since the code sizes of applications in it
are smaller. Basically, for a benchmark, our method will save more energy if its
complexity is higher or its length is longer. For the matrix, the energy reduction
caused by using scheduling can achieve up to 23% since it has a higher instruction
level parallelism. It contains a 10 x 10 x 10 nested loop that calculates the
multiplication of matrices. In this loop, several multiplications are calculated in
different places. Our algorithm can work very well for "matrix" by grouping these
multiplications together to maximize the idle period of the multiplier. So we can
reduce the energy dissipation of a program. Figure 7 shows the experimental results
after applying our approach with and without scheduling for the SPEC2000
benchmark. On average, the energy reduction can achieve up to 27%. The average
energy reduction caused by the scheduling is around 11% that is larger than that of
DSPstone. The reason is that the code sizes of applications in SPEC2000 are larger in

comparison with those of DSPstone and consequently we can exploit more
instruction level parallelism to optimize. Figure 8 shows the experimental results after
applying our approach with and without scheduling for the Mediabench benchmark.
The average energy reductions with and without can achieve 25% and 18%. In
Mediabench, applications like Jpeg, epic, and pgpwit have less dependences in them,
thus the effects are better. In fact, with our experiences, our work can acquire better
energy saving if the number of multipliers in the CPU is large.

Fig. 6. Energy reduction and performance evaluation for DSPstone

Fig. 7. Energy reduction and performance evaluation for SPEC2000

Fig. 8. Energy reduction and performance evaluation for Mediabench

4.2 Performance Evaluation

The performance impact on Dspstone, SPEC2000, and Mediabench with our
approach is plotted with lines on the right axis of Figure 6 to Figure 8 It shows that
our approach leads to performance degradation since our optimizations take some
time to save energy. In DSPstone, the code sizes of most applications in DSPstoneit
are smaller. Thus, the performance degradation caused by slowing down the CPU is
smaller except matrix since its code size is large and it uses too many macros. By
contrast, due to the larger code sizes of applications, the performance degradation of
SPEC2000 is around 12.6% and 14.1% on average with and without scheduling. For
Mediabench, the code sizes of most applications in it are larger, which results in
worse performance. On average, the performance degradations are 14.9% and 16.4%
with and without scheduling, respectively. The performance degradation of adpcm is
better since its size is very small. In our experiments, no performance degradations of
benchmarks will exceed 20% if "with scheduling" is applied. For the remaining cases,
the performance degradations are under 10% except 'gzip'. In addition, with our
knowledge, no previous DVS algorithms that use compilation techniques have shown
the impact on the performance.

5 Related Work

Previous work reduced the energy dissipation by proposing various DVS techniques
[1,4,6,7,8,10,12,13,14]. Some work [8,10] focused on scheduling the tasks using
DVS to meet the real-time constraint to lower energy consumption. Shin et al. also
aimed at the intra-task scheduling under the real-time constraint based on the power
information generated by compiler [12]. Previous work addressed the DVS issue by
slowing down the frequency with a low voltage in the regions containing many
memory accesses [6,7]. In their work, the issue was modeled as the minimization
problem with the performance and the transition constraints. Although they took the
transition overheads into account, they did not reschedule the program to exploit the
potential of reducing the transitions between power modes. Rele et al. devised a
region-based approach to reduce the energy dissipation by turn off the idle functional
units for superscalar processors [11]. Their work only showed the impacts on the
utilization of functional units and performance after applying their work to programs,
but it did not demonstrate the experimental results about power dissipation. By
contrast, on the one hand our work extends the period of idle functional units and on
the other hand we performs instruction scheduling on the programs to reduce the
number of transitions between power modes. In comparison with previous work [5,6],
they also divided an application into regions and adjust voltages and frequencies of
power modes, but their approaches did not consider turning off the idle functional
units and the transitions between power modes to save energy. You et al. presented
three low-power optimizations with respect to a basic block [16]. One is to turn off
the idle functional units in a basic block and the other two are to adjust the voltage of
an execution path according to their two different power constraints. Their approach
is partially similar to ours. But ours differs with theirs in the following two ways. (1)
Our work targets at Alaph 21264 with four ALUs, while theirs was performed on a
virtual architecture proposed by themselves. (2) Our work can maximize the idle
periods of functional units with instruction scheduling and minimize the transitions
between power modes, while theirs just turned off the idle functional unit without
doing further optimizations.

6 Conclusions and Future Work

This paper presents an effective DVS approach at compiler time to reduce energy
dissipation by attempting to minimize the transitions between power modes by
maximizing the idle periods of functional units with instruction scheduling. To reduce
energy dissipation when executing an application, we first implement new
instructions to turn off the idle functional units and two power modes to adjust
voltage and clock frequency of CPU. Then we apply instruction scheduling to
maximize the idle periods of functional units and minimize transitions between power
modes .Our work is performed with DSPstone, SPEC2000, and Mediabench
benchmarks on the basis of the SUIF2 compiler infrastructure and the Wattch
simulator. On average, the experimental results show that our work can save the
energy by around 26% and lead to the performance degradation less than 18% for

most benchmarks. Our future research will focus on the settings of three thresholds to
see how they influence the optimizations of our work.

References

1. N. AbouGhazaleh, D. Moss'e, B. Childers, and R. Melhem. Toward the placement of power
management points in real time applications. In Proceedings of the Workshop on
Compilers and Operating Systems for Low Power, September 2001

2. Alpha , Alpha 21264 Processor Technical Reference Manual, http://www.alpha.com.
3. D. Brooks , V. Tiwari , and M. Martonosi. Wattch: A Framework for Architectural Level

Power Analysis and Optimizations. In International Symposium on Computer Architecture
(ISCA) , Vanconver , British Columbia , 2000

4. T. Burd and R. Brodersen. Design issues for dynamic voltage scaling. In Proceedings of
2000 International Symposium on Low Power Electronics and Design, July 2000

5. C.H. Hsu and U. Kremer. Compiler-directed dynamic voltage scaling based on program
regions. Technical Report DCS-TR-461, Department of Computer Science,Rutgers
University, November 2001

6. C.H. Hsu and U. Kremer. Single region vs. multiple regions: A comparison of different
compiler-directed dynamic voltage scheduling approaches. In Workshop on Power-Aware
Computer Systems, 2002

7. C.H. Hsu and U. Kremer. The Design, Implementation, and Evaluation of a Compiler
Algorithm for CPU Energy Reduction. In Proceedings of the ACM SIGPLAN Conference
on Programming Languages Design and Implementation, June 2003

8. C.M. Krishna and Y.-H. Lee. Voltage-clock-scaling adaptive scheduling techniques for low
power in hard real-time systems. In Proceedings of the 6th Real Time Technology and
Applications Symposium (RTAS'00), May 2000

9. MachSuif: A Framework built on top of SUIF for building back-ends
http://www.eecs.harvard.edu/~hube

10. A. Manzak and C. Chakrabarti. Variable voltage task scheduling for minimizing energy or
minimizing power. In Proceeding of the International Conference on Acoustics, Speech
and Signal Processing, June 2000

11. K. Roy. Leakage Power Reduction in Low-Voltage CMOS Design. In IEEE International
Conference on Circuits and Systems , Pages 167-173, 1998

12. Sannella, M. J. Constraint Satisfaction and Debugging for Interactive User Interfaces. Ph.D.
Thesis, University of Washington, Seattle, WA, 1994

13. D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-energy hard real-time
applications. IEEE Design and Test of Computers, 18(2), March/April 2001

14. SUIF. Stanford University Intermediate Format. http://suif.stanford.edu
15. Transmeta, Crusoe TM5800 Processor Technical Reference Manual http://transmeta.com/
16. Yi-Ping You, Chingren Lee, and Jenq Kuen Lee, Compilers for Leakage Power Reduction,''

accepted, ACM Transactions on Design Automation of Electronic Systems.

http://www.alpha.com/
http://www.eecs.harvard.edu/%7Ehube
http://suif.stanford.edu/
http://transmeta.com/

