
Minimising the Energy Consumption of

Real-Time Tasks with Precedence Constraints

on A Single Processor

Hui Wu and Sridevan Parameswaran

School of Computer Science and Engineering
The University of New South Wales
{huiw, sridevan}@cse.unsw.edu.au

Abstract. Energy-aware task scheduling is critical for real-time embed-
ded systems. Although dynamic power has traditionally been a primary
source of processor power consumption, leakage power is becoming in-
creasingly important. In this paper, we present two optimal energy-aware
polynomial-time algorithms for scheduling a set of tasks with release
times, deadlines and precedence constraints on a single processor with
continuous voltages. Our algorithms are guaranteed to minimise the to-
tal energy consumption of all tasks while minimising their maximum
lateness under two power models: the dynamic power model where the
dynamic power dominates the processor power consumption and the dy-
namic and leakage power model where both dynamic power and leakage
power are significant sources of the processor power consumption. The
time complexities of both algorithms are O(n3) , where n is the number
of tasks.

1 Introduction

In mobile real-time embedded systems, energy is a precious resource. Minimis-
ing the energy consumption while satisfying the performance constraints is a key
issue in the design of such systems. Energy reduction is also important in other
real-time embedded systems. A real-time system with less energy consumption
generates less heat and therefore has a longer lifetime.

Traditionally, dynamic power is the main source of processor power consump-
tion. There are two techniques, namely DVS (Dynamic Voltage Scaling) and
DPM (Dynamic Power Management) that can be used to reduce the dynamic
power consumption of processors. In DVS, different tasks are run at different
voltages and clock frequencies to fill up the idle periods in the schedule, while
still satisfying the performance constraints. DPM aims to shut down system
components not currently in use. DVS is more efficient than DPM in reducing
the energy consumption of processors. DPM is used only if DVS is not applica-
ble.

A lot of work has been done in DVS for real-time embedded systems. In
the case of a single processor, many algorithms and heuristics have been pro-
posed. Yao et al [1] studied the problem of scheduling a set of independent tasks

with individual release times and deadlines on a single processor with continuous
voltage such that the energy consumption of the processor is minimised. They
proposed an optimal EDF-based (Earliest Deadline First) algorithm for static
scheduling and suboptimal algorithms for online scheduling. Kwon and Kim [16]
proposed a static scheduling algorithm for the same problem with discrete volt-
ages. Li and Yao [2] proposed a faster algorithm for the same problem solved by
Kwon and Kim.

Ishihara and Yasuura [3] proposed a model of dynamically variable voltage
processor and a static voltage scheduling algorithm formulated as an integer lin-
ear programming problem. In addition to task execution times and deadlines,
their algorithm also requires the average switched capacitance for each task.
However, their algorithm does not consider precedence constraints and release
times.

Hong et al [4] proposed an energy-aware on-line algorithm for scheduling both
periodic tasks and sporadic tasks. Their algorithm guarantees the deadlines of
all periodic tasks and tries to maximise the number of aperiodic tasks that can
be finished by their deadlines.

Quan et al [6] studied the problem of minimising the total energy consump-
tion of a set of tasks with individual release time and deadline on a single proces-
sor using fixed priority scheduling. They proposed a heuristic for this problem.
Yun and Kim [15] also studied the same problem. They proved the NP-hardness
of the problem and proposed an approximation algorithm.

Sinha and Chandrakasan [5] proposed an energy-aware SEDF (Slack Earliest
Deadline First) algorithm for scheduling a set of independent tasks with release
times and deadlines on a single processor. Their algorithm is stochastically op-
timal in minimising processor energy consumption and maximum lateness.

Shin et al [9] proposed an intra-task scheduling approach that can further
reduce energy consumption of tasks by partitioning a task into several segments,
each assigned with a separate a voltage.

As technology feature size continues to scale, leakage power is increasing and
will limit power savings obtained by DVS alone. Therefore, the optimisation ob-
jective of task scheduling is to minimise the sum of dynamic energy and leakage
energy. Recently, a number of researchers studied the problem of combining DVS
and adaptive body biasing (ABB) to simultaneously optimise both dynamic en-
ergy consumption and leakage energy consumption.

Quan et al [8] proposed a scheduling technique that can effectively reduce
the overall energy consumption for hard real-time systems scheduled according
to a fixed priority scheme. Experimental results show that a processor using
their strategy consumes as less as 15 percent of the idle energy of a processor
employing the conventional strategy.

Andrei et al [12] investigated the problem of overhead-aware voltage selec-
tion for dynamic and leakage energy reduction of time-constrained systems where
tasks are subject to deadline and precedence constraints. They optimally solved
the continuous voltage selection problem by using non-linear programming and
proved NP-hardness in the discrete case.

Jejurikar et al [13] proposed a leakage-aware algorithm for scheduling peri-
odic tasks on a single processor. Their algorithm uses EDF scheduling strategy.
Unlike our algorithms, their algorithm does not consider critical task sets. In-
stead, it computes the execution speed of each task individually. Jejurikar and
Gupta [14] proposed leakage-aware algorithms for fixed-priority systems. Both
algorithms are not guaranteed to minimise the total energy consumption of all
tasks.

In this paper, we propose polynomial-time task scheduling algorithms for
minimising the total energy consumption of a set of real-time tasks with indi-
vidual release times, deadlines and precedence constraints on a single processor
with continuous voltages. Assuming that the voltage transition overheads are
negligible, our algorithms are guaranteed to minimise the total energy consump-
tion of all tasks under two power models: the dynamic power model where the
dynamic power dominates the processor power consumption and the dynamic
power and leakage power model where both dynamic power and leakage power
are significant sources of the processor power consumption. In addition, our al-
gorithms are guaranteed to minimise the maximum lateness of all tasks.

We make the following significant contributions.

1. Under the dynamic power and leakage power model our algorithm is the first
algorithm for minimising the total energy consumption of a set of tasks with
release times, deadlines and precedence constraints on a single processor.
The previous algorithm proposed by Jejurikar et al [13] is not guaranteed
to minimise the total energy consumption of all tasks and does not consider
the precedence constraints. 1

2. Under the dynamic power model our algorithm generalises Yao’s algorithm
[1] by considering additional precedence constraints.

2 Power Models and Definitions

2.1 Dynamic Power Model

Under the dynamic power model, the processor power is dominated by the dy-
namic power [17] which is given by:

Pdynamic = CeffV 2
ddf (1)

where Ceff is the effective switching capacitance, Vdd is the supply voltage
and f is processor clock frequency.

Processor clock frequency f , is almost linearly related to the supply voltage:

f =
(Vdd − Vth)α

kVdd

(2)

1 The algorithm proposed by Jejurikar et al considers periodic tasks without any
precedence constraint and uses EDF scheduling strategy. Since a periodic task can be
represented by a set of non-periodic tasks with individual release times and deadlines,
the problem they studied is a special case of our problem where no precedence
constraint exists.

where k is a constant, Vth is the threshold voltage and 1 < α ≤ 2. Based
on the SPICE simulation of the Berkley predictive models for a 0.07µm process
[18], the threshold voltage [10] is given by the following equation:

Vth = Vth1 − k1Vdd − k2Vbs (3)

where Vth1, k1 and k2 are constants and Vbs is body bias voltage.
Substitute (3) into (2) gives the expression of f in terms of Vdd and Vbs.

f =
((1 + k1)Vdd + k2Vbs − Vth1)

α

kVdd

(4)

Substituting (4) into (1), we have the dynamic power function P (Vdd) where
the dynamic voltage Vdd is the only variable:

P (Vdd) =
Ceff

k
Vdd((1 + k1)Vdd + k2Vbs − Vth1)

α (5)

Note that P (Vdd) is a convex function.

2.2 Dynamic and Leakage Power Model

Under dynamic power model, the processor power dissipation is dominated by
both dynamic power and leakage power [17], where the leakage power [11] can
represented as:

Pleakage = Is(
W

L
)Vdde

−Vth
nVT + |Vbs|(Ij + Ib) (6)

where Is and n are technology parameters, W and L are device geometries,
Ij is drain-body junction leakage current, Ib is source-body junction leakage cur-
rent, and VT is the thermal voltage.

Substituting (3) into (6), we have:

Pleakage = k3Vdde
k4Vdd+k5Vbs + |Vbs|(Ij + Ib) (7)

where k3, k4 and k5 are new constants. Therefore, the total power consump-
tion can be represented by:

P = Pdynamic + Pleakage

= CeffV 2
ddf + k3Vdde

k4Vdd+k5Vbs + |Vbs|(Ij + Ib)
(8)

From Equation (4), we have

Vbs = k6Vdd + k7(fVdd)
1

α + k8 (9)

where k6, k7 and k8 are new constants.
Substituting (9) into (8), we have the dynamic and leakage power function

P (Vdd, f) where Vdd and f are the only two variables:

P (Vdd, f) =CeffV 2
ddf + k9Vdde

k10Vdd+k11(fVdd)
1

α

+ k12Vdd + k13(fVdd)
1

α + k14

(10)

where k9 − k14 are new constants. Note that P (Vdd, f) is a convex function.

2.3 Problem and Definitions

In this section, we propose two optimal algorithms for energy-aware real-time
task scheduling on a single processor. We assume two power models: the dynamic
power model and the dynamic and leakage power model. Under the dynamic
power model, the dynamic power is the main source of the processor power
consumption and the leakage power is negligible. Under the dynamic and leakage
power model, both dynamic power and leakage power are significant sources of
the processor power consumption.

A problem instance P consists of a set V = {T1, T2, · · · , Tn} of n tasks with
the following constraints:

1. Worst case execution times. The worst case execution time of task Ti, de-
noted by ci, is the longest execution time of Ti when the processor runs at
the maximum frequency.

2. Release times. Each task Ti has a pre-assigned release time ri.
3. Deadlines. Each task Ti has a pre-assigned deadline di.
4. Precedence constraints represented by a DAG (Directed Acyclic Graph) G =

(V, E), where E = {(Ti, Tj) : Ti precedes Tj}.
5. A single processor with continuous voltages.

The energy-aware single processor scheduling problem is described as follows.
Given a problem instance P , find a valid schedule with minimum lateness for
all the tasks such that the total energy consumption of all tasks is minimised. A
schedule is called a valid schedule if it satisfies all release times and precedence
constraints.

Definition 1. Given a schedule σ for a problem instance P and a task Ti, the
lateness of Ti is fi − di, where fi is the completion time of Ti in σ.

Definition 2. Given a problem instance P and a task Ti, the edge-consistent re-
lease time of Ti, denoted by r′i, is recursively defined as follows: r′i = max{ri, max

{ r′j +cj: Tj is an immediate predecessor of Ti}}

Definition 3. Given a problem instance P and a task Ti, the edge-consistent
deadline of Ti, denoted by d′i, is recursively defined as follows: d′i = min{di, min

{ d′j −cj: Tj is an immediate successor of Ti}}

Definition 4. Given a set S of tasks with individual release times and deadlines
and a partial schedule for S on a single processor, a time interval [a, b] is a for-
bidden interval if it is fully occupied by one or more tasks in the partial schedule.
A time interval [a, b] is a maximum forbidden interval if it is a forbidden interval
and there exists d such that neither [a−d, a] nor [b, b+d] is a forbidden interval.

Since all forbidden time intervals are occupied by the tasks already scheduled,
they cannot be used by other tasks.

Definition 5. Given a set S′ of independent tasks with individual release times
and deadlines, a partial schedule σ for S′ and a set S of unscheduled tasks, the
processor utilisation of S is defined to be:

U(S) =

∑
Tj∈S cj

dmax − rmin − l(S)

where rmin is the minimum release time of all tasks, dmax is the maximum dead-
line of all tasks, and l(S) is the total length of all maximum forbidden intervals
within [rmin, dmax].

Definition 6. Given a set S′ of independent tasks with individual release times
and deadlines, a partial schedule σ for S′, a subset S of unscheduled tasks is
a critical subset if S has the greatest processor utilisation among all subsets of
unscheduled tasks.

Definition 7. Given a set S of tasks with individual release times and deadlines,
the interval of S is [rmin, dmax], where rmin and dmax are the minimum release
time and the maximum deadline of all tasks, respectively.

3 Optimal Scheduling Algorithm

3.1 Optimal Task Execution Speed

Our scheduling algorithms are underpinned by critical task subsets. If dynamic
voltage and body bias voltage take continuous values, we can show that in an
optimal schedule all the tasks in a critical task subset must have the same speed.
We call this speed optimal speed. The optimal speed is dependent on the power
model. Next we show how to compute the optimal speed fopt(S

′) for all tasks in
a critical task subset S′ = {Ti1 , Ti2 , · · · , Tik

}.
Under the power model where the dynamic power is the main source of pro-

cessor power consumption, fopt(S
′) is the slowest speed at which the interval of

S′ is fully occupied by all tasks in S′. Specifically, fopt(S
′) is equal to U(S′)fmax,

where fmax is the maximum frequency of the processor. After assigning the op-
timal speed to all tasks in the critical task set, the interval of S′ becomes a
forbidden interval.

Under the power model where both dynamic power and leakage power are
the significant sources of the processor power consumption, the optimal speed

may not be the slowest speed due to the leakage power. Let Fopt be the optimal
processor frequency which minimises the total power P (Vdd, f) of the processor.
Fopt can be computed by using gradient search [20]. Given a processor, Fopt is
a constant. When computing the optimal speed fopt(S

′) for all tasks in S′, we
need to consider the following two cases:

1. U(S′)fmax < Fopt. Since the power function P (Vdd, f) is a convex function
and Fopt is the speed which minimises P (Vdd, f), fopt(S

′) is equal to Fopt.
2. U(S′)fmax ≥ Fopt. In this case, by the convexity of the power function

P (Vdd, f), P (Vdd, f) decreases as f increases within [fmin, Fopt], where fmin

is the minimum processor frequency. As a result, fopt(S
′) is equal to U(S′)fmax.

In the case where U(S′)fmax < Fopt holds, the interval of S′ will contain non-
forbidden intervals after all tasks in S′ are scheduled. This is because the interval
of S′ cannot be fully used by all tasks in S′. In the case where U(S′)fmax ≥ Fopt

holds, since all tasks in S′ will fully use the interval, the interval of S′ will become
a forbidden interval after all tasks in S′ are scheduled.

3.2 Minimum Energy Scheduling Algorithms

Our scheduling algorithms consist of the following two main steps.

1. Transform the original problem instance P into a precedence-free scheduling
problem instance P ′ as follows.
(a) Compute the edge-consistent release time for each task and set its release

time to its edge-consistent release time.
(b) Compute the edge-consistent deadline for each task and set its deadline

to its edge-consistent deadline.
(c) Compute a schedule σ for the original problem instance P on the single

processor running at the maximum frequency by using EDF strategy.
(d) Create a precedence-free problem instance P ′ as follows:

– For each task Ti, set its release time to its start time in σ and its
deadline to max{di, ei}, where ei is the finish time of Ti in σ.

2. Find a minimum energy schedule for the precedence-free problem instance
P ′ as follows. Let V be a set of all tasks in P . Repeat the following steps
until V is empty.
(a) Find a critical task subset S′ of V .
(b) Compute the optimal speed for all tasks in S′ as described in the previous

subsection.
(c) Compute a partial schedule for S′ using EDF strategy and the optimal

speed.
(d) V = V − S′.

The minimum energy schedule for P ′ is a union of partial schedules for all
critical task subsets. As we will prove in the next section, it is also a minimum
energy and minimum lateness schedule for the original problem instance P .

Under the dynamic power model, we can use Yao’s algorithm [1] to compute

all critical task subsets. Under the dynamic and leakage power model, the interval
of a critical task subset may not be fully used. Therefore, the whole interval
cannot be removed. As a result, Yao’s algorithm is not applicable to the dynamic
and leakage power model.

Next, we describe an efficient implementation of our algorithm for computing
critical task sets under the dynamic and leakage power model. Given a problem
instance P which consists of a set of independent tasks with individual release
times and deadlines and a single processor, the critical task subsets are computed
as follows:

1. Find a critical task subset S for P as in [1].
2. Compute the optimal speed for S.
3. Compute a partial schedule σ for S using EDF strategy.
4. Find all maximum forbidden intervals in [rmin, dmax], where rmin and dmax

are the minimum release time and the maximum deadline, respectively, of
all tasks in S. Let [a1, b1], [a2, b2], · · · , [ak, bk] be the k maximum forbidden
intervals in [rmin, dmax] with ai < bi (i = 1, 2, · · · , k) and bi < ai+1 (i =
1, 2, · · · , k − 1).

5. Remove all tasks in S from P .
6. Modify the release time of each task Ti in P as follows:

(a) If ri ≥ dmax, set the new release time of Ti to ri −
∑k

j=1 (bj − aj).
(b) If ri ≥ rmin and ri < dmax, there are two cases.

i. Case 1: ri is within a maximum forbidden interval [as, bs]. Set the
new release time of Ti to ri −

∑s

j=1 (bj − aj).
ii. Case 2: ri is not within any maximum forbidden interval in [rmin, dmax].

Let [at, bt] be the maximum forbidden interval such that t is the
largest integer satisfying bt < ri. Set the release time of Ti to ri −∑t

j=1 (bj − aj).
7. Modify the deadline of each task Ti in P as follows:

(a) If di ≥ dmax, set the new deadline of Ti to di −
∑k

j=1 (bj − aj).
(b) If di ≥ rmin and di < dmax, there are two cases.

i. Case 1: di is within a maximum forbidden interval [as, bs]. Set the

new deadline of Ti to as −
∑s−1

j=1 (bj − aj).
ii. Case 2: ri is not within any maximum forbidden interval in [rmin, dmax].

Let [at, bt] be the maximum forbidden interval such that t is the
largest integer satisfying bt < di and set the new deadline of Ti to
di −

∑t

j=1 (bj − aj).
8. Repeat the above steps until there is no task in P .

4 Optimality Proof and Time Complexity Analysis

We will use the following property of convex functions in our optimality proof.

Lemma 1. Given a convex function f(X) in the n−dimensional space, the fol-
lowing inequality holds:

m∑

i=1

λif(Xi) ≥ f(

m∑

i=1

λiXi)

where X1, X2, · · · , Xm are m points in the n-dimensional space and
∑m

i=1 λi = 1
and λi ≥ 0(i = 1, 2, · · · , m)

Theorem 1. Given a set of tasks with individual release times, deadlines and
precedence constraints, our scheduling algorithm is guaranteed to find a schedule
with minimum lateness on a single processor with continuous voltages.

Proof: It is known that earliest edge-consistent deadline first strategy is guar-
anteed to find a schedule with minimum lateness [19]. We just need to prove that
in a schedule σ for P ′ computed by our algorithm, no task will miss its new dead-
line P ′. Suppose that a task Ti misses its new deadline in σ. Ti must be in a
critical task subset S′ and S′ must have at least two tasks, including Ti. Oth-
erwise, Ti cannot miss its new deadline in σ. Since Ti misses its new deadline,
its processor utilisation must be greater than that of S′. By the definition of a
critical task subset, Ti cannot be included in S′, which leads to a contradiction.

Theorem 2. Given a set of tasks with individual release times, deadlines and
precedence constraints, our scheduling algorithm is guaranteed to find a sched-
ule with minimum energy consumption on a single processor with continuous
voltages.

Proof: Let S′ be a critical task subset computed by our algorithm, T1, T2,
· · · , Tm be all tasks in S′ and σ be an optimal schedule for S′. We distinguish
two power models.

1. Under the power model where the dynamic power is the dominant source of
the processor power consumption, there is no idle time within the interval of

S′ in σ. The total energy consumption W of all tasks in σ is
∑m

i=1
P (vi)cifmax

fi
,

where vi and fi are the dynamic voltage and the clock frequency, respectively,
of the processor when task Ti is running. Let c =

∑m

i=1
cifmax

fi
and ηi =

cifmax

fic
. Note that

∑m

i=1 ηi = 1 and c = dmax − rmin − l(S′), where dmax and
rmin are the maximum deadline and minimum release time, respectively,
of all tasks in S′ and l(S′) is the total length of all forbidden intervals in
[rmin, dmax]. By the property of convex functions, we have

W =

m∑

i=1

P (vi)cifmax

fi

= c

m∑

i=1

ηiP (vi)

≥ cP (
m∑

i=1

ηivi) ≥ cP (vopt)

Where vopt is the dynamic voltage which corresponds to the slowest processor

frequency for S′ i.e.
P

m
i=1

ci

c
fmax.

Note that cP (vopt) is the total energy consumption of all tasks in our schedule
for S′. Therefore our schedule for S′ is a minimum energy schedule.

2. Under the power model where both the dynamic power and leakage power
are the dominant sources of the processor power consumption, idle time
may exist within the interval of S′ in σ. The total energy consumption W

of all tasks in σ is
∑m

i=1
P (vi,fi)cifmax

fi
, where vi and fi are the dynamic

voltage and the clock frequency, respectively, of the processor when task Ti

is running. Let c =
∑m

i=1
cifmax

fi
and ηi = cifmax

fic
. Note that

∑m

i=1 ηi = 1. By
the property of convex functions, we have

W =

m∑

i=1

P (vi, fi)cifmax

fi

= c

m∑

i=1

ηiP (vi, fi)

≥ cP (

m∑

i=1

ηivi,

m∑

i=1

ηifi)

which implies that a single processor frequency for all tasks in a critical task
set is the necessary condition for minimising the total energy consumption of
all tasks in a critical task set. Since our algorithm computes an optimal pro-
cessor clock frequency for all tasks in S′ which minimises the power function,
our schedule for S′ is a minimum energy schedule.

Next we analyse the time complexities of our algorithms. First, we analyse
the time complexity of transforming the original problem instance P to the
precedence-free problem instance P ′ as follows.

1. The edge-consistent release times and deadline of all tasks can be computed
by using breadth-first search, which takes O(e) time, where e is the number
edges in the precedence graph.

2. The EDF schedule for P can be computed using a priority queue, which
takes O(n log n), where n is the number of tasks.

3. It takes O(n) time to set the release times and deadlines for all tasks in P ′.

Therefore, it takes O(e + n log n) time to construct the precedence-free problem
instance P ′.

Under the dynamic power model, we can use Yao’s algorithm to compute the
critical task sets. The time complexity of Yao’s algorithm is O(n3). 2 Therefore,
the time complexity of our algorithm for the dynamic power model is O(n3).

To facilitate the analysis of the time complexity of our algorithm for the
dynamic and leakage power model, we assume that there are m critical task
subsets for a problem instance P . Let S1, S2, · · · , Sm be the m critical task
subsets, ki the number of remaining tasks in P and pi the number of forbidden
intervals when Si is computed. We analyse the time complexity of our algorithm
for computing the optimal speed for all tasks in each critical task subset Si(i =
1, 2, · · · , m) as follows.

2 The time complexity of Yao’s algorithm was said to be reducible to O(n log2
n), but

the claim was withdrawn in [2].

1. The time complexity for finding a critical task subset is O(n2) [1].
2. When modifying the release time and the deadline for each remaining task

in P , we can sort all maximum forbidden intervals and use binary search to
determine which case is applicable. Therefore, it takes O(pi log pi + ki log pi)
to modify the release times and deadlines for all tasks in Si.

Therefore, the time complexity for computing all critical intervals is O(mn2) +
O(

∑m

i=1 (pi log pi + ki log pi)) = O(n3).

5 Conclusion

We proposed two polynomial-time algorithms for finding a minimum energy
schedule for a set of tasks with individual release times, deadlines and precedence
constraints on a single processor with continuous voltages. Our algorithms are
guaranteed to find a schedule with both minimum lateness and minimum energy
consumption under two power models. Under the first power model, the dynamic
power is the dominant source of the processor power consumption and the leak-
age power is negligible. Under the dynamic and leakage power model, both the
dynamic power and the leakage power are significant sources of the processor
power consumption. Under the dynamic power model, the time complexities of
both algorithms are O(n3), where n is the number of tasks.

In this paper, voltage transition overheads are ignored. It is not known if the
problem can also be optimally solved in polynomial-time if voltage transition
overheads are included. Another interesting problem is how to generalise our al-
gorithms to multiple processor scheduling. In the existing work on leakage-aware
DVS scheduling for multiple processor real-time systems, the execution speed of
each task is computed individually. By the property of convex functions, more
energy would be saved if all tasks in a critical subset are executed at the same
speed.

References

1. Frances Yao, Alan Demers and Scott Schenker. A Scheduling Model for Reduced
CPU Energy. The proceedings of Annual Symposium on Foundation of Computer
Science,1995, Pages 374-382.

2. Minming Li and Frances Yao. An Efficient Algorithm for Computing Optimal
Discrete Voltage Schedules. Siam Journal on Computing, 35(3), 2005, Pages 658-
671.

3. Tohru Ishihara and Hiroto Yasuura. Voltage Scheduling Problem for Dynami-
cally Variable Voltage Processors. Proceedings of International Symposium on Low
Power Electronics and Design, 1998, Pages 197-202.

4. Inki Hong, Miodrag Potkonjak, Mani B. Srivastava. On-line Scheduling of Hard
Real-Time Tasks on Variable Voltage Processor. Proceedings of International Con-
ference on Computer-Aided Design, November 1998, Pages 458-470.

5. Amit Sinha and Anantha P. Chandrakasan. Energy Efficient Real-Time Scheduling.
Proceedings of International Conference on Computer-Aided Design, 2001, Pages
458-470.

6. Gang Quan and Xiaobo Hu. Energy Efficient Fixed-Priority Scheduling for Real-
Time Systems on Variable Voltage Processors. Proceedings of Design Automation
Conference, 2001, Pages 828-833.

7. Yumin Zhang, Xiaobo Sharon Hu, and Danny Chen. Task Scheduling and Voltage
Selection for Energy Minimisation. Proceedings of Design Automation Conference,
June 2002.

8. Gang Quan, Linwei Niu, Xiaobo Sharon H and Mochocki, B. Fixed Priority
Scheduling for Reducing Overall Energy on Variable Voltage Processors. Proceed-
ings of Real-Time Systems Symposium, 2004.

9. D. Shin, J. Kim and S. Lee. Low-Energy Intra-Task Voltage Scheduling Using Static
Timing Analysis. Proceedings of Design Automation Conference, June, 2001, Pages
438-443.

10. S. M. Martin, K. Flautner, T. Mudge and D. Blauuw. Combined Dynamic Voltage
Scaling and Adaptive Body Biasing for Low Power Microprocessors under Dynamic
Workloads. Proceedings of International Conference on Computer-Aided Design,
Nov. 2002, Pages 721-725.

11. Le Yan, Jiong Luo and Niraj K. Jha. Combined Dynamic Voltage Scaling and
Adaptive Body Biasing for Heterogeneous Distributed Real-Time Embedded Sys-
tems. Proceedings of 2003 International Conference on Computer-Aided Design,
Nov. 2003, Pages 30-38.

12. Alexandru Andrei, Marcus Schmitz, Petru Eles, Zebo Peng, Bashir M. Al-Hashimi:
Overhead-Conscious Voltage Selection for Dynamic and Leakage Energy Reduction
of Time-Constrained Systems. Proceedings of 2004 Design, Automation and Test
in Europe Conference and Exposition (DATE 2004), Pages 518-525.

13. Ravindra Jejurikar, Cristiano Pereira, Rajesh K. Gupta: Leakage aware dynamic
voltage scaling for real-time embedded systems. Proceedings of Design Automation
Conference, June, 2004, Pages 275-280.

14. Ravindra Jejurikar, Rajesh K. Gupta: Procrastination scheduling in fixed priority
real-time systems. Proceedings of ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, June, 2004, Pages 57-66.

15. Han-Saem Yun and Jihong Kim. On Energy-Optimal Voltage Scheduling for Fixed
Priority Hard Real-Time Systems. ACM Transactions on Embedded Computing
Systems, Vol. 2, No. 3, August 2003, Pages 393-430.

16. Woo-Cheol Kwon and Taewhan Kim. Optimal Voltage Allocation Techniques for
Dynamically Variable Voltage Processors. ACM Transactions on Embedded Com-
puting Systems, Vol. 4, No. 1, February 2005, Pages 211-230.

17. N. H. E Weste and K. Eshraghian. Principle of CMOS VLSI Design. Addison
Wesley, 1993.

18. http://www-device.eecs.berkley.edu/ ptm/introduction.html
19. Peter Brucker. Scheduling Algorithms. Springer, 2004.
20. Stephen Boyd and Lieven Vandenberghe. Convex Optimisation. Cambridge Uni-

versity Press, 2001.

