
Automatic Generation of
Hardware/Software Interface with
Product-Specific Debugging Tools?

Jeong-Han Yun†, Gunwoo Kim†, Choonho Son‡, and Taisook Han†

†Dept. of Computer Science, Korea Advanced Institute of Science and Technology
‡Network Technology Laboratory, Korea Telecom

{dolgam,reshout}@pllab.kaist.ac.kr, choonho@kt.co.kr, han@cs.kaist.ac.kr

Abstract. Software programmers want to manage pure software, not
hardware-software entanglements. Unfortunately, traditional development
methodologies cannot clearly separate hardware and software in embed-
ded system development process. We propose a Hardware/software IN-
terface GEnerator ; we call it HINGE. After receiving device specifica-
tions including device usage rules for each device, HINGE automatically
generates device API, device driver, and device controller for each de-
vice. In addition, HINGE equips device APIs to check the device usage
rules at run-time. Consequently, HINGE gives support to not only fast
prototyping but also device usage rule-debugging in embedded software.

1 Introduction

Traditional embedded system development process repeats requirement analy-
sis, separated hardware/software design, implementation, and test. This process
raises three controversial arguments. First, this process needs many implementation-
iterations caused by information miscommunication or requirement changes. Any
of them impacts the entire development team. Second, hardware/software inter-
face(Figure 1) implementation and integration are tedious and error-prone; 40%
of product development time is spent for system integration, and more 60% of
operating system’s errors are born from here[1]. Finally, system debugging and
requirement check are too hard. Equivocal error messages from device drivers
do not tell the exact cause of errors.

To overcome these problems, we propose a Hardware/software INterface
GEnerator ; we call it HINGE. After receiving an interface specification for each
device from system designers, HINGE generates the hardware/software interface
for each device.

Moreover, HINGE generates rule-checking codes based on device usage rules
in API specification, and inserts them into device APIs. The inserted codes

?This research was supported by the MIC(Ministry of Information and Communica-
tion), Korea, under the ITRC(Information Technology Research Center) support pro-
gram supervised by the IITA(Institute of Information Technology Assessment) (IITA-
2005-C1090-0502-0031)

System Bus

Register read/write

Interrupt/Polling/Delay

Function Call

Device
Driver

OS

Device
API

App.
(SW)

Device
Controller

HW

Fig. 1. Hardware/Software Interface: device API, device driver, and device controller

notice wrong usages of devices using return values of device APIs1. With the
generated device APIs, software-development groups can easily detect device
usage errors by the return values of the device APIs at run-time. Therefore,
all of the generated device APIs is suitable for a good rule-debugging tool or a
device exception handler.

This paper is organized as follows. Section 2 defines the interface specifica-
tion as HINGE’s input. Section 3 explains the automatic generation of hard-
ware/software interface. The case study of HINGE is in Section 4. Section 5
summaries the related work about hardware/software interface. Section 6 con-
cludes the paper.

2 Interface Specification

Interface specification is our representation of hardware/software interface infor-
mation as HINGE’s input. It is divided into four categories as follows:

API Specification : declaration of interface relations
Driver Specification : definition of communication events2
Controller Specification : memory assignment of hardware
System Specification : information of a target machine

Each specification is written in XML format.

2.1 API Specification

Push-Pull interface has been used to show who is a major actor between sender
and receiver. We apply Push-Pull interface to API specification.

1Alarms with special return values generally apply to software libraries; for example,
the return value 0 of malloc function in C libraries means the failure of dynamic
memory allocation.

2The events can be interpreted as variables in software, and as signals in hardware.

EFSM #1 EFSM #2push(B)

A / B B
1 2

EFSM #1 EFSM #2pul l (B)

A / B B
2 1

Fig. 2. Push interface and Pull interface: our graphic notation

Push-Pull Interface We can represent communications between two EFSMs[6]
by Push-Pull interface. Push interface means that a receiver always detects3

events as soon as a sender emits4 it. On the other hand, Pull interface means
that a receiver detects events when it wants. Using these two interfaces, we can
represent delivery/processing order of communication events exactly.

Both Push interface and Pull interface in Figure 2 are delivering an output
event B from EFSM #1 as an input event to EFSM #2, but the behaviors
between EFSM #1 and EFSM #2 are different.

From API specification, When an event is occurred, EFSM #1 sends the
event into EFSM #2 by Push mechanism. That is, EFSM #1 is an active
sender, and EFSM #2 is a passive receiver. Therefore, the sender controls the
synchronization timing of two EFSMs in Push interface. Push interface can be
manipulated by interrupt or polling mechanism.

However, EFSM #2 decides the timing or receiving events in Pull interface,
even if the event is occurred in the EFSM #1. That is, EFSM #1 is a passive
sender, and EFSM #2 is an active receiver. Therefore, the receiver controls the
synchronization timing of two EFSMs in Pull interface.

API specification API specification consists of three parts:

1. Function type of each device API
2. Interface definition using Push-Pull interface
3. Automata for describing device usage rules: the execution order among de-

vice APIs or permitted range of parameters
3Detecting events can be considered as reading the data of variables with regard to

software and as receiving signals with regard to hardware
4Emitting events can be interpreted as writing the data of variables in respect of

software and as sending signals in respect of hardware.

<Driver>

<event name=’adder’>

<sw2hw sw_var=’uint8 a’ hw_port=’A [7:0]’ />

<sw2hw sw_var=’uint8 b’ hw_port=’B [7:0]’ />

<hw2sw sw_var=’uint8 c’ hw_port=’C [7:0]’ />

<interrupt pin_name=’27’ hw_name=’ready’ />

</event>

<event_layout id=’adder’ virtual_address=’0xf1810000’>

<offset id=’0’ sw=’a’ map=’[7:0]’ to=’A [7:0]’/>

<offset id=’1’ sw=’b’ map=’[7:0]’ to=’B [7:0]’/>

<offset id=’2’ sw=’c’ map=’[7:0]’ from=’C [7:0]’/>

</event_layout>

</Driver>

Fig. 3. An example of driver specification

HINGE generates device API from API specification. Whenever the device
API is called, it checks the device usage rules. That is, it returns positive value
that indicates the current state number on device usage rule automata. If em-
bedded software breaks an device usage rule, the device API returns negative
one of the current state number. We will show an example in Section 4.

2.2 Driver Specification

Driver specification is used by HINGE to generate device drivers. Figure 3 is an
example. Driver specification is composed of two parts:

1. communication event : the connection between the device driver’s arguments
and hardware ports

2. communication event layout : the mapping to virtual address

HINGE uses memory mapped I/O for hardware/software communication5.
So all events must be mapped to their own fixed virtual addresses in kernel
memory.

2.3 Controller Specification

Controller specification contains low-level information such as system bus and
the memory space of hardware. Figure 4 is an example of controller specification.
Using these information, HINGE generates device controller: a composition of
address decoder and data decoder.

5In our experimental environment, devices are implemented on FPGA for proto-
typing. FPGA module has physically continuous address space. This address space is
used for kernel memory.

<Controller>

<AddrDecoder>

<addr id=’CX_A’ width=’[21:1]’/>

<chip_select id=’NPX_CS5’ type=’active low’/>

<write from=’0’ to=’1’/>

<read from=’2’ to=’2’/>

</AddrDecoder>

<DataDecoder>

<data id=’CX_D’ width=’[15:0]’/>

<write_enable id=’NPX_PWE’ type=’active high’/>

<read_enable id=’GPIO27’ type=’active low’/>

</DataDecoder>

</Controller>

Fig. 4. An example of controller specification

SYSTEM ::= CPU OS

CPU ::= CPUTYPE ENDIAN

CPUTYPE ::= xscale | x86
ENDIAN ::= little | big

OS ::= LINUX

LINUX ::= KERNEL DRIVER

KERNEL ::= 2 .4 | 2 .6

DRIVER ::= −1 | PositiveInteger

Fig. 5. The abstract grammar for system specification

2.4 System Specification

System specification has the information about CPU and operating system. Fig-
ure 5 shows the abstract grammar of system specification.

Now HINGE supports Linux operating system with Intel Xscale architecture.
The kernel version of Linux is one of 2.4 or 2.6, which are the major versions
of the Linux kernel. The DRIVER specifies a major number of hardware devices.
If the specified number is a positive integer, the device is statically allocated by
that number. Otherwise, the device is dynamically allocated by the operating
system.

3 Hardware/Software Interface

From the interface specification, HINGE automatically generates hardware/software
interface: device API, device driver, and device controller. Figure 6 is our target
board architecture.

Fig. 6. Our target board architecture

Fig. 7. The models of write and read functions

3.1 Device API

Device API is a high-level encapsulation of device drivers; embedded software
can access devices like software libraries through device API.

Especially, device API generated by HINGE provides debugging faculties
which can detect wrong usages of device APIs with the following procedure:

1. Each device API memorizes the device’s current state in its device usage
rule automata.

2. If device API is called in a wrong way, it returns the negative value of the
current state number.

3. If device API is called in a right way, it moves to the next state by this usage
and returns the positive value of the state number.

After checking above conditions, the device API transfers hardware/software
communication events using the device drivers.

Fig. 8. Schematic diagram of the read/write module

3.2 Device Driver

HINGE generates character device drivers for target operating systems. Funda-
mental functions are open, close, read, write, and llseek.

In Linux environment, each function of device driver has common model.
HINGE generates device drivers through these common device driver models.
These models can be applied to any device driver. Figure 7 shows the models of
write and read functions.

Like write and read functions, HINGE automatically generates other device
driver functions based on the common driver models.

3.3 Device Controller

The device controller consists of an address decoder and a data decoder. The
address decoder gets a physical address from the address bus, and emits control
signals for the data decoder. The data decoder reads or writes data according
to control signals emitted by the address decoder.

A device can be classified into three functional models by behaviors of the
data decoder: read module, write module, and read/write module. Among of
them, Figure 8 shows the schematic diagram of the read/write module. HINGE
generates Verilog codes based on that schematic diagram.

4 Case Study

We will show the advantages of HINGE with the case of a simplified auto-
matic transmission. For the experiment, we use EMPOS II[2] with embedded
Linux(kernel version 2.4). The devices are written in Verilog HDL. The devices
are loaded on FPGA with the generated device controllers, and the device drivers
are loaded on embedded Linux.

software hardware

start

get_info

proc

exit

stick

rpm

NP

R

1

2

3

4

gear
box

get_stickget_stick()()

get_rpmget_rpm()()

set_gearset_gear()()

Fig. 9. Push-Pull Interface of simplified automatic transmission

4.1 Design of Automatic Transmission System

The software gets the current lever position from the lever device by Pull inter-
face, and the rpm gauge tells the software of the current rpm by Push interface.
After deciding appropriate gear ratios based on the lever position and the cur-
rent rpm, the software orders the gearbox device to change gear ratios by Push
interface. Figure 9 is the informal representation of the entire system using our
graphic notation for Push-Pull interface.

4.2 The Use of HINGE

To check whether the software uses devices correctly, we should express device
usage rules by state automata in API specification. In case of the gearbox device,
it has several states corresponding to ratios. Its API specification is shown in
Figure 10. A ratio -1 denotes the reverse gear, and a ratio 100 does the parking
gear; others are omitted.

The experimental results of simplified automatic transmission are depicted
in Table 1 and Table 2.

By using generated device APIs instead of kernel functions, software can
check or handle error cases at run-time. For example, when the current gear
ratio is set to ‘second gear’, if the software orders the gearbox device to set gear
ratio ‘neutral gear’, set ratios returns ’-SECOND’; ‘-SECOND’ indicates the
error occurrence on the device state ‘SECOND’ in the device usage rules(Figure
11). Each state name automatically defines a constant in generated device APIs.

5 Related Work

Codesign Tools The major difference between HINGE and interface generators
of other codesign systems is the device API to check the device usage rules at

<API>

<device id=’gearbox’>

<func name=’set_ratios’>

<param type = ’uint8’ name=’ratios’ size=’1’ op=’write’ />

</func>

</device>

<automata>

<state name=’NEUTRAL’>

<func name=’set_ratios’>

<action cond=’ratios == 0’ to=’NEUTRAL’ />

<action cond=’ratios == -1’ to=’REVERSE’ />

<action cond=’ratios == 1’ to=’FIRST’ />

</func>

</state>

...

<state name=’SECOND’>

<func name=’set_ratios’>

<action cond=’ratios == 1’ to=’FIRST’ />

<action cond=’ratios == 3’ to=’THIRD’ />

<func>

</state>

...

<state name=’PARKING’>

<func name=’set_ratios’>

<action cond=’ratios == 0’ to=’NEUTRAL’ />

<action cond=’ratios == 100’ to=’PARKING’ />

</func>

</state>

</automata>

</API>

Fig. 10. A portion of the API specification of the hardware component gearbox

run-time. To the best of our knowledge, none of codesign frameworks service the
debugging interface like that.

Approaches to automatic interface generation including CHINOOK[5] and
POLIS[6] describe a system with a set of codesign finite state machines(CFSMs)
which use FIFO queues. Since these codesign environments keep all of target
architecture information, development groups using these environments do not
write the hardware/software interface specification. This is why these environ-
ments are not flexible for architecture modification.

COSMOS[7], COSYMA[8], and CoWare[9] use concurrently-running pro-
cesses using remote procedure calls(RPCs) for communications. This mechanism
is more complicate than shared memory and may cause inefficiency. COSMOS
and CoWare are now commercially available from AREXSYS[10] and CoW-
are[11].

void auto_transmission() {

int chk, lever, rpm;

...

while(1) {

chk = get_lever(&lever);

if (chk < 0) {

printf("get_lever error : error_code=%d\n", chk);

exit(1);

}

chk = get_rpm(&rpm);

if (chk < 0) {

printf("get_rpm error : error_code=%d\n", chk);

exit(1);

}

if (lever==0) {

chk = set_ratios(0);

if (chk== -SECOND) { // if current gear ratio is second

if (rpm < 1500) {

chk = set_ratio(1);

}

}

else if (chk < 0) {

printf("set_ratios error : error_code=%d\n", chk);

exit(1);

}

}

...

}

}

Fig. 11. Software auto transmission using device APIs

Interface Generation Traditionally, device drivers have been written in C due
to its efficiency and flexibility. Unfortunately, sophisticated device interaction
protocols and C’s lack of type safety make driver code complex and prone to
failure. Device drivers account for 70–90% of bugs in the Linux kernel and have
error rates up to three to seven times higher than the rest of the kernel[12]. So
various approaches have been suggested to improve the reliability of low-level
software, device driver software, and device controller in many researches[1, 4,
13–19].

These tools support device interfaces well. Nevertheless, bugs of embedded
software may be born from wrong device usages as well as device interfaces
implementation itself. Some of them provide fundamental but simple debugging
interfaces[1, 4, 9, 19]. However, our tool generates device APIs that can alarm
wrong device usages based on API specification. This helps embedded software
debugging and exception handling for wrong device usages.

API Driver Controller System Total

stick 14 8 12 9 43
rpm 14 9 12 9 44

gearbox 56 8 12 9 85

Total 84 25 36 27 172

Table 1. Automatic transmission’s interface specification(lines of code)

API Driver Controller Makefile Total
(C) (C) (Verilog)

stick 33 87 74 15 209
rpm 33 94 74 15 216

gearbox 68 88 92 15 263

Total 134 269 240 45 688

Table 2. Generated codes from the interface specification in Table 1(lines of code)

6 Conclusion

Our ultimate goal is the separation of hardware- and software-development pro-
cess. For that purpose, we propose interface specification as hardware/software
interface description methodology and implement the hardware/software inter-
face generator HINGE. Our approach makes four contributions to embedded
software development.

First, API specification using Push-Pull interface can show the more realistic
interfacing mechanisms than other interface description methodologies.

Second, interface specification can be used for a common specification docu-
ment between hardware- and software-development groups. Especially, software
development groups can learn the device usage rules for product requirements.

Third, HINGE automatically generates all of hardware/software interfaces
for target devices. Automatic hardware/software interface generation can signif-
icantly reduce the burdens of embedded system development.

Finally, generated device APIs return negative values when embedded soft-
ware violates the device usage rules. So, the device APIs generated by HINGE
can help requirement-, function- or rule-level tests; software programmers can
omit additional work just like rule-check function programming.

References

1. QuickDriver, http://www.etri.re.kr/www 05/search/view 03.php?fclass=01&idx=1247
2. Hanback Electronics CO.LTD, http://www.hanback.co.kr/
3. A. Rajawat, M.Balakrishnan, and A. Kumar, “Interface Synthesis : Issues and Ap-

proaches”, Proceedings of the 13th International Conference on VLSI Design, pp.92–
97, 2000.

4. WindRiver, http://www.windriver.com/
5. P. Chou, R. Ortega, and G. Borriello, “Interface co-synthesis techniques for em-

bedded systems”, Proceedings of the IEEE/ACM International Conference on CAD
(ICCAD), pp.280–287, 1995.

6. F. Balarin, A. Jurecska, and H. Hsieh et al, Hardware-Software Co-Design of Em-
bedded System: The Polis Approach, Kluwer Academic Press, Boston, 1997.

7. T. B. Ismail, M. Abid and A. Jerraya, “COSMOS: A codesign approah for communi-
cating systems”, Proceedings of the 3rd International workshop on Hardware/software
Co-Design, pp.17–24, Grenoble, France, 1994.

8. R. Ernst, J. Henkel, T. Benner, W. Ye, U. Holtmann, D. Hermann, and M. Trawny,
“COSYMA environment for hardware/software cosynthesis of small embedded sys-
tems”, Microprocessors and Microsystems, Vol.20, pp.159–166, 1996.

9. D. Verkest, K. Van Rompaey, and I. Boolsens, Co-Ware - A Design Environment
for Heterogeneous Hardware/Software Systems, 1, Nov. 1996.

10. Arexsys. http://www.arexsys.org/
11. CoWare. http://www.coware.com/
12. A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An empirical study

of operating system errors”, Proceedings of the 18th ACM Symposium on Operating
Systems Principles, volume 35 of Operating System Review, pp 73–88, Banff, Alberta,
Canada, October 2001.

13. F. Hessel, P. Coste, P. Lemarrec, N. Zergainoh, J. M. Daveau, and A. A. Jerraya,
“Communication and Interface Synthesis on a Rapid Prototyping Hardware/Software
Codesign System”, IEEE International Workshop on Rapid System Prototyping,
1998.

14. M. Eisenring and J. Teich, “Domain-Specific Interface Generation from Dataflow
Specifications”, Proceedings of the 6th International Workshop on Hardware Software
Codesign, pp. 43–47, 1998.

15. L. Palopoli II, G. Lipari, L. Abeni, M. D. Natale, P. Ancilotti, and F. Conticelli, “A
Tool for Simulation and Fast Prototyping of Embedded Control Systems”, Languages,
Compilers, and Tools for Embedded Systems, pp. 73–81, 2001.

16. F. Merillon, L. Reveillere, C. Consel, R. Marlet, and G. Muller, “Devil: An IDL for
Hardware Programming”, Proceedings of the 4th USENIX Symposium on Operating
System Design and Implementation, pp. 17-30, San Diego, California, October 2000.

17. S. Wang and S. Malik, “Synthesizing Operating System Based Device Drivers in
Embedded Systems”, Proceedings of the First International Conference on Hard-
ware/Software Codesign and System Synthesis(CODES+ISSS), Newport Beach, CA,
October 2003.

18. S. A. Edwards, “SHIM: A language for Hardware/Software Integration”, Syn-
chronous Languages, Applications, and Programming, 2005.

19. C. L. Conway, and S. A. Edwards, “NDL: A Domain-Specific Language for De-
vice Drivers”, Languages, Compilers, and Tools for Embedded Systems, pp. 30–36,
Washington, DC, June 2004.

