
Grid Resource Management
based on Functional Dependency

Doan Thanh Tran, Eunmi Choi*

School of Business IT, Kookmin University
Jeongneung-dong, Seongbuk-gu, Seoul, 136-702, Korea

td_thanh@yahoo.com, emchoi@kookmin.ac.kr

Abstract. In this paper, we propose a resource management system in Grid
computing in order to specify system Quality of Service (QoS) requirements for
dynamic and complex emerging applications. Our approach is based on the
functional dependency among application components to specify the probabil-
ity of system QoS requirements for the emerging application. Experimental re-
sults show that our application scheduling based on functional dependencies
can achieve scheduling and managing emerging applications to satisfy a cli-
ent’s quality of service in Grid computing. The results also show significant
improvement of performance comparing to cluster distribution and random dis-
tribution scheduling approaches.

1 Introduction

Large-scale grids are complex systems composed of thousands of components from
disjoined domains. Planning the capacity to guarantee quality of service (QoS) in
such environments is a challenge because global service-level agreements (SLAs)
depend on local SLAs. Thus, resource management is the major concern in Grid. The
resource management system (RMS) is central to the operation of a Grid. Resources
are the entities such as processors and storage that are managed by the RMS. The set
of services provided by a RMS varies depending on the intended purpose of the Grid.
The resource management system should predict the impact of applications’ requests
on the overall resource pool and quality of service guarantees.

Condor [1] is the typical one, not using the prediction method but using the policy
rules for matching between requestors and providers. In the prediction and heuristic
approach, PBS (Portable Batch System) [2] and LSF (Load Sharing Facility) [3] are
two typical schedulers and both are supports batch jobs scheduling. Batch reschedul-
ing allows potentially more effective utilization of the Grid resources since more
requests can be considered at one time.

* Corresponding author: Eunmi Choi (emchoi@kookmin.ac.kr). This work was supported by

the Korea Science and Engineering Foundation (KOSEF) under Grant No. R04-2003-000-
10213-0. This work was also supported by the Brain Korea 21 project in 2006.

mailto:emchoi@kookmin.ac.kr

This paper proposes a resource management system with the online application
modeling approach for Grid Resource Management. The application components are
modeled with resource requirement and functional dependency. The resource re-
quirement considers CPU utilization, network load, and storage allocation. The func-
tional dependency is applied to composite web services. The approach to extract
dependency structures among application service in this paper is pragmatic and based
on a static dependency analysis that yields information on entities within a system.
The analysis shows that dependency information is stored in built-in repository of all
standard operating systems. Based on the application model, we propose a complete
architecture for application service management. This architecture supports resource
management and scheduling for composite web services or emerging complex appli-
cations, which include many functional dependency components. Through this sys-
tem, we can achieve scheduling and managing applications to optimize resource utili-
zation while satisfying client's quality of service in Grid computing.

The rest of the paper is organized as follows. We first show the shortcoming of
current approaches in Grid Resource Management and propose a new method of
application modeling based on functional dependencies in Section 2. In Section 3, we
describe the architecture for application service management and scheduling based on
the functional dependencies. Finally, we present experimental results of our schedul-
ing approach in Section 4, and conclude this paper in Section 5.

2 Application Modeling Based on Functional Dependency

Normally, resource management applied in Grid computing is used for single applica-
tion. Compared to the old method of resource management is not applicable in com-
plicated applications, our approach focuses on solving the resource management for
dynamic and complex emerging applications.

In this approach, as well as the resource requirements of application components,
we consider the online characterization of dependencies. Applying these two re-
quirements to individual application, we create an Online Model Instance for each of
application components and, based on this, we estimate the system QoS requirements.

The application model for application services includes: R, which is the set of Sys-
tem QoS requirement per application service, and D, which is Functional dependency
structure among application services. We have the application model with the two
vectors be presented as the following expression: ()RDFQoSModel ,=

For R vector, we use Resource Specification Language provided in Globus Tool-
kits 4.0 [5] as the standard structure to describe the Grid resources and job requests.
For D vector, we adopt the functional dependency of application services that pre-
sented in [4]. In [4], the authors consider the fact that majority of application services
run on UNIX and Windows NT based systems and it is worth of analyzing the degree
to which information regarding application services is already contained in the oper-
ating system. The system administrators successfully deploy application services
without having to access to detailed and application-specific management instrumen-
tation because they have this information. We called this information the application
service dependencies.

3 The Architecture for Application Service Management

Our objective is to create an automated solution of resource management for resource
utilization increased while guaranteeing service level agreement to end users. In this
section, we describe the architecture for application service management, the execu-
tion flow, and the details of admission control and resource assignment.

The architecture for application service management is shown in Figure 1. As a re-
sult of the static analysis during application installation and provisioning, each appli-
cation service offering has associated with a list of resources that provide the basis of
that service. This data is kept in dependency repository and maintained by the appli-
cation dependency analysis process discussed in previous section and depicted in
upper part of Figure 1.

Application component dependency analysis

Dependency
Data

Analysis processApplication
componentApplication

componentApplication
component

Application
profile manager

Application
request
Application

request
Application

request
Application model

generator

Resource
directoryResource

Monitor

Grid Node

Application
Service

Application
service

Application
Service

Resource
MonitorResource

Monitor

Query relevant system

Register application profile

Query dependencies

Resource broker

Provide application model

Figure 1. The Architecture for Application Service Management

In the architecture, we have four major components:
• Application profile manager is in charge of choosing application requests from

end users and submitting it to Application model generator.
• Application model generator receives application profile from Application

profile manager and query dependency structure from Dependency repository
to generate the application model ()RDF , . Then it submits the application
model to Resource broker.

• Resource broker receives an application model from Application model gen-
erator, extracts separate application service component ai from R, and finds
suitable grid nodes to process it from Resource directory. After choosing best-
fit grid node for the application service component, Resource broker registers
it to Resource monitor of that grid node. The application service components
are consequently processed by Resource broker depending on the dependency
structure D.

• Resource monitor is in charge of executing an application service components
registered by Resource broker and retrieving resource utilization information
to update to Resource directory.

3.1 Admission Control

The Resource broker performs the admission control for each application service
component ai with resource requirement { } Rllsnc

iasn ∈,,,, in the request where c

is CPU utilization requirement, n is network utilization requirement, s is storage utili-
zation requirement, ln is network access latency, and ls is storage access latency.

Supposed that at each grid resource node we have Tc, Uc, Tn, Un, Ts, Us which are
the total capacity (T) and the utilized capacity (U) of CPU, network bandwidth, and
storage. PC, PN, PS are the weight parameters to reserve the resources for unexpected
workload of CPU utilization, network utilization, and storage utilization respectively.

. Because we cannot assign the full resource capacity for a well-fit
job request, these parameters will help ensuring the system work properly.

1,,0 ≤≤ SNC PPP

The admission checking for each grid resource node that has all required resources
will be as follow:

• , the CPU requirement of a()
iaccc cUTP ≥−× i must be less or equal to the

available CPU capacity (Tc – Uc) of the grid resource node.
• , the network requirement of a()

iannn nUTP ≥−× i must be less or equal to

the available network capacity (Tn – Un) of the grid resource node.
• ()

iasss sUTP ≥−× , the storage requirement of ai must be less or equal to

the available storage capacity (Ts – Us) of the grid resource node.
•

inan ll ≤ , the network latency requirement of ai must be greater than the

network latency of the grid resource node.
•

isas ll ≤ , the storage latency requirement of ai must be greater than the

storage latency of the grid resource node.

3.2 Resource Assignment

Resource assignment is optimized for minimizing wait-time and maximizing utiliza-
tion of servers. Considering utilization of a server, we need to measure the utilization
of CPU, network capacity, and storage capacity. The differences of priority of these
resources depend on the application services, the environment, and the policy of the
system. Therefore, we try to give a general metric to consider all the resources’ utili-
zation as follow
• Fitting metric for each grid node that passes admission checking

Supposed that at each grid resource node we have Tc, Uc, Tn, Un, Ts, Us , which are
the total capacity and the utilized capacity of CPU, network bandwidth, and storage.
The terms ca, na, sa are the CPU, network, and storage requirement of application a.
We have the available capacities of this node: Tc-Uc, Tn-Un, Ts-Us. Therefore the utili-
zation rates of CPU, network, and storage of application a on the remaining capacities

are ,,
nn

a

cc

a

UT
n

UT
c

−−
and

ss

a

UT
s
−

where 1,, ≤
−−− ss

a

nn

a

cc

a

UT
s

UT
n

UT
c

. The

simple metric is the sum of these utilization rates. However, in many real cases, the
priorities of requirements are various. Depending on these priorities, we can set the
weights for each utilization rate. For that reason, we choose the fitting metric for an
application a as follow:

1≤
−

×+
−

×+
−

×=
ss

a
f

nn

a
f

cc

a
ffit UT

sWs
UT

nWn
UT

cWcM

where 1≤++ fff WsWnWc , and Wcf, Wnf, and Wsf are weight of CPU, net-

work, and storage. These weights are chosen to optimize wait-time and utilization of
servers. Depending on different type of grid resources and application request, we can
choose the suitable weights. For example, for the computational grid, the CPU opti-
mization is the most significant. Therefore, we can set the value of Wcf high for this
type of Grid. For the grid requires heavy network communication, we can set the Wnf
high.
• Best fit criterion: Supposed that we have n nodes to pass the admission check,

the chosen Grid resource node is the node that satisfy the following expression:

ifit

n

ifit MM
1

max
=

=

The idea of this metric is a simple greedy algorithm. The key point is that with
weights of requirements, we can optimize the utilization of the system by choosing
suitable weights depending on the system and the application types.

4 Experiment Results and Evaluation

In this section, we evaluate the performance of our application allocation approach
against cluster allocation approach and random allocation approach. The GridSim
simulator [5] is used in our study. For evaluating the system, we consider three crite-
ria: the system throughput, the Grid node utilization, and the job’s waiting time.

Table 1. The QoS Model of the Standard Application Requests

Request Type CPU Utilization Network
bandwidth

Storage Duration in wall
clock time

Heavy composite web
service request

15% Guarantee on a 3Ghz
machine

15Mbps 15MB 6 hours

Light composite web
service request

10% Guarantee on a 3Ghz
machine

10Mbps 10MB 1 hour

Heavy batch job
request

Minimum threshold of 35%
on a 3Ghz machine

0Mbps 300MB 4 hours

Light batch job request Minimum threshold of 5% on
a 3Ghz machine

0Mbps 100MB 3 hours

The major application requests we used in the simulation are composite web ser-
vice requests. In some test cases, we choose mixed workload of batch and composite
web services in accordance with realistic workload cases. We consider two scenarios
in the realistic workload cases: day time experiment and night time experiment.

During day time, the workload of a batch job request is light. Only small number
of jobs is submitted. The workload of a composite web service request is heavy dur-
ing day time, so a large number of composite web services are submitted. The arrival
rate of these requests has Poisson distribution. During night time, the workload of a
batch job request is heavy. They are submitted in large number. In contrast, the work-
load of a composite web service request is light. There are very few requests submit-
ted.

For the composite web service request, we assume that the relations are hand-
drafted and auto-provided to the Application model generator. We have two types of
Composite Web service request structures for two different light and heavy composite
web service requests. Table 1 shows the QoS model for the standard application re-
quests in experiment. For the diversity of our request, we apply normal distribution
with the random variation of 0-20% of the standard requirements.

All simulation scenarios run in the system which composes 100 Grid resource
nodes. Each node has the resource capabilities as follows: Intel Pentium 4
(D850EMVR, 3.06GHz, Hyperthreading Technology Enabled), Operating system
Windows 2003 Sever, SPEC/MIPS rating: 1099, Network share: 100Mbps, Storage
share: 700MB, Resource manager type: Time-shared. To ensure that the system runs
properly, we set the limitation of utilization of each type of resources at 90% of the
resource capability. The 10% resource capability is reserved for overhead.

4.1 Composite Web Service Request Simulation

In this type of experiment, we generate only composite web service requests. We
compare the request processing with and without using functional dependency. The
purpose of this experiment is to compare the performance of our approach of com-
partmentalizing the composite web service request into a set of sub application ser-
vices with the performance of cluster allocation and random allocation approaches.

0

0.5

1

1.5

2

2.5

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

number of jobs arrived for 6 hours

Th
ro

ug
hp

ut
 (j

ob
/m

in
s)

Our Allocation
Cluster Allocation
Random Allocation

Figure 2. Throughput Results of Our Allocation, Cluster Allocation, and Random Allocation

The input data is heavy request type only and the requirements vary using normal
distribution with the variation of 0-20% of those of the standard request described in
Table 1. The depth of dependency request is two or three. The requests are sent for
six hours from the beginning of the experiment and using Poisson distribution to
distribute the arrival rate of the requests to the Grid system. The number of requests
ranges from 100 to 2000. The collecting information is throughput, max waiting time,
average waiting time, and resource utilization.

0

200

400

600

800

1000

1200
10

0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Number of jobs arrived for 6
hours

Ti
m

e
(m

in
ut

es
)

Our Allocation's Max
Waiting Time
Cluster Allocation's
Max Waiting Time
Random Allocation's
Max Waiting Time
Our Allocation's
Average Waiting Time
Cluster Allocation's
Average Waiting Time
Random Allocation's
Average Waiting Time

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

100
300

500
700

900
1100

1300
1500

1700
1900

Number of jobs arrived for 6 hours

Ut
ili

za
tio

n
Va

ria
nc

e
am

on
g

gr
id

no

de
s

(%
)

Our Allocation's
Utilization Variance
Cluster Allocation's
Utilization Variance
Random Allocation's
Utilization Variance

Figure 3. Waiting Time Results of Our
Allocation, Cluster Allocation, and Ran-
dom Allocation

Figure 4. Grid Nodes’ Utilization Vari-
ance Results of Our Allocation, Cluster
Allocation, and Random Allocation.

With our allocation, we use the functional dependency to distribute the application

components whenever they are ready to be executed. For the cluster allocation, we do
not consider the application components and their dependency. Therefore, we assign
one request in only one Grid node. For the random allocation, we separate the appli-
cation request into a component level and randomly distribute it to any suitable nodes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 84 16
7

25
0

33
3

41
6

49
9

58
2

66
5

74
8

83
1

CPUMean Netw orkMean

StorageMean UtilizationMean

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 66 13
1

19
6

26
1

32
6

39
1

45
6

52
1

58
6

65
1

71
6

CPUMean NetworkMean
StorageMean UtilizationMean

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 62 12
3

18
4

24
5

30
6

36
7

42
8

48
9

55
0

61
1

CPUMean Netw orkMean

StorageMean UtilizationMean
(a)

Figure 5. Mean Values of Resource Reservation of Our Allocation (a); Cluster Allocation (b);
and Random Allocation (c)

The results (showed in Figures 2, 3, and 4) show that our solution always has the
best throughput in most of test cases. The waiting time of our allocation is also the
best result. The utilization variance of our allocation is better, compared to the cluster
allocation. Due to the busy waiting, the random allocation yields the lowest utilization
variance, but the throughput and waiting time are the worst. These results have
proved that our system gains better performance when applying functional depend-
ency. Therefore, we choose the case in which the number of generated requests in 6
hours is about 1000 requests to compare the utilization of the system. Figure 5 shows
the utilization of the system in the three approaches.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 66 13
1

19
6

26
1

32
6

39
1

45
6

52
1

58
6

65
1

RealCPU RealNetw ork

RealStorage RealUtilization

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 69 13
7

20
5

27
3

34
1

40
9

47
7

54
5

61
3

68
1

RealCPU RealNetw ork

RealStorage RealUtilization
(b)

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

1 85 16
9

25
3

33
7

42
1

50
5

58
9

67
3

75
7

84
1

RealCPU RealNetw ork

RealStorage RealUtilization
(c)

Figure 6. Mean Values of Real Utilization of Our Allocation (a); Cluster Allocation (b); and
Random Allocation (c)

Our Allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91

Grid node ID

U
til

iz
at

io
n

(a)

C lu s te r Allo ca tio n

0

0.1

0 .2

0 .3

0 .4

0 .5

0 .6

1 11 21 31 41 51 61 71 81 91

Grid node ID

U
til

iz
at

io
n

(b)

Random Allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91

Grid node ID

U
til

iz
at

io
n

(c)

Figure 7. Grid Nodes’ Utilization of Our Allocation (a); Cluster Allocation (b); and Random
Allocation (c)

The results in Figures 5 and 6 show that only our approach provides the resource
reservation equivalent to the system utilization. Our allocation method comparing to
cluster allocation method also provides better resource utilization as in Figure 6 (a)
and (b). The random allocation method shows a great difference between resource
reservation and resource utilization. Figure 7 also shows that our approach achieves
the best utilization, compared to other approaches. Our allocation method has better
distributing balance, comparing to cluster allocation method when the random ap-
proach achieves the worst utilization.

4.2 Mixing Batch Request and Composite Web Service Request Simulation

The purpose of this experiment is to demonstrate the system in the realistic workload
cases in which the grid will have different type of requests submitted at different time
period with different requirements. In this experiment, we collect the resource utiliza-
tion of system, the maximum waiting time, the average waiting time of the composite
web service requests, and the throughput of each type of requests.

The day time experiment uses the number of requests which is chosen based on
the previous results. We already knew that the simulation system reaches the peak of
utilization when the number of heavy web service requests is around 1000. Besides,
in day time, there will be not so many batch job requests submitted to the system.
Therefore, we set 1000 heavy composite web service requests and 200 light batch job
requests. The heavy composite web service requests are submitted within 6 hours
from the beginning of the experiment and generated with the arrival rate based on
Poisson distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 81 16
1

24
1

32
1

40
1

48
1

56
1

64
1

72
1

80
1

88
1

Time (minutes)

U
til

iz
at

io
n

(%
)

CPU Mean
Network Mean
Storage Mean
Utilization Mean

Figure 8. Mixed Request Simulation –
Day Time Utilization Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 69 13
7

20
5

27
3

34
1

40
9

47
7

54
5

61
3

68
1

74
9

Time (minutes)

U
til

iz
at

io
n

(%
)

CPU Mean
Network Mean
Storage Mean
Utilization Mean

Figure 9. Mixed Request Simulation –
Night Time Utilization Results

The results show that all the composite web services have average waiting time 7
minutes (max is 29 minutes). Comparing to the 4 hour-request duration, this is an
acceptable results. Besides, Figure 8 shows that the utilization of the system and the
variance of grid nodes’ utilization are as good as the experiment results only with
composite web services. In the night time experiment, we consider that we have a list
of heavy batch job requests already submitted and, during experiment time, there will
be a small number of light composite web services submitted to the system. The night
time results in Figure 9 show that our system can achieve high performance when
scheduling for a major number of Batch job requests with a small number of compos-
ite web service requests.

Using the GridSim toolkit, we developed a simulator to experiment our new ap-
proach on grid resource management. Based on the simulator, we created different
test scenarios to compare processing performance of composite web service requests
of our allocation algorithm with that of standard cluster allocation algorithm and that
of random allocation algorithm. The results showed that our approach always pro-
vides best utilization performance, throughput, and reasonable utilization variance
between grid nodes. Our allocation approach which is based on functional depend-
ency always provides better results comparing to standard cluster allocation approach
while the random allocation approach showed the worst utilization and throughput.

For the practical of our experimentation, we consider the realistic workload cases
in which the composite web service requests are processed collaterally with batch job
requests. In this type of experiment, we divide into two test cases: day time experi-

mentation and night time experimentation. All the results showed that our approach
could provide high utilization performance even in the artificial real-world cases.

5 Conclusion

In this paper, we propose an online application modeling approach for grid resource
management. The approach uses functional dependency in the application model. The
proposed architecture of application service management, based on the functional
dependency structure, can structuralize the application request into a set of depend-
ency application components. Based on this functional dependency, we develop a
scheduling algorithm to distribute the application requests in Grid computing. This
algorithm uses online application model instance generation approach to generate the
application model for each application request. The scheduling algorithm uses this
model to optimize the resource assignment process. To validate our scheduling algo-
rithm, we develop a simulator based on the GridSim toolkit. The simulating results
have proved that our approach shows significant improvement of performance, com-
paring to cluster allocation and random allocation approaches.

References

1. Raman, R. and Livny, M.. (1998). “ Matchmaking: Distributed Resource Management for
High Throughput Computing” , Proceedings of the Seventh IEEE International Symposium
on High Performance Distributed Computing, Chicago, IL.

2. Henderson, R. and Tweten, D.. (1996). "Portable Batch System: External reference specifi-
cation," Technical report, NASA Ames Research Center.

3. W. Allcock, J. Bester, J. Bresnahan, S. Meder, P. Plaszczak, S. Tuecke. (2003). “ GridFTP:
Protocol Extensions to FTP for the Grid” . Global Grid ForumGFD-RP

4. G. Kar, A. Keller, and S. Calo, (2000) “Managing Application Services over Service Pro-
vider Networks: Architecture and Dependency Analysis,” in Proceedings of NOMS 2000,
Honolulu.

5. R. Buyya and M. Murshed, (2002) “GridSim: A Toolkit for the Modeling and Simulation of
Distributed Resource Management and Scheduling for Grid Computing”, CCPE, Volume 14,
Issue 13-15, Wiley Press, Nov.-Dec..

6. SPEC CPU2000 Results, http://www.spec.org/cpu2000/results/cpu2000.html
7. Klaus Krauter, Rajkumar Buyya, Muthucumaru Maheswaran. (2001). “A taxonomy and

survey of grid resource management systems for distributed computing”, Software: Practice
and Experience Volume 32, Issue 2

8. Ian Foster, Carl Kesselman, and Steven Tuecke. (2001). “ The Anatomy of the Grid - Ena-
bling Scalable Virtual Organizations” , Intl. Journal of Supercomputing Applications.

9. I. Foster and C. Kesselman. (1997). “ Globus: A Metacomputing Infrastructure Toolkit.” .
Intl Journal of Supercomputer Applications, Volume 11, No. 2.

http://www.spec.org/cpu2000/results/cpu2000.html

