
A Framework for Managing the Solution Life

Cycle of Event-Driven Pervasive Applications

Johnathan M. Reason1, Han Chen1, ChangWoo Jung2, SunWoo Lee2, Danny
Wong1, Andrew Kim2, SooYeon Kim2, JiHye Rhim2, Paul B. Chou1, and

KangYoon Lee2

1 IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
{reason, chenhan, dcwong, pchou}@us.ibm.com

2 IBM Ubiquitous Computing Laboratory, The MMAA Building, 467-12
Dogok-dong, Gangnam-gu, Seoul 135-700

{jungcw, samlee, akhkim, sooyeon.kim, jhrhim, keylee}@kr.ibm.com

Abstract. Event-driven, embedded applications that embody the com-
position of many disparate components are emerging as an important
class of pervasive applications. For such applications, realizing solutions
often requires a breadth of expertise. Consequently, managing the so-
lution life cycle can be a very complex, time-intensive process. In this
paper, we present a framework that eases the complexity of managing
the life cycle of event-driven, pervasive solutions. We call this framework
Rapid Integrated Solution Enablement or RISE. Component composition
and software reuse are two central concepts of RISE, where solutions are
graphically composed from reusable components using a visual editor.
We describe the RISE architecture and discuss an initial prototype im-
plementation that leverages open source technologies, such as Eclipse.
Additionally, we illustrate the e�cacy of RISE with an example solution
for RFID supply chain logistics.

1 Introduction

Pervasive applications are becoming prevalent in our society, especially ones with
embedded solutions that are driven by events originating from various sensor
modalities. The apparatus comprising an embedded solution is often assembled
from disparate components, including hardware devices (e.g., sensors, actuators,
programmable logic controllers, and displays) and software components (e.g.,
device adapters, agents, and event correlators). Thus, realizing an embedded
solution can be a very complex process that requires a high-degree of expertise
across many specialty domains, such as embedded programming, networking,
device adapter programming, wireless communications, and user interface design.

These specialties are often performed across solution partners, including de-
vice OEMs, solution integrators, solution developers, and the customers. Solution
integrators must integrate the hardware devices and software components into
the apparatus, solution developers must write application code for speci�c cus-
tomer requirements, solution developers must test and validate the solution, and



IT sta� must incorporate the solution into the IT infrastructure. This approach
often leads to one-o� solutions that are not �exible enough to accommodate new
requirements.

RISE is a graphical, actor-oriented software framework for managing the life
cycle of event-driven, embedded solutions. Through greater reuse of component-
based, customizable software, RISE can lower the total cost of ownership, facil-
itate rapid development, deployment, and management, and improve �exibility
of solutions through dynamic con�guration. RISE exploits the concepts of com-
ponent composition, software reuse, and heterogeneous models of computation
to provide the tooling and runtime support.

This paper is organized as follows. Sect. 2 describes the foundational back-
ground, Sect. 3 describes the RISE architecture, Sect. 4 describes our initial
prototype implementation, Sect. 5 discusses a use case example, and we con-
clude with some comments about ongoing work in Sect. 6.

2 Background

In this section, we discuss the core concepts that form the basis of RISE and
introduce the terminology used throughout the remainder of this paper.

2.1 Related Work

RISE gets its motivation from other tools that provide a graphical block diagram
methodology for actor-oriented modeling. To name a few, Simulink from The
Mathworks R©, LabVIEW R© from National Instruments, and Ptolemy II from the
The Ptolemy Project of the University of California at Berkeley are examples of
actor-oriented design environments. While all of these tools (and others) have
their strengths and weaknesses, we found all of them lacking a uni�ed framework
for deployment and management of embedded environments. Nevertheless, we
�nd instruction in their theoretical underpinnings and leverage some speci�c
results from Ptolemy II.

Actor-Oriented Design. In actor-oriented modeling, components are called
actors and can communicate and execute with other actors in a model, where
a model is the composition of one or more actors. Hewitt �rst introduced the
term actor to describe the concept of autonomous reasoning agents [1], and later
Agha re�ned the term to describe a formalized model of concurrency [2,3,4].
The Ptolemy Project has further re�ned the term to embody more models of
concurrency and support actors that do not necessarily have their own thread
of control [5,6].

All actors have an external component interface that abstracts its internal
state and behavior. An actors interface is de�ned by its port/parameter speci�ca-
tion, where ports represent points of communication for an actor and parameters
a�ect the behavior of an actor. Parameter values can be static or dynamic during
execution of a model.



Connections between ports are called channels, and actors communicate over
channels via some method of messaging. Thus, actors do not interact directly
with other actors, only through channels. This di�ers from object-oriented de-
sign, where components communicate through method calls.

A model can also have an external interface, which represents a hierarchical
notion of abstraction. A model's interface also consists of ports and parameters,
which can be connected by channels to other ports of the model or to the ports
of the model's internal actors. Similarly, a model's parameters can be used to
determine the parameter values of its internal actors.

Model of Computation. The concepts above describe the abstract syntax
of actor-oriented modeling. However, the semantics are governed by its model of
computation (MoC).

An MoC de�nes the semantics of inter-component communications and the
runtime execution semantics of a model. One might think of a model of compu-
tation as the rules governing component interaction and execution. These rules
govern when and how a component invokes its internal computation, updates its
state, and communicates through its ports.

There are many well know models of computation, too many to enumerate
here. One key result coming from The Ptolemy Project is its comprehensive
study of concurrent MoCs, and Ptolemy II provides open source, Java imple-
mentations for a full list of MoCs [7]. The initial RISE prototype leverages MoC
implementations from Ptolemy II (see Sect. 4.3).

2.2 RISE Terminology

We mostly adopt the actor-oriented terminology described in Sect. 2.1, with a
few extensions and di�erences. We de�ne two general types of actors: atomic
and composite. Atomic actors represent the most primitive of actors and are
typically implemented in a high-level programming language, such as Java. In
contrast, composite actors are hierarchical actors that are constructed by graph-
ically connecting atomic actors and other composite actors. We reserve the term
model to represent a composite actor that is a deployable application, and we
use connection instead of channel.

Additionally, an atomic actor can be behavior-polymorphic, which we de�ne
as an atomic actor that has a generic external interface (i.e., ports and param-
eters), but de�nes an abstract interface for its internal implementation. Thus,
behavior-polymorphic actors can have multiple concrete internal implementa-
tions. We use behavior-polymorphic actors to model actors that have similar
attributes, such as a device adapter for a particular family of devices. Behavior-
polymorphism complements the notions of data- and domain-polymorphism
found in Ptolemy II [8,9,10].



3 Architecture

The RISE software architecture is comprised of three platforms: RISE Develop-
ment Platform (RDP), RISE Runtime Platform (RRP), and RISE Library Server
Platform (RLP). RDP provides the tooling for developers to build, deploy, and
manage RISE-based solutions. RRP provides the software that supports execu-
tion of RISE-based solutions. While, RLP provides the means by which RISE
runtimes can dynamically discover the actors that comprise a solution.

3.1 Development Platform

Fig. 1 illustrates the software architecture for RDP. The underlying computing
framework for RDP is a Java virtual machine (JVM) running on a hardware
device (e.g., Java 2 Standard Edition on a personal computer). The middleware
layer provides the software that serves as the building blocks for the tooling and
the artifacts created by the tooling. The tools layer provides all the functions
that comprise the integrated development environment (IDE).

Middleware


Tools
 Integrated Development Environment


Composition

Editor


Library

Builder


Wizards

Component


Manager

Views &


Perspectives

Execution

Manger


Computing

Framework


Compositional Building Blocks


EMF
 GEF
 PDE


Functional Building Blocks


Device

Drivers


Communications

Event


Correlation


Platform Software


Java Virtual Machine


Eclipse Technologies


Fig. 1. RDP contains three layers: computing framework, middleware, and tooling

Integrated Development Environment. RDP's IDE provides a graphical
user interface for a user to construct actors, models, and libraries. The tools
that comprise the IDE are a composition editor, a component manager, a library
builder, and a model execution manager. The composition editor presents a user
with a canvas to edit an actors structural elements and to drag-n-drop actors
from the component manager to the model diagram.

The component manager maintains the persistent storage of reusable compo-
nents available from the local environment. The library builder is a utility that
packages one or more actors or models into a deployable library and installs the
library to an appropriate library server. The execution manager is a utility that



provides the user interface and protocol to load models in the runtime, retrieve
a model from the runtime, and display execution events. The IDE also supports
a number of wizards, views, and perspectives to provide an intuitive design �ow.
One important view of the IDE is the library view, which provides four di�erent
means to access reusable actors (see Sect. 4.4).

Compositional Building Blocks. Eclipse technologies provide the composi-
tional building blocks of RDP's IDE (see Sect. 4.2).

Functional Building Blocks. The devices that produce the event and data
streams for a solution and comprise a solutions apparatus are central to most
event-driven applications. Thus, the device adapters that provide the application-
level software interface to devices are an important category. RDP supports
building device adapters on top of manufacturer-speci�c device drivers or using
generic device drivers (e.g., serial port). In addition, RDP provides the frame-
work for porting other device adapters to the RISE device adapter abstraction
via Eclipse plug-in technology.

Distributed communications where one instance of a solution might need
to communicate to other remote entities, such as an enterprise server, is an-
other important category. Using polymorphic components, RDP provides the
framework for developing reusable communications components that can sup-
port di�erent implementations of well know communications paradigms, such as
HTTP client/servlet, publish/subscribe, and UDP/TCP.

Event correlation is the general terminology given to middleware technology
that can identify patterns in one or more data sources, de�ne events as the
occurrence of one or more patterns, and then use the detected events to trigger
some action. A user usually con�gures the patterns and events through a set of
rules, which are speci�ed by a rule language and executed by a correlation engine.
RDP provides the framework for developing solutions with event correlation
components.

3.2 Runtime Platform

Fig. 2 illustrates the software architecture for RRP, which contains two layers:
computing framework and runtime. The underlying computing framework for
RRP is the Open Services Gateway Initiative (OSGi) Service Platform Release
3 speci�cation [11]. The runtime layer provides the runtime libraries and the
runtime execution services.

OSGi Service Platform Release 3. OSGi de�nes a framework on which
multiple applications can run on a single JVM. Using the OSGi framework, ap-
plication developers partition applications into services, and then package these
services into application bundles. Bundles can register services with the frame-
work that other bundles can use; thereby, facilitating the sharing of services at



Runtime


Computing

Framework


Runtime Libraries
 Runtime Execution


Platform Software


Java Virtual Machine

OSGi Service Platform Release 3


Library K
Library 1
 ...
 Execution

Engine


Factory

Boostrapping


Agent

Monitor

Agent


Fig. 2. The primary services of RRP are the bootstrapping agent, the factory, the
execution engine, and the monitor agent. These services provide loading and unloading
of a model, instantiation of the actors, execution of a model, and execution monitoring

the package level. In RISE, we package all RISE-speci�c technologies into OSGi
bundles, including the RISE runtime libraries and runtime execution services.

Runtime Libraries. A RISE runtime library is an OSGi bundle that contains
the class de�nitions for one or more RISE actors and/or models. Because RISE
libraries are OSGi bundles, they derive all the bene�ts provided by the frame-
work, including dynamic installation, automatic resolution of dependencies, and
import/export of services and packages. These bene�ts provide a convenient
means for supporting a dynamic, distributed method for resolving the compo-
sition of model during runtime. In particular, the child actors of a model need
not be loaded from the same library, nor do all the libraries have to reside on
the same library server.

Runtime Execution. The execution engine specializes a model to a partic-
ular MoC. The engine also supports execution of models with a heterogeneous
mixture of MoCs, which is a concept we borrow from the Ptolemy Project. For
our application domain, we exploit this concept primarily by augmented discrete
event or data �ow semantics with control �ow.

The bootstrapping agent loads a model into the execution engine, passing
along any necessary parameters. The bootstrapping agent provides a server in-
terface for clients to connect to it. Clients can load fully executable models or
load by reference. In the latter case, the composition of a model must be re-
solved and its child actors instantiated. For this purpose, the agent defers to the
factory.

The factory services the bootstrapping agents requests to instantiate a RISE
model, and it maintains inventory of all RISE actors available to the runtime.
A RISE library contributes its actors to the factory through a factory contrib-
utor interface. The RISE factory exports its factory contributor interface via
normal OSGi protocol. This function allows the runtime to add new libraries
dynamically, thereby facilitating remote deployment and service discovery.

The monitor agent is the runtime service that allows clients, such as an RDP,
to monitor execution �ow of an RRP. This agent is primarily used for debugging
during development.



3.3 Library Server Platform

The software architecture for RLP contains two layers: computing framework
and library server. The underlying computing framework for RLP is also OSGi.
The library server layer provides a reusable library repository, a library manager,
and a deployment protocol, which interacts with the bootstrap agent in RRP
for deploying libraries on demand.

The library manager supervises the storage and deployment of libraries in a
heterogeneous network of devices. Through a deployment protocol, the library
server delivers a library to an RRP in response to a request coming from the
factory in an RRP. The library manager also provides an interface that allows an
RDP to present a library browser view. Additionally, RLP provides the means
of binding a generic polymorphic actor with its concrete implementation.

4 Implementation

4.1 OSGi Implementation

For our particular implementation of OSGi, we use Service Management Frame-
work (SMF) 3.7, which comes withWebSphere Studio Device Developer (WSDD)
5.7.1. WSDD is built on Eclipse 2.11 technology. SMF facilitates deployment and
it provides a standardized framework for RRP and RLP.

4.2 RDP Implementation

RDP is implemented on top of WSDD in the form of Eclipse plug-ins. The
persistent state of all actors and models constructed using RDP is captured by
the data model, which was designed using Eclipse Modeling Framework (EMF).
Solutions created with the composition editor are persisted in XMI format, which
is converted to Java code using a code generator. The generated Java code utilizes
base classes de�ned in the runtime package.

The GUI for the IDE is built using Graphical Editor Framework (GEF),
which provides the visual layout of all the graphical objects displayed in a model
diagram.

A library view plug-in provides four di�erent means to access reusable actors.
First, there is a workspace folder containing all the RISE libraries under devel-
opment in the current workspace. Second, there is a list of all available library
servers, each of which contains a list of libraries of reusable actors. Third, there is
a base library folder, which contains libraries of some pre-packaged actors avail-
able to the local environment. Lastly, there is an anonymous folder that lists
the contained component classes of the composite actor currently being edited
by the developer. This plug-in interacts with the component manager and any
number of library servers.

A set of resource management plug-ins provide the wizards for creating RISE
projects and libraries. A set of runtime management plug-ins provide the execu-
tion manager functionality. Additionally, RDP provides a local RRP and RLP,
which enable rapid testing of solutions.



4.3 RRP Implementation

We implement the RISE runtime execution services as SMF bundles, and we
deploy them on an SMF runtime. To date, we have tested RRP on a windows
platform and on an embedded Linux platform (Arcom Viper R©). For the embed-
ded RRP, SMF runs on J9.

Our execution engine leverages the Discrete Event, Finite State Machine, and
Synchronous Data Flow implementations from Ptolemy II. Since RISE execution
services are SMF bundles, they also bene�t from dynamic updates. As new
services become available, for example a new MoC, RRP can discover the service
and update the execution engine upon loading a model that uses the new MoC.

4.4 RLP Implementation

We implement the RISE deployable libraries as SMF bundles and install them
in an SMF bundle server, using the tools provided by RDP. Currently, the RISE
actor libraries include implementations of components relevant to the RFID
application domain. We have implementations of various device adapters (e.g.,
motion sensors, RFID readers, and LED actuators), communications protocols
(e.g., HTTP and publish/subscribe messaging), custom controllers and agents,
and basic logic actors. For event correlation, we have an implementation for
Application Level Event (ALE).

5 RFID Dock Door Receiving Use Case

The dock door receiving use case is an RFID application of supply chain man-
agement. In this section, we describe our experience in building a RISE solution
to support this use case.

Referring to Fig. 3, while goods are being physically moved through the dock
door, the RFID reader will read the goods' pallet and case RFID tags. The tag
data is sent to the store's backend system, which will then check the data against
the database to determine if the tags just read should be accepted or rejected.
The accept/reject status is reported back to a controller at the dock door, then
the controller's logic triggers a status indication on the light stack.

Fig. 4 illustrates what might be the initial step of building the solution,
testing the RFID reader. The model was constructed via drag-n-drop from the
library server view. The reader as a polling device whose poling frequency is
optionally driven by an external clock. During the duty cycle of the polling
period, the reader activates its antennas and starts reading tags in its �eld-of-
view. Since an RFID reader can detect multiple tags in one read, the reader
device packages multiple reads in the form of a map. Thus, a transform actor is
needed to split the map into its individual RFID tag data objects. The output
of the map splitter is simply sent to a tag logger, which writes the RFID tag ID
to a stream.

Fig. 5 illustrates the ease with which a developer can modify an existing
solution. Since the RFID reader adapter is designed to report any tag that it



Fig. 3. The demo apparatus contains a delivery vehicle (1), a warehouse dock door
(2), a ranging sensor (3), an embedded controller (4), an RFID reader (5), and a light
stack (6)

Fig. 4. Snapshot of the editing canvas illustrating an example model for testing an
RFID reader

detects during a poll, redundant RFID tag reads are often observed. Thus, we
can improve our model with a temporal �lter to eliminate duplicate tag reads.

Fig. 5. RISE model for eliminating duplicate reads from RFID reader

Fig. 6 shows the complete RISE model that implements the dock door receiv-
ing use case, which is an extension of the previous examples. Major additions
include a sonar range sensor, a tracking agent, a light adapter, and tag valida-
tion. Like the reader, the sonar device is a polling device whose period is driven
by a clock. The sonar device's output is processed by the tracking agent, which
determines whether an object is in proximity to the dock door. The tag vali-
dation component communicates to the backend system and controls the light
stack.

While some base knowledge of RFID systems is required for constructing
useful scenarios, this example illustrates how changing the behavior of an existing
solution is quite simple.



Fig. 6. Complete RISE model for the example dock door receiving use case

6 Future Work

This paper represents results from the �rst phase of the RISE project. The
prototype developed provides a platform for us to evaluate the methodology.
We plan to conduct user studies involving naïve users and practitioners. We are
also addressing scale and management issues by adding capability to support
solutions involving multiple, distributed computing nodes.

References

1. C. Hewitt, Viewing Control Structures as Patterns of Passing Messages, Jour. of
Art. Intel., 8(3):323363, June 1977.

2. G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, MA, 1986.

3. G. Agha, Abstracting Interaction Patterns: A Programming Paradigm for Open
Distributed Systems, in Formal Methods for Open Object-based Distributed Sys-
tems, IFIP Trans., E. Najm and J.-B. Stefani, Eds., Chapman & Hall, 1997.

4. G. Agha, Concurrent Object-Oriented Programming, Comm. of the ACM,
33(9):125140, Sept. 1990.

5. E. A. Lee and S. Neuendor�er, Concurrent Models of Computation for Embedded
Software, IEE Proc. Comp. and Dig. Tech., 2005.

6. Edward A. Lee, Computing for Embedded Systems, IEEE Instr. and Meas. Tech.
Conf., Budapest, Hungary, May 21-23, 2001.

7. E. A. Lee, et al, Volume 3: Ptolemy II Domains, http://ptolemy.eecs.berkeley.edu,
UC Berkeley, 2005.

8. L. de Alfaro and T. A. Henzinger, Interface Theories for Component-Based Design,
Proc. of EMSOFT 2001, Tahoe City, CA, LNCS 2211, Springer-Verlag, Oct 2001.

9. E. A. Lee and Y. Xiong, A Behavioral Type System and Its Application in Ptolemy
II, Formal Aspects of Computing Journal, special issue on Semantic Foundations
of Engineering Design Languages, Volume 16, Number 3, August 2004.

10. R. Milner, A Theory of Type Polymorphism in Programming, Jour. of Comp. and
Sys. Sci., 17, pp. 375-384, 1978.

11. OSGi Alliance, OSGi Service Platform, Release 3 Speci�cation,
http://www.osgi.org, March 27, 2003.


