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Abstract. Fingerprinting schemes use digital watermarks to determine 
originators of unauthorized/pirated copies. Multiple users may collude and 
collectively escape identification by creating an average or median of their 
individually watermarked copies. Previous fingerprint code design including 
ACC (anti-collusion code) cannot support large number of users, which is a 
common situation in ubiquitous contents distribution environment. We propose 
a practical scalability solution, which extends previous ACC codebook 
generation scheme. We design a scalable ACC scheme using a Gaussian 
distributed random variable to increase the robustness over average and median 
attack. We implemented our scheme using human visual system based 
watermarking scheme, and the fingerprinted copy of standard test images show 
good perceptual quality. The result shows good collusion detection performance 
over average and median collusion attacks for large scale user population. 
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1   Introduction 

A digital watermark or watermark is an invisible mark inserted in digital media, and 
fingerprinting uses digital watermark to determine originators of unauthorized/pirated 
copies. Multiple users may collude and collectively escape identification by creating 
an average or median of their individually watermarked copies. An early work on 
designing collusion-resistant binary fingerprint codes for generic data was based on 
marking assumption, which states that undetectable marks cannot be arbitrarily 
changed without rendering the object useless. However, multimedia data have very 
different characteristics from generic data, and we can embed different marks or 
fingerprints in overall images, which biased strict marking assumption. Recently, an 
improvement was to merge the low level code (primitive code) with the direct 
sequence spread spectrum embedding for multimedia and extend the marking 
assumption to allow for random jamming [1]. Min Wu presented the design of 
collusion-resistant fingerprints using code modulation. They proposed a (k-1) 
collusion-resistant fingerprints scheme, and the (k-1) resilient ACC is derived from 
(v, k, 1) balanced incomplete block design (BIBD) [2]. The resulting (k-1) resilient 
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ACC code vectors are v-dimensional, and can represent n = (v2 -v) / (k2 -k) users with 
these v basis vectors. 

We present a scalable ACC fingerprinting design scheme, which extends ACC for 
large number of user support. Simply replicating ACC codebook does not work, 
because there are ambiguous cases for determining who colluders are. We extend the 
ACC (anti-collusion code) scheme using a Gaussian distributed random variable for 
medium attack robustness. We evaluate our scheme with standard test images, and 
show good collusion detection performance over two powerful attacks: average and 
median collusion attacks. 

2.   Related Works 

An early work on designing collusion-resistant binary fingerprint codes was presented 
by Boneh and Shaw in 1995 [3], which primarily considered the problem of 
fingerprinting generic data that satisfy an underlying principle referred to as the 
marking assumption. The marking assumption states that undetectable marks cannot 
be arbitrarily changed without rendering the object useless; however, it is considered 
possible for the colluding set to change a detectable mark to any state (collusion 
framework). Under the collusion framework, Boneh and Shaw show that it is not 
possible to design totally c-secure codes, which are fingerprint codes that are capable 
of tracing at least one colluder out of a coalition of at most c colluders. Instead, they 
used hierarchical design and randomization techniques to construct c-secure codes 
that are able to capture one colluder out of a coalition of up to c colluders with high 
probability.  

Fingerprint codes (e.g. c-secure codes) for generic data was intended for objects 
that satisfy the marking assumption, multimedia data have very different 
characteristics from generic data, and a few fundamental aspects of the marking 
assumption may not always hold when fingerprinting multimedia data. For example, 
different marks or fingerprints can be embedded in overall images through spread 
spectrum techniques, thereby it makes impossible for attackers to manipulate 
individual marks at will. As shown in Equation (1), Min Wu presented the design of 
collusion-resistant fingerprints using code modulation [2]. The fingerprint signal wj 
for the j-th user is constructed using a linear combination of a total of v orthogonal 
basis signals {ui}, multiplied by the coefficients {bij}, representing the fingerprint 
codes from {±1}. 
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An anti-collusion code (ACC) is a family of code vectors for which the bits shared 

between code vectors uniquely identifies groups of colluding users. ACC codes have 
the property that the composition of any subset of K or fewer code vectors is unique. 
This property allows for the identification of up to K colluders. It has been shown that 
binary-valued ACC can be constructed using balanced incomplete block design 



(BIBD) [4]. The definition of (v, k, λ) BIBD code is a set of k-element subsets 
(blocks) of a v-element set χ , such that each pair of elements of χ  occur together 
in exactly λ blocks. The (v, k, λ) BIBD has a total of n = (v2 -v)/(k2 -k) blocks, and we 
can represent (v, k, λ) BIBD code using an v x n incidence matrix M, where M(i, j) is 
set to 1 when the i-th element belongs to the j-th block, and set to 0 otherwise. The 
corresponding (k − 1)-resilient ACC code vectors are assigned as the bit complements 
(finally represented using -1 and 1 for the 0 and 1, respectively) of the columns of the 
incidence matrix of a (v, k, 1) BIBD. The resulting (k-1) resilient ACC code vectors 
are v-dimensional, and can represent n = (v2 -v) / (k2 -k) users with these v basis 
vectors. 

3.   Scalable and Robust Fingerprint Scheme 

Min Wu’s fingerprinting scheme cannot easily extend to support large number of 
users because it is based on (v, k, λ) BIBD code design. Because we should have 
more overhead for bigger BIBD code, we designed a scalable fingerprint scheme, 
which can make large number of fingerprints from small BIBD code.  

3.1 Codebook Design 

In our scheme, we construct each user’s fingerprint as the composition of ACC ( ) 

and a Gaussian distributed random signal
iw

λ  as shown in Figure 1. The dimension of 
code vectors (M) can be increased to fit the size of fingerprinting users. 
 

 

λ  Fig. 1. Scalable fingerprint codebook, extending ACC base code with 

We can view our scheme as a two level spreading: direct sequence spreading and 
frequency hopping. We used same spreading (direct sequence spreading) as ACC and 



we spread the ACC over M image blocks (frequency hopp de ), thereby we can 
increase the number of fingerprint codes. This scheme has strong advantages that we 
ca

he fingerprint codes over M x R 
selected regions as shown in Figure 2. Fingerprinting regions (blocks) are chosen 

nction) [5]. Each user ’s fingerprint 

n control the number of fingerprint codes easily. 

3.2   Fingerprint Embedding and Detection 

Once we generated the code vectors, we embed t

based on the model of NVF (Noise Visibility Fu l
lf is constructed by repetition and permutation like Dan Boneh’s fingerprinting 

scheme. For example, 1w λλλ  (M = 4 case) is enlarged 2 (R = 2 case) times 

( 1 1w w λλλλλλ ) and shuffled ( 1 1w wλλλλλ λ ). The permutation sequence is 
que to all users, but unknown to attackers. Repetition and permutation prevent 

interleaving collusion a ( )
uni

ttack. lf i  is inserted signal into i-th block, each ( )lf i can 

be ACC or λ signal, and is embedd elected image blocks (there are R 
ACC signals and (M-1)× R 

ed in the M×R s
λ signals. 

 

 

Fig. 2. Scalable fingerprint embedding / extraction of fingerprint lf  for user

To embed ACC ( ) signal in a specified bloc , we use the following Equation 
over R image 

blocks. All the ACC ( ) are the same, however, the resulting watermark will be 

di  

j
NVF

 l

iw k iy
(2). To increase the fingerprint robustness, we inserted ACC signal 

iw
fferent, depending on 1 NVF− , which considers the local HVS masking 

characteristics [6]. 
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Likewise, λ signal embedding uses the following Equation (3). To un-correlate 
the λ signal, we use the random variable for λ signal, instead of simply choo g sin

σ  is used to increase median attack robustness. If we increaseσzero vectors. , we 
n increase the median attack robustness because there is little difference between ca

λ signals and i ; however, we can risk the decrease of detection precision. 
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We used non-blind scheme for fingerprint detection. To detect collusion, we used 

the collusion detection vector T, which can be computed using the same Equatio  
as Min Wu’s as follows [2]. 

n (4)
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Next, vectors are converted to binary values using predefined adap

resholds which are determined by the mean of 
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We experimented with the standard test images. Figure 3 shows test images and their 
he average PSNR is over 41 dB 

 

C , if the j-th code vector ( ic⋅ ) is equal to binary values, j-th user is 
suspected to be traitor. 

4.   Analysis and Experimental R sults 

enlarged fingerprints. After fingerprint embedding, t
with good subjective quality. 



  

  

  

  

Fig. 3. Fingerprinted images, and their fingerprints (Enlarged), the number of Marks (M) =10, 
Repetition factor (R) =16, Block size = 32x32: (top) Baboon (PSNR: 40.69 dB), (second) Lena 
(PSNR: 44.07 dB), (third) Boat (PSNR: 45.45 dB), (bottom) Barbara (PSNR: 42.72 dB) 

We tested our scalable fingerprinting code for various collusion attacks (average, 
median, min, max, min-max, modified negative, randomized negatives) for the test 
images. Average collusion is widely used collusion attack [8], because it is efficient to 
attack fingerprints, and also it makes better image quality after collusion (usually it 
increases 4-5 dB). Figure 4 shows a collusion example, when six colluders make 
pirated copies from their fingerprinted copies. Figure 4 shows original images, and 
the colluded (average, median collusion) copies. 
 



 
Original Image 

 
Attacked Image (Average)

PSNR: 51.74 dB 

 
Attacked Image (Median) 

PSNR: 50.67dB 

Fig. 4. Original, average, and median attacked images 

We used N (0, 16) for λ signal, and we chose  as 16.0 experimentally to 
tradeoff between median attack robustness and false positive error rate. We can 
compute the probability of false positive (there is no collusion, but the λ signal makes 
similar results as collusion occurs) error as Equation (5). If any marks are purely 
linear combination of 

2σ

λ , their t (the mean of ) will be zero. Using Equation (5), 

we can correctly differentiate linear combination of
it

λ  and others. We use the 
student’s T test for the mean of one normal sample [9]. For example, if 1w λλλ and 

3wλ λλ collude using average attack, we can extract signals 1( )w / 2λ+ , 

3( ) / 2wλ + ) / 2, (λ λ+ 2 and ( ) /λ λ+  at each mark, and we can distinguish 
mark 1,2 and mark 3,4 using Equation (5). 
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To increase both the detection precision and median attack robustness, we can 

increase the R in embedding step. If we use the average of signal over R blocks, we 
can correctly differentiate the linear combination of λ and others with high 
probability, because the variance of τ gets smaller ( ) than the variance of 
original signal ( ). Figure 5 and Figure 6 show the fingerprint detection result (T 
vectors) after average and median collusion attacks with detection threshold mean of 

 set. (Because as colluders are increase, the amplitude of  are decreased) We 
used the same detection procedure as average collusion attack, and show the same 
colluder identification. Median attack is a powerful attack; however, our approach 
shows good performance. Setting the significant level of  to 0.05, we will 
suspect the users in mark 1, 3, and 7. 
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Fig. 5. Detection result after average attack  
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Fig.6. Detection result after median attack 

Decoding mark 1, mark 3and mark 7, we can compute T vectors {0000 0000 0011 
1111}, {0111 1111 1100 0000}.and {1011 10111 110 1011}, as shown in Figure 5 
and Figure 6. Checking T vectors over (16, 4, 1) BIBD code matrix as shown in 



Figure 7, we can suspect {w1, w2, w3} in mark 1 {w4,w5} in mark 3 and {w7} in mark 
7 as colluders. Using codebook design rule, we can know that colluders are users with 
fingerprint code C = {w1λλλλλλλλλ, w2λλλλλλλλλ, w3λλλλλλλλλ, λλw4λλλλλλλ, 
λλw5λλλλλλλ, λλλλλλ w7λλλ} 
 

 
Fig. 7 Matching marks in (16, 4, 1)-BIBD code matrix for colluder detection 

We analyzed the average number of fingerprinted images to erase fingerprints 
(successful collusion). Figure 8 shows that colluders should have 40 fingerprinted 
images (or 40 colluding members) on average case, to erase the fingerprints for our 
scalable fingerprinting scheme with (16, 4, 1) BIBD and scalability m = 40. If we use 
the larger BIBID codes (e.g. (61, 5, 1) BIBD code), we can get much bigger collusion 
robustness. 
 

 

Fig.8. Number of marks (m) versus average number of colluder for successful collusion 

 



5. Conclusions 

In this paper, we presented a scalable ACC fingerprinting scheme, which covers large 
number of fingerprint codes. Previous fingerprint code design including ACC (anti-
collusion code) cannot support large number of users. We constructed the scalable 
fingerprint by spreading BIBD codes over M×R (M: number of marks; R: repetition 
factor) image blocks. To improve the detection performance, we repeated embedding 
the same fingerprints over R image blocks. To increase the robustness over average 
and median attack, we designed a scalable ACC scheme using a Gaussian distributed 
random variable. We evaluated our fingerprints on standard test images, and showed 
good collusion detection performance over average and median collusion attacks.  
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