
Buffer Cache Level Encryption for Embedded
Secure Operating System⋆

Jaeheung Lee1, Junyoung Heo1, Jaemin Park1, Yookun Cho1, Jiman Hong2,
and Minkyu Park3⋆⋆

1 Seoul National University
{jhlee, jyheo, jmpark, cho}@ssrnet.snu.ac.kr

2 Soongsil University
jiman@ssu.ac.kr

3 Konkuk University
minkyup@kku.ac.kr

Abstract. A cryptographic file system is the representative way of as-
suring confidentiality of files in operating systems. For secure embedded
operating systems, the cryptographic file system could be a practical
technique. In general, cryptographic file systems are implemented us-
ing a stackable file system or a device driver. These two mechanisms can
provide user transparent encryption/decryption of cryptographic file sys-
tems. But these mechanisms sometimes encrypt or decrypt data redun-
dantly or unnecessarily. Embedded systems with a low speed CPU and
flash storage are more affected by the problems than general systems.
We addressed the above mentioned problems by applying an encryption
algorithm on buffer caches and enabling one buffer cache to have both
encrypted and decrypted data together. Experimental results show that
the proposed mechanisms reduce the redundant or unnecessary opera-
tions and it can improve the performance of cryptographic file systems.

KEY WORDS
Security, Cryptographic File System, Embedded Operating System, Buffer Cache,
Linux

1 Introduction

Secure data technique is more attractive as the value of information increases
and threats to the information increase[1]. Cryptographic file systems are the
most practical technique for secure operating systems. Even though the files
are stolen by physical or network attacks, it can protect files that contain the

⋆ This research was supported in part by the Brain Korea 21 project and MIC & IITA
through IT Leading R&D Support Project. The ICT at Seoul National University
provides research facilities for this study.

⋆⋆ corresponding author



valuable information by encrypting the information. Attackers cannot get secure
information of files unless they get the key of the cryptographic algorithm.

Considering the growing interest in mobile embedded systems, the use of
cryptographic file systems in embedded systems will be more important. The
securing data in mobile embedded systems is more important than existing gen-
eral systems because the mobility causes a new threat, that is the lost of the
system itself[2].

The performance of a file system is sure to decrease after applying a cryp-
tographic file system. Because cryptographic algorithms require a lot of CPU
instruction for encryption and decryption. From the user’s point of view, the
degradation of the performance must be tolerable. So the reasonable perfor-
mance is required for cryptographic file systems. Especially, embedded systems
are more affected by the degradation of the performance than other systems
because they are composed of a low speed CPU, a small memory and batteries.

So far, many cryptographic file systems have been introduced. In this study,
we consider cryptographic file systems only in kernel-level [3–9]. These are cate-
gorized by the implementation method: using a stackable file system and using
a device driver.

A stackable file system is an easy and efficient way to add new features
into existing file systems of a kernel[10, 7]. With a stackable file system, you
can easily add encryption or compression algorithms into a file system. Kernel
modification is a very hard job due to the complexity of a kernel and the difficulty
in debugging it. The stackable file system allows a new feature to be integrated
into a kernel without influencing another part of a kernel. In addition, it is faster
than user-level library because the stackable layer is in a kernel. Therefore, many
cryptographic file systems using a stackable file system have been developed.

However, the stackable file system cannot exploit the advantage of buffer
caches[11]. If a user process accesses some part of a file twice, encryption or
decryption should be repeated twice in a stackable layer. Therefore, redundant
encryption or decryption may occur in a cryptographic file system using a stack-
able file system.

Another popular method to implement cryptographic file systems is a device
driver[3–6]. Strictly speaking, there is no relation between using a device driver
and the file systems. Because it locates a cryptographic algorithm in a device
driver, a file system does not know the existence of a cryptographic algorithm.
As a result, all data read from a disk is always decrypted before being stored
in buffer caches. Inversely, all data stored in buffer caches is always encrypted
before being stored in a disk. Therefore, unnecessary encryption or decryption
may occur in a device driver.

To improve the performance by reducing those redundant and unnecessary
encryption/decryption, we propose the mechanism, support in a buffer cache
level. Basically, our mechanism locates a cryptographic algorithm in buffer caches
and enables a buffer cache to have mixed plaintext and ciphertext.

In the request of a read operation from the VFS(or user application), en-
crypted data is decrypted before copying the data from a buffer cache to the



VFS. The amount of decryption is strictly limited to the size of requested data.
If data in a buffer cache is decrypted once, the decrypted data is replaced with
an encrypted one. If the request of a read operation at the same position in a
file occurs again, no more decryption is required. This is helpful to remove re-
dundant encryption/decryption of a cryptographic file system using a stackable
file system.

By limiting the amount of decryption to the size of requested data, the prob-
lem of unnecessary decryption is resolved. To this end, we designed a new buffer
cache with a bitmap to indicate whether data is encrypted or decrypted. There-
fore, a buffer cache of our mechanism is able to have plaintext and ciphertext
together.

The rest of this paper is organized as follows. Section 2 surveys related works.
Section 3 describes our mechanism. Section 4 presents our experimentation and
results. Section 5 presents our concluding remarks.

2 Related Work

We survey some related work in this section. There are many techniques related
to securing files: encryption of a storage device, encryption using a user-level
library, encryption in a device driver and encryption using a stackable file system.

Encryption of a storage device can be operated without operating systems. It
is integrated with a storage hardware. Therefore, its performance is better than
that of other software techniques. DataTravler Elite [12] and SecureIDE [13]
fall under this category. Encryption using a user-level library such as crypt(3)
and GNU PG[14] are also available. CFS[15] and TCFS[16] are examples of user-
level mechanisms. They use a NFS server for applying cryptographic algorithms.
These user-level mechanisms can be easily implemented, but it has many prob-
lems with respect to key management, consistency, performance and so on. We
will not mention these techniques any more because our study focuses on the
kernel mechanism.

We focus on two kernel mechanism: encryption in a device driver and a
stackable file system. Strictly speaking, encryption in a device driver is not a
cryptographic file system because a cryptographic file system is a file system to
manage files on a disk securely. However, to simplify the terms, we will refer to
both of them as a kind of cryptographic file systems.

In a cryptographic file system using a device driver, encryption is carried out
while an I/O operation is being performed. It can be used for the applications
that accesses to a storage directly such as a swap device and a database. It can
also be used for the general applications that require file systems. It can provide
user transparency and good performance, but it cannot encrypt or decrypt a
unit of a file. Cryptoloop [3], CryptoGraphic Disk Driver (CGD) [4], SFS [6] and
BestCrypt [5] fall into this category.

A cryptographic file system using a device driver outperforms the stackable
mechanism. However, the stackable mechanism can provide file encryption. It
also provides user transparency like the device driver mechanism.



Cryptfs [7] and Ncryptfs [8] use FiST [17] as a stackable file system. Ncryptfs
is an improved version of Cryptfs. Ncryptfs can authenticate several users si-
multaneously and apply cryptographic algorithms dynamically. It also provides
challenge-response authentication. It uses block cipher and applies CFB (Cipher
FeedBack) mode for inode blocks, ECB (Electronic CodeBook) for data blocks.

EFS (Encryption File System) is a cryptographic file system based on MS
Windows NT[9]. It exists in a kernel, but it requires user DLL for encryption
and user authentication.

3 Buffer Cache Level Support

The main objective of our mechanism is to exploit the advantage of buffer caches.
In addition, our mechanism enables a buffer cache to be encrypted or decrypted
partially. In this study, we use a block cipher as a cryptographic algorithm and
an ECB(Electronic CodeBook) mode as a block cipher mode. With this com-
bination, random access and equal length of plaintext and ciphertext can be
achieved.

Fig. 1 shows how decryption is performed in a read operation. When a user
requests an operation that reads data in the block 2 of a file, the block is loaded
to a buffer cache and copied to a user area. In the system using a stackable
file system, Fig. 1(a), decryption is performed right before copying data from a
buffer cache to a user area. If another read operation that requests data which is
already requested in a previous read operation is performed, decryption will be
repeated. Such redundant operation can occur because a stackable file system
does not care whether a buffer cache exists or not.

3 3 3

(a) Stackable FS (b) Device driver (c) Our mechanism

Stackable layer

Device driver copy

decryption

User area

File

Buffer caches

copy

copy

2 2 2

21 3

4 5 6

7 8

21 3

4 5 6

7 8

21 3

4 5 6

7 8

decryption

partial decryption

Fig. 1. Decryption in Read Operation



In case of using a device driver, Fig. 1(b), decryption is performed right before
loading data from a file to a buffer cache. Buffer caches always have decrypted
data. Therefore, redundant decryption does not occur. However, decryption in
a device driver level may cause unnecessary decryption. As a device driver does
not have any information about the read operation, the entire block 2 is read
and decrypted even though the part of the block 2 is required.

Another case of unnecessary decryption in a device driver level may occur
because of a read-ahead technique. Operating systems sometimes read the next
data of current read in advance. A read-ahead assumes that disk accesses are
sequential[18]. However, a read-ahead algorithm does not always succeed as pre-
dicted.

In our mechanism, Fig. 1(c), the block 2 of a file is copied to buffer caches
but not decrypted. Only the requested area of the block 2 is decrypted and
stored back in buffer caches. After this partial decryption, the requested data is
copied to a user area. Because unused area of the block 2 is not decrypted, this
partial decryption can remove the unnecessary decryption. We can also expect
that the redundant decryption will be removed by the buffer caches because the
decrypted result is stored in buffer caches.

In a write operation, redundant encryption can occur as in a read opera-
tion. We consider only overwrite operations that write data in the existing part
of a file. In case of a append operation, three mechanisms are similar. Fig. 2
shows the case of a write operation. In a repeated write operation, the stackable
layer encrypts the data redundantly. In case of using a device driver and our
mechanism, this redundancy does not occur.

3 3 3

(a) Stackable FS (b) Device driver (c) Our mechanism

Stackable layer

Device driver copy

encryption

User area

File

Buffer caches

copy

2 2 2

21 3

4 5 6

7 8

21 3

4 5 6

7 8

21 3

4 5 6

7 8

encryption

copy

partial encryption

Fig. 2. Encryption in Write Operation

We add new information in a buffer cache to support partial encryption/
decryption of a buffer cache. This information enables a buffer cache to distin-
guish which part of a buffer cache is encrypted or decrypted. The information,
BITMAP is shown in Fig. 3. The DATA in a buffer cache is divided into cipher
blocks. If the bit is 1, the corresponding cipher block is encrypted. Otherwise,



the cipher block is decrypted. Block cipher algorithms use a cipher block as a

Buffer Cache

DATA

1 0 1 0 1 0 11 10 0BITMAP

Encrypted Decrypted

Fig. 3. Information for Partial Encryption/Decryption in Buffer Cache

basic encryption or decryption unit. In case of AES, the size of a cipher block is
16 bytes. If the size of a buffer cache(DATA) is 4096 bytes, the size of BITMAP
is 32 bytes. That is, additional 32 bytes per each buffer cache is necessary when
AES is used as a cryptographic algorithm.

4 Performance Evaluation

We implemented our buffer cache level support on Linux kernel version 2.6.11. In
addition, we made other mechanisms because we want to exclude other factors
which affect the performance except buffer caches.

Table 1 shows the experimental setup. We selected the embedded system
that has a lower CPU than a desktop and a NAND flash for a storage. The
reason is that the performance improvement is more important to the mobile
embedded system than other general systems. In that respect, our mechanism is
more suitable for the mobile embedded systems.

Table 1. Experimental setup

CPU Intel Xscale PXA270 520MHz

Main memory SDRAM 64Mbytes

Storage NAND Flash
- page size 512+16 bytes
- erase block size 16K+512 bytes

Operating system Linux kernel version 2.6.11

File system YAFFS[19]

Size of buffer cache 4Kbytes

Cryptographic algorithm AES(ECB mode) with 128bits key



In our experiment, AES was used for encryption. The key length was 128
bits and ECB(Electronic CodeBook) mode was used for block encryption. The
throughput of AES was about 240 Kbytes/s.

General file system benchmarks are not suitable to measure the effect of a
cache. We made two type of synthesized workload to compare our mechanism
with other cryptographic file systems in terms of buffer cache hit ratio.

– Workloads with requests of a read operation with cache hit ratio 0, 0.25,
0.50, 0.75 and 1.0

– Workloads with requests of a write operation with cache hit ratio 0, 0.25,
0.50, 0.75 and 1.0

We applied these workloads for various sizes of data: 64bytes, 128bytes, 256bytes,
512bytes, 1Kbytes, 2Kbytes and 4Kbytes. We got the average throughput by
repeating the experiments 1000 times.

Fig. 4 shows the results of read operations with the workloads. As the read
size increases, the throughput also increases. Before copying data to a user area,
the systems read 4Kbytes data from a file regardless of the actual read size.
4Kbytes is the size of a buffer cache. A read operation of 64bytes data results
in reading unnecessary 4Kbytes - 64bytes. Therefore, the larger read size makes
the larger throughput.

Except Fig. 4(e), hit ratio=1.0, our mechanism performs better than others.
In case of hit ratio=1.0, the read operations request the data already loaded in
a buffer cache. Therefore, unnecessary decryption is never occurred in case of
using a device driver. In other graphs of Fig. 4, the performance of the system
using a device driver is less than that of our mechanism due to the unnecessary
decryption.

In Fig. 4(a), hit ratio=0, the throughput of the system using a stackable
file system is similar to that of our mechanism. Our mechanism cannot exploit
the buffer cache when hit ratio is 0. In case of using a device driver, it always
decrypts entire buffer cache, even though less data is requested. This results in
the degradation of the performance in case of using a device driver.

As the hit ratio increases, the relative performance of the system using a
stackable file system decreases and the relative performance of the system using
a device driver increases. However, the relative performance of our mechanism
is not affected largely by the hit ratio because our mechanism can fully exploit
the buffer caches. The decrease of the relative performance of the system using
a stackable file system results from the redundant decryption.

Fig. 5 shows the results of write operations with the workloads. Like the
read operations, the throughput is increases as the write size increases. Except
Fig. 5(e), hit ratio=1.0, our mechanism outperforms the case of using a device
driver. The system using a device driver performs unnecessary encryption while
committing a buffer cache into a disk. This results in the performance degra-
dation. The throughput of the system using a stackable file system is equal to
ours because the repeated write is not considered in this experiment. In case
of 4Kbytes, other mechanisms must encrypt entire buffer cache like the system



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4K2K1K51225612864

T
h

ro
u

g
h

p
u

t(
K

b
y
te

s/
s)

Read size(Bytes)

Stackable FS
Device driver

Our mechansim

(a) Hit ratio=0

 0

 100

 200

 300

 400

 500

 600

4K2K1K51225612864

T
h

ro
u

g
h

p
u

t(
K

b
y
te

s/
s)

Read size(Bytes)

Stackable FS
Device driver

Our mechanism

(b) Hit ratio=0.25

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4K2K1K51225612864

T
h
ro

u
g
h

p
u

t(
K

b
y

te
s/

s)

Read size(Bytes)

Stackable FS
Device driver

Our mechanism

(c) Hit ratio=0.50

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

4K2K1K51225612864

T
h
ro

u
g
h

p
u

t(
K

b
y

te
s/

s)

Read size(Bytes)

Stackable FS
Device driver

Our mechanism

(d) Hit ratio=0.75

 0

 10000

 20000

 30000

 40000

 50000

 60000

4K2K1K51225612864

T
h
ro

u
g
h

p
u

t(
K

b
y

te
s/

s)

Read size(Bytes)

Stackable FS
Device driver

Our mechanism

(e) Hit ratio=1.0

Fig. 4. Read with cache hit ratio=0, 0.25, 0.50, 0.75 and 1.0



using a device driver. Therefore, when the write size is 4Kbytes, the throughput
of the system using a device driver is equal to that of others.

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h

ro
u

g
h

p
u

t 
(K

b
y

te
s/

s)

Write size (Bytes)

Stackable FS
Device driver

Our mechanism

(a) Hit ratio=0

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h

ro
u

g
h

p
u

t 
(K

b
y

te
s/

s)

Write size (Bytes)

Stackable FS
Device driver

Our mechanism

(b) Hit ratio=0.25

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h

ro
u

g
h

p
u

t 
(K

b
y
te

s/
s)

Write size (Bytes)

Stackable FS
Device driver

Our mechanism

(c) Hit ratio=0.50

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h

ro
u

g
h

p
u

t 
(K

b
y
te

s/
s)

Write size (Bytes)

Stackable FS
Device driver

Our mechanism

(d) Hit ratio=0.75

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h

ro
u

g
h

p
u

t 
(K

b
y
te

s/
s)

Write size (Bytes)

Stackable FS
Device driver

Our mechanism

(e) Hit ratio=1.0

Fig. 5. Write with cache hit ratio=0, 0.25, 0.50, 0.75 and 1.0

From the Fig. 4 and Fig. 5, we can know that the redundant and unnecessary
encryption/decryption can be reduced by our mechanism. The system using
a device driver outperforms others sometimes. However, this is occurred in a
special case, hit ratio=1.0 and this special case does not almost happen in real
computer systems.



5 Conclusions and Future Work

Many cryptographic file systems have been developed and used in real systems.
In general, kernel-level techniques are preferred because they are more cost-
effective than hardware techniques and outperform user-level techniques. How-
ever, existing kernel-level cryptographic file systems have some drawbacks. The
system using a stackable file system overlooks the effect of buffer caches and the
system using a device driver causes unnecessary decryption of data. We modified
buffer caches of a kernel to encrypt or decrypt data on a buffer cache partially.
This modification is helpful to eliminate unnecessary or redundant operations of
encryption/decryption and improve the performance.

References

1. Hasan, R., Myagmar, S., Lee, A., Yurcik, W.: Toward a threat model for stor-
age systems. In: Proceedings of International Workshop on Storage Security and
Survivability(StorageSS). (2005)

2. Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded
systems: Design challenges. ACM Transactions on Embedded Computing Systems
3 (2004) 461–491

3. GNU: The GNU/Linux CryptoAPI (2003)
4. Dowdeswell, R., Ioannidis, J.: The cryptographic disk driver. In: Proceedings of

the Annual USENIX Technical Conference, FREENIX Track. (2003)
5. Jetico Inc.: Bestcrypt corporate edition (2001)
6. Gutmann, P.C.: Secure file system(SFS) for DOS/Windows (1994)
7. Zadok, E., Badulescu, I., Shender, A.: Cryptfs: A stackable vnode level encryp-

tion file system. Technical Report CUCS-021-98, Computer Science Department,
Columbia University (1998)

8. Wright, C., Martino, M., Zadok, E.: Ncryptfs: A secure and convenient crypto-
graphic file system. In: Proceedings of the Annual USENIX Technical Conference.
(2003) 197–210

9. Microsoft Corporation: Encrypting file system for Windows 2000 (1999)
10. Zadok, E., Badulescu, I.: A stackable file system interface for Linux. In: Proceedings

of the 5th Annual Linux Expo. (1999) 141–151
11. Wright, C., Dave, J., Zadok, E.: Cryptographic file systems performance: What

you don’t know can hurt you. In: Proceedings of the Second IEEE International
Security In Storage Workshop. (2003) 47–62

12. Kingston Technology company: DataTraveler Elite (2006)
13. ABIT Computer corporation: Secure IDE (2003)
14. GNU: GNU Privacy Guard (1999)
15. Blaze, M.: A cryptographic file system for UNIX. In: CCS ’93: Proceedings of the

1st ACM conference on Computer and communications security. (1993) 9–16
16. Cattaneo, G., Catuogno, L., Sorbo, A.D., Persiano, P.: The design and implemen-

tation of a transparent cryptographic file system for UNIX. In: Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical Conference. (2001) 199–212

17. Zadok, E., Nieh, J.: FiST: A language for stackable file systems. In: Proceedings
of the Annual USENIX Technical Conference. (2000) 55–70

18. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel. O’Reilly (2006)
19. Aleph One: YAFFS: the NAND-specific flash file system (2002)


