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Abstract. The majority of scientific and Digital Signal Processing (DSP)
applications are recursive or iterative. Transformation techniques are
generally applied to increase parallelism for these nested loops. Most of
the existing loop transformation techniques either can not achieve maxi-
mum parallelism, or can achieve maximum parallelism but with compli-
cated loop bounds and loop indexes calculations. This paper proposes a
new technique, loop striping, that can maximize parallelism while main-
taining the original row-wise execution sequence with minimum over-
head. Loop striping groups iterations into stripes, where a stripe is a
group of iterations in which all iterations are independent and can be
executed in parallel. Theorems and efficient algorithms are proposed for
loop striping transformations. The experimental results show that loop
striping always achieves better iteration period than software pipelining
and loop unfolding, improving average iteration period by 50% and 54%
respectively.

1 Introduction

Nested loops are the most critical sections in applications such as signal process-
ing, image processing, fluid mechanics, and weather forecasting. To improve the
performance on these applications, parallel architectures and systems are gen-
erally used. How to generate code for nested loops on parallel architectures is a
challenging problem for compilers. This paper proposes a new technique, loop
striping, that can achieve maximum parallelism and keep the original row-wise
execution sequence with minimum overhead.

Existing loop transformation methods, like wavefront processing[2, 8], achieve
higher level of parallelism for nested loops by changing the execution sequence
of the nested loops. This sequence of execution is commonly associated with a
schedule vector s, also called an ordering vector, which affects the order in which
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the iterations are performed. The iterations are executed along hyperplanes de-
fined by s.

Different methods have different means in the selection of an appropriate
schedule vector. Among these type of loop transformation methods, unimodular
transformation [5,13,12] is one of the major techniques. It unifies loop transfor-
mations like loop skewing [14], loop interchange [3], and loop reversal to achieve
a particular goal, such as maximizing parallelism or data locality. The sequence
of execution as well as the loop bounds and loop indexes are all changed as
the result of unimodular transformation. Another technique, Multi-Dimensional
retiming [11], restructures the loop body to achieve full parallelism within an
iteration. Then the actual scheduling of the fully-parallelized iterations can be
done by unimodular transformation [13]. More researches have been building on
top of unimodular transformations. Anderson and Lam [4] apply unimodular
transforms to loop nests to increase the granularity of parallelism, find the max-
imum degree of communication-free parallelism across loops, and heuristically
introduce communication where necessary.

Unimodular transformation adds overhead to the transformed loops while
achieving higher level of parallelism. First, non-linear index bound checking
needs to be conducted on the new loop bounds to assure correctness. Second,
loop indexes become more complicated compared to the original loop indexes,
and additional instructions are needed to calculate each new index so that the
actual array values stored in memory can be correctly referenced.

To have simple loop bounds and simple loop indexes while achieving the
maximum parallelism, we propose a new loop transformation technique, loop
striping. Loop striping selects iterations into stripes, where a stripe is a group
of iterations in which all the iterations are independent and can be executed in
parallel. With proper selection of iterations to be placed into the same stripe,
loop striping ensures that all the iterations in the same stripe can be executed
in parallel.

While both loop striping and loop unfolding group iterations to increase
parallelism, loop striping is more advanced than loop unfolding [10] for nested
loops. Loop unfolding only unfolds iterations within the same dimension, and
it does not change the dependencies between iterations. As a result, there is a
lower bound of iteration period which is the shortest average time to schedule
an iteration. Unfolding can only reach this lower bound. We will show that loop
striping can transform nested loops in such a way that we can always group
iterations into stripes, where there is no dependency between any two iterations
in the same stripe. Hence, there is no lower bound on iteration period for loop
striping. We conduct experiments on a set of digital filters with two dimensional
loops. The experiment results show that loop striping always achieves better
iteration period than loop unfolding and software pipelining.

The remainder of this paper is organized as follows. Section 2 introduces basic
concepts and definitions. The theorems and algorithms are proposed in Section
3. Experimental results and concluding remarks are provided in Section 4 and
5, respectively.



2 Basic Concepts and Definitions

In this section, we introduce some basic concepts which will be used in the
later sections. First we introduce the model and notion that we use to analyze
the nested loops. Second, several related loop transformation techniques are
explained.

Multi-dimensional Data Flow Graph is used to model loops and is de-
fined as follows. A Multi-dimensional Data Flow Graph (MDFG) G =V, E,d,t)
is a node-weighted and edge-weighted directed graph, where V is the set of
computation nodes, E C V %V is the set of dependence edges, d is the multi-
dimensional delays between two nodes, also known as dependence vectors, and
t is the computation time of each node. We use d(e) = (d.x, d.y) as a general
formulation of any delay shown in a two-dimensional DFG (2DFG ).

An iteration is the execution of each node in V exactly once. The com-
putation time of the longest path without delay is called the iteration period.
Iterations are identified by a vector i, equivalent to a MD index. An iteration is
associated to a static schedule. A static schedule of a loop is repeatedly executed
for the loop. A static schedule must obey the precedence relations defined by
the subgraph of an MDFG, consisting of edges without delays. If a node v at
iteration j, depends on a node u at iteration i, then there is an edge e from u
to v, such that d(e) = j - i. An edge with delay (0,0, ... , 0) represents a data
dependence within the same iteration. A legal MDFG must have no zero-delay
cycles.

Iterations are represented as integral points in a Cartesian space, called it-
eration space , where the coordinates are defined by the loop control indexes.
Such points are identified by a vector i, equivalent to a multi-dimensional index.
The components of % are arranged from the outermost loop control index to the
innermost one, always implying a row-wise execution.

A schedule vector s is the normal vector for a set of parallel equitemporal
hyperplanes that define a sequence of execution of an iteration space. By default,
a given nested loop is executed in a row-wise fashion, where the schedule vector
s =(1,0).

Unfolding is also called unrolling or unwinding, is widely used in compiler
design [1]. A schedule of unfolding factor f can be obtained by unfolding G f
times. That is, a total of f iterations are scheduled together, and the schedule is
repeated every f iterations. We say the unfolded MDFG Gy = (Vy,Ey,dys,ty) is a
MDFG obtained by unfolding G f times. Set V; is the union of VO, V1 ... V/~1.

One cycle in Gy consists of all computation nodes in V. The period during
which all computations in a cycle are executed is called cycle period. The Cycle
period C(Gy) of Gy equals max{ts(ps) | df(ps)=0V ps in G¢}. During a cycle
period of Gy, f iterations of G are executed. Thus, the iteration period of Gy
is equal to C(Gy)/f, in other words, the average computation time for each
iteration in G. For the original MDFG G, the iteration period is equal to C(G).
An algorithm can find C(G) for a MDFG in time O(|E|)[9].

The iteration bound is defined to be the maximum time-to-delay ratio of all
cycles,



B(G) = max T'(1)/D(l) for all cycle l in G

where T'(1) is the sum of computation time in cycle [, and D(l) is the sum
of delay counts in cycle [. A schedule is rate-optimal if the iteration period of
this schedule equals its iteration bound. The value B(G) can be found in time
O(|V||E|log|V]), when the total number of delays and total computation time
are upper bounded by O(|V'|k), where k is a constant[6]. For a unit-time DFG,
it takes only time O(|V||E|) to compute the bound B(G) [7].

When there is no resource constraint and a sufficiently large number of itera-
tions are executed together, there is always a static schedule that can achieve the
rate-optimality. For a general-time DFG, Parhi and Messerschmitt [10] showed
that if the unfolding factor is the least common multiple of the delay counts of
all cycles, a rate-optimum schedule can be achieved.

Unimodular is a loop transformation technique that unify all combinations
of loop interchange or permutation, skewing and reversal. It can generate an
optimal solution in compilation for parallel machines that which loop transfor-
mations, and in what order, should be applied to achieve a particular goal, such
as maximizing parallelism or data locality [13]. The derivation of the optimal
compound transformation consists of two steps. The first step puts the loops
into a canonical form, namely a fully permutable loop nest. And the second step
then transforms the fully permutable loop nest to exploit according to the tar-
get architecture. Specifically, to maximize the degree of fine-grain parallelism,
wavefront transformation is used in the second step.

3 Loop Striping

In this section, we propose a new loop transformation technique, loop striping.
First the basic concepts are introduced, and the property and theorems related
to loop striping are discussed. Then the procedures and algorithm to transform
the loops after striping are presented. In the following, theorems and algorithms
are presented with two dimensional notations, which can be easily extended to
multi-dimensions.

3.1 Basic Concepts

In this section, we introduce the theoretical foundations for the proposed loop
transformation technique, loop striping.

Definition 1. A stripe is a group of iterations that there is no dependency be-
tween any two of the iterations.

We call a nested loop after loop striping transformation as a striped nested
loop. To group iterations into stripes, we need to use loop striping technique de-
fined as follows. Given an MDFG G = (V, E, d, t) representing an n-dimensional
nested loop, loop striping with vector s = (f,g) will group iterations into stripes.
Two important variables for the loop striping technique, f and g, are defined in
the following.



Definition 2. Striping factor f determine the number of iterations that will be
placed into the same stripe. Striping offset g determine the direction of the loop
striping, where iteration (1,0) and iteration (0,g) will be placed in the same stripe
if the striping factor is 2.

Loop Striping groups multiple iterations into one stripe to be scheduled to-
gether. With a carefully selected striping offset g, we can group the iterations
where there are no dependency among them. In this way, there is no lower bound
on the iteration period given no resource constraint and sufficiently large number
of iterations. This is the key difference between loop striping and loop unfolding.
In the following section, we will prove that we can always find such a striping
offset g, so that there is no dependency among the striped iterations. Before we
prove that we can always find a proper striping offset g, we will first introduce
the following lemma.
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Fig. 1. The relation of vector b and d € D.

Lemma 1. Given a MDFG G = (V, E, d, t) representing an n-dimensional
nested loop, and set D is the set thatV d € D, d(e) # (0,0). we can always find
a vector b=(z,1), such thatV d € D, d - b > 0.

Proof. We will prove by finding such a vector b(x,1). Since we are given a MDFG
that represents an n-dimensional nested loop, by default, this nested loop can
be executed in a row-wise fashion.

= The schedule vector s=(1,0) is always realizable.

=>VdeD,d-s>0.

= All d € D stay in region I and IT only as shown in Figure 1.

With this understanding, we will find the vector b=(x,1) as following. We
will first sort all d € D by its angle with j axis. Let d’ be such a d € D, such
that the angle between d’ and j axis is the largest. We can easily find a vector
b=(x,1) that can satisfy d’ - b > 0, this same vector will be able to satisfy V d
€ D, d - b > 0. Here is how we find such a b=(x,1):

Let d’=(d;, d}), since b=(x,1) and d’ - b > 0
=>d-x+d;-1>0=d-x>-dj = x>-d;/d,



since x > 0 and x is an integer,

—[dj/di]1+1 d; <0
rz=<1 d; =0
0 d; >0
With this selection of x, we know that we can always find such a b=(x,1),
that Vd € D,d-b > 0.

Theorem 1. Given an MDFG G = (V, E, d, t) representing an n-dimensional
nested loop, a striping offset g can always be found so that there is no dependence
between the striped iterations.

Proof. By definition, assuming a striping factor of 2, for an striping offset g,
iteration (1,0) and iteration (0,g) will be in the same stripe. To prove that we can
always find such a g that iteration (1,0) and iteration (0,g) have no dependency
between them, first we describe how to find such a g, and then prove that g fits
our criteria.

Step 1, find g:

Following Lemma 1, we can always find a vector b=(x,1), such that d(e) - b
> 0 for every d(e) # (0,0,...,0), we construct a new vector c=(1,g) where g=x,
so that vector c is orthogonal to b. then this g is the striping offset.

Step 2, g fits our criteria:

If there is such a delay d’(e) that runs between the iterations in a stripe, then
d’(e) is orthogonal to vector b, then d’(e) - b = 0. But we know for every d(e),
d(e) - b > 0. Contradiction.

Therefore, we can always find a striping offset g such that there is no depen-
dence between the striped iterations.

After the loop striping transformation, the new program can still keep row-
wise execution, which is an advantage over the loop transformation techniques
that need to do wavefront execution and need to have extra instructions to
calculate loop bounds and loop indexes.

3.2 The Loop Striping Technique

In this section, we present how to implement the loop striping transformation
technique. An algorithm to generate the code for loop striping is presented.
Based on a specific architecture, considering the resource constraints, we can
find a corresponding loop striping factor and loop striping offset that can achieve
the desired parallelism.

We first present some notations. Assume that the original nested loop and
the loop striping transformed loop are in the following format:



Original Nested Loop: Loop Striping transformed Loop:
for I'=LYto Ul for I' = L] to U} step by S}
for 12 = L2 to U2  for I? = L2 to U2 step by S2

B,(I',I2,I3,...,I)) B,(I',I2,I3,...,I})

end for end for

end for end for
where I',I2,I3,... I are the loop indexes, LL, L2, L2,... L} are the mini-
mum values for each of the loop indexes in the original loop, UL, U2,U3, ..., U¢

are the maximum values for each of the loop indexes in the original loop, and
B,(I',I%,I3,...,T% is the function that represent the loop body of the original
loop with I',I2,I3,...,I! as the input parameters. For the striped nested loop,
we use the same notations except that subscript n replaces the subscript o.

Using these notations, the algorithm that transform the original nested loop
into the new nested loop after striping is given as Algorithm 3.1.

Algorithm 3.1 The code generation for loop striping
Require: DFG G = (V, E, d,t), the striping factor f, the original loop body function
B, (I, 1%, I3,.. ., Ii), the original loop bounds L}, L2,... .U}, UZ,...
Ensure: the new loop body function B,(I',I% ... T%), the new loop bounds
LL L2, ... UL U2, ... the new loop steps Sy, S2,...
g < find_offset(G) (shown in Algorithm 3.2);
for x =0 to f-1 do do
Append function B,(I' + z,I> —z % g,I%,...,I%) to B,(I',I*,I®,...,I') ;
end for
for y=0toido do
Ly =L5 UL =UF; Sy =1
end for
Ly =g;5, = f;

In the algorithm, we first duplicate the original loop body f times. Each time
we increase the loop index I' by 1 and decrease the loop index I2? by striping
offset g. After the new loop body is generated, we will change the minimum value
of loop index L2 to be g, which means the starting point of the second level loop
is offset by the striping offset g. Finally, the step variable of the outer most loop
is increased by the striping factor f, which is because we are scheduling f original
iterations at a time. In the algorithm, we use the function shown in Algorithm 3.2
to obtain a striping offset. This function follows the steps described in the proof
of Lemma 1.

For algorithm 3.1, it takes O(|E|) time to find the striping offset g, where
|E| is the number of edges in the original MDFG. It takes O(f x N) to com-
plete the code generation, where f is the striping factor and N is the number



Algorithm 3.2 Function find_offset(Q)
Require: MDFG G = (V, E,d,t)
Ensure: Striping offset g

D «+ {d|d # (0,0,...0)} ;

Find d’=(d;, d;) € D that d}/d; is the minimum ;

{I—[d;-/dﬂ +1 d; <0
g:

]
0 d; >0

return g;

of instructions in the original loop body. Hence the total time complexity for
Algorithm 3.1is O(|E| + f x N).

4 Experiments

In this section, we conduct experiments based on a set of DSP benchmarks with
two dimensional loops: WDF (Wave Digital Filter), IIR (the Infinite Impulse
Response Filter), 2D (the Two Dimensional filter), Floyd (Floyd-Steinberg al-
gorithm), and DPCM (Differential Pulse-Code Modulation device).

For each benchmark, we compare the iteration periods of the initial loops, the
iteration periods for the transformed loops obtained by software pipelining, the
iteration periods for the transformed loops obtained by loop unfolding, and the
iteration periods of the transformed loops obtained by loop striping. The results
are shown in Table 1. In the Tablel, columns “Initial”, “S. Pipe.”, “Unfolding”,
and “Striping”, represent the iteration periods of the initial loops, the iteration
periods after applied software pipelining, the iteration periods of the unfolded
loops, and the iteration periods of the striped loops, respectively. Iteration pe-
riods in the table are average iteration periods. For unfolded or striped loops,
the iteration periods are obtained by two steps: first calculate the cycle periods
for unfolded or striped loops and then divide the cycle periods by the unfolding
factor or striping factor. At the end of Table 1, row “Avg. Iter. Period” shows
the average iteration period for each according column. The last row “Iter-re.
Avg. Impv.” is the average improvement obtained by comparing loop striping
with other techniques. Compared to loop unfolding, iterational retiming reduces
iteration period by 54%. Compared to software pipelining, iterational retiming
reduces iteration period by 50%.

From our experiment results, we can clearly see loop striping technique can
do much better in increasing parallelism and timing performance on nested loops
than software pipelining and loop unfolding. While software pipelining and loop
unfolding improves iteration period for single dimensional loops, loop striping
technique significantly reduces iteration period further for multi-dimensional
loops. As the unfolding/striping factor grows larger, the improvement becomes
more and more substantial. Having a smaller iteration period means that we



Benchmark | Iteration Period (cycles)
unfolding/striping factor=2
Benchmark Initial|S. Pipe.|Unfolding|Striping
IIR 5 2 4.5 2.5
WDF 6 1 3 3
FLOYD 10 8 10 5
2D(1) 9 1 5.5 4.5
2D(2) 4 4 4 2
DPCM 5 2 4.5 2.5
MDFG1 7 7 7 3.5
MDFG2 10 10 10 5
unfolding/striping factor=4
Benchmark Initial|S. Pipe.|Unfolding|Striping
IIR 5 2 3.3 1.3
WDF 6 1 1.5 1.5
FLOYD 10 8 10 2.5
2D(1) 9 1 3.8 2.3
2D(2) 4 4 4 1.0
DPCM 5 2 3.3 1.3
MDFG1 7 7 7 1.8
MDFG2 10 10 10 2.5
unfolding/striping factor=6
Benchmark Initial|S. Pipe.|Unfolding|Striping
IIR 5 2 2.8 0.8
WDF 6 1 1 1
FLOYD 10 8 10 1.7
2D(1) 9 1 3.2 1.5
2D(2) 4 4 4 0.7
DPCM 5 2 2.8 0.8
MDFG1 7 7 7 1.2
MDFG2 10 10 10 1.7
unfolding/striping factor=8
Benchmark Initial|S. Pipe.|Unfolding|Striping
IIR 5 2 2.6 0.6
WDF 6 1 0.8 0.8
FLOYD 10 8 10 1.3
2D(1) 9 1 2.9 1.1
2D(2) 4 4 4 0.5
DPCM 5 2 2.6 0.6
MDFG1 7 7 7 0.9
MDFG2 10 10 10 1.3
|Avg. Tter. Period || 7 | 438 | 482 | 22 |

[Tter-re. Avg. Impv.[| 68% | 50% | 54% |
Table 1. Comparison of iteration period among list scheduling, software pipelining,
loop unfolding and loop striping.




can complete each iteration faster. As a result, our technique can significantly
improve the timing performance for applications with nested loops.

5

Conclusion

In this paper, we propose a new loop transformation technique, loop striping.
Loop striping can achieve the maximum parallelism while maintaining the orig-
inal schedule vector, namely keeping the row-wise execution sequence. In this
way, loop striping simplifies the new loop bounds and loop indexes calculation
and reduces overhead. We believe loop striping is a promising technique and can
be applied to different fields for nested loop optimization.
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