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Abstract. In this paper, a SOM-based anomaly intrusion detection system is 
proposed, which can contract high-dimension data to lower, meanwhile keeping 
the primary relationship between clustering and topology. During the 
experiment, the theory of SOM is used to train three SOMs on the layers of 
system, process and network. Although our experiment environment is simpler 
than the real one, the result shows that it has its reference value for us to build 
intelligent IDSs. Through the analysis of the monitoring results on the three 
layers from the hacking tools (NMAP, HYDRA), it is suggested that the 
approach of detecting and the parameters chosen be correct and effective. 

Keywords: SOM; neural network; anomaly-based intrusion detection; U-
matrix; cluster. 

1   Introduction 

Along with increasing popularization of the Internet day by day, continuous updating 
and variety of attack behaviors make the traditional rule-based IDS gradually lose its 
ideal effect. SOM-based IDS, as the representative of the new generation of 
intelligent IDS, compared with the traditional IDS, has the following special 
advantages: 

(1) The analysis technique of the traditional IDS is mainly based on the model of 
statistics [1], and depends on several assumptions. SOM-based IDS can be trained 
through a great deal of instances, can learn knowledge by itself and acquire the ability 
of prognostication. The whole process is completely abstract calculation, with no 
emphasis on the assumption of the distribution of the data. 

(2) The traditional IDS depicts attack characteristics to be limited by a fixed 
sequence, and the threshold value is mostly based on the experience. False positive 
and false negative usually happen and it can not easily identify new attack methods. 
In the terms of the ability of self-applicable and fault tolerant [2], SOM-based IDS 
need not understand the detail of knowledge, and can master the inherent relationship 
of each generous character of the system by itself. After mastering the normal 
working mode [3] of the system, SOM-based IDS can react to all affairs which 
deviate from the normal working mode, and then discover new attacks. 
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2   Self-organizing maps (SOMs) 

SOM was proposed by professor Kohonen, the neural network expert in 1981. Early 
researches on neural network-based IDS mostly adopted BP (Back-Propagation) 
neural network [4-5] for modeling, as well as multi-layer perceptron and Hamming, 
but they all have restrictions and weaknesses [6]. By contrast with the above 
mentioned neural networks, the best advantage of SOM is the ability of unsupervised 
learning, which can transplant the system to new surroundings, and the training data 
has no marks. 

2.1   About SOM Algorithm  

The algorithm of SOM is recursive. First, every neuron corresponds to a N-
dimensions vector Wi=[wi1,wi2,…,wiN]. At every stage of training, sampling vector 
Xk=[x1,x2, …,xN] is selected from the training set randomly, then calculate the 
distance between Xk and all the weight vectors. c is the BMU(best-matching unit), 
and the minimum distance between c and Xk is: 
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Next, update the weight vector of the neuron which is in neighbourhood zone of 
the winner cell’s topology. The rule is as follow: 
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In Formula 2, Nc refers to neighbourhood zone of the centre neuron wc. In the 

process of learning, the initialization of Nc(k) can be big, then contracts gradually, as 
follow: 

LkLkNINTN cc ,...2,1,0)),/1)(0(( =−=                            (3) 
In Formula 3, Nc(0) means the initial neighbourhood radius, L, the times of the 

iteration, INT（.）, the integral function. Nc(k1), Nc(k2), Nc(k3) stand for the 
topology neighbourhood zone of the winner cell whose iterative times are k1, k2, k3

（k1 <k2<k3）. 
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Fig.1 topology adjacent domains on two- dimension network 

Usually, the learning rate )(kα (0< )(kα <1) is a constant, which is close to 1.0 in 
the beginning, then lessens gradually. For example, )(kα can be 0.8(1-k/L). With the 
increase of the times of the iteration, )(kα  tends to zero, which ensures the learning 
process to refrain from rash action. 

2.2   The steps of the learning algorithm of SOM 

The concrete steps of the learning algorithm of SOM are as follows: 
Step 1. Setting variables and parameters: Let X(k) = [x1(n), x2(n),…, xN(n)]T be the 

input vector, or training sample, Wi(k)=[wi1(n), wi2(n), …, wiN(n)]T be the weight 
vector, i=1,2, …, M, and the total times of iteration be L. 

Step 2. Initialization: Initialize the weight vector Wi with a small random number 
in a certain interval. Let the neighbourhood radius be Nc(0); the learning rate be 

)(kα ; and then normalize weight vector Wi(0) and all the input vector X. 
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In the above formulas, and  are Euclidean 

norm of the weight vector and input vector. 
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Step 3. Data sampling. Select training samples X’ from the input space. 
Step 4. Approximate matching: According to the standard of the minimum 

Euclidean distance:  
MiWXWX iic ,...,2,1||||min|||| '''' =−=−                            (6) 

select winner cell c, implement the competitive process of neurons. 
Step 5. Updating: Update the weight vectors of the cordial neuron, who are in the 

topology neighbourhood zone of the winner cell Nc(n) under the following rules: 
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Step 6. Updating the learning rate )(kα and the topology neighbourhood zone, and 

then normalize the weights after learning. 
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Step 7. Judging whether the times of the iteration k exceeds L or not, if k<= L then 

turn to step 3, otherwise end the process of iteration. 
During the training, output neurons are sorted through adjusting their weight vector, 

in order to be close to the probability density. Though produced randomly at the 
beginning, the weight vector of the output neurons get closer and closer to the 
distribution of the input data after long time running, through updating the weight 
vector continuously. 

3   Data sampling, preprocess, standardization and training 

3.1   Data sampling and preprocess 

In this paper, three hosts are used to constitute an LAN. One of the hosts, running Red 
hat 7.2, works as the testing platform. We mainly sample and preprocess the data 
from three layers (System layer, Process layer and network layer). The procedure is 
carried out by the shell program. First of all, the sampling data consist of 1000 sets of 
relevant data, which imitate the normal operation, and the sample interval is 10 
seconds. The normal operations include the usage of familiar basic orders and 
applications, compilation of programs, application of ftp and telnet, and Web browse 
etc. Although time and amount of sampling are not enough, we imitated a great deal 
of actual operation during samplings, which is to a degree representative. As is the 
choice of parameters, we mainly consider those parameters affecting the system most 
and likely to be abnormal, while attack happening or after.  

On the system layer, we choose 9 Characteristic Parameters: 
-S1: usage of virtual memory (kb) 
-S2: spare memory (kb) 
-S3: exchange speed from disk to memory (kb/s) 
-S4: exchange speed from memory to disk (kb/s) 
-S5: read-in speed of block device (kb/s) 
-S6: write-out speed of block device (kb/s) 
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-S7: times of interruption per second (including timer interruption) 
-S8: CPU processing time of user process (%) 
-S9: CPU processing time of system process (%) 

On the process layer, we choose 6 Characteristic Parameters: 
-P1: total number of process 
-P2: number of process at the state of running  
-P3: CPU time occupancy of every process at the state of running (%) 
-P4: memory occupancy of every process at the state of running (%) 
-P5: virtual memory occupancy of every process at the state of running (%) 
-P6: initial time of every process at the state of running  

On the network layer, we choose 6 Characteristic Parameters: 
-N1: number of TCP connection 
-N2: port number of the connection 
-N3: IP address of the connection 
-N4: connection state  
-N5: number of error packet accepted  
-N6: number of error packet sent  

Besides numeral quantity, there is also non-numerical quantity in the characteristic 
data. For numeral quantity, it keeps the initialized value. For IP address, it intercepts 
the last part. For the non- numerical quantity, it is inverted to the numeral quantity. 
For example, for the state of TCP, we respectively use: 1,2,3,4,5,6,7,8,9,10,11,12 to 
represent: Established, SYN-Sent, SYN-Recy, Closed, Listen etc; for the starting time 
of the process, we change the notation of “:” into “.”. 

The corresponding parameter is mainly obtained from the filtration of the results, 
which come from different UNIX system commands, including: Vmstat, ps, Netstat, 
top and so on. The programme is completed with script language. The interception, 
conversion and coordination of the data are finished under these commands, including: 
sed, awk, cat, cut, grep etc. The data of sampling is stored in three files 
(systemlayer.dat, processlayer.dat, networklayer.dat) according to a certain format.  

3.2   Standardization 

Among the characteristic values selected, the differences are very obvious. So, in 
order to balance the effects of the training result, we can standardize every 
characteristic value into the area of 0~1, which is the demand of the application of 
SOM. The formula of standardization is as follows: 
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In Formula 11, nv[i] is the standardized value of i, v[i], the value size of i, and K, 

the number of the characteristic vector.  
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3.3   Data training  

Map training is carried out according to the above-mentioned algorithm, mainly using 
SOM_PAK [7-8]. Three Maps should be trained on three different layers in our 
experiment. The number of neurons in each output layer of each Map is 12x8=96. The 
process of training is divided into two stages. At the first stage, the weigh vector of 
each neuron is sorted. At the beginning, the neighbourhood radius is chosen relatively 
bigger, generally equaling to the diameter of the Map, finally changing into 1, and the 
bigger learning rate should also be chosen, gradually changing into 0 with the 
increase of the training times. In order to make the weigh vector of each neuron more 
accurate, the second stage should be adjusted. At this stage, the smaller learning rate 
and the neighbourhood radius should be chosen correspondingly.   

U-matrix (unified distance matrix) is a visual method of SOM cluster structure. 
The U-matrix chart shows the distance between the weight vector of a certain neuron 
and that of its adjacent neuron. Usually, different gray levels are used to express the 
size of the distance. Fig2, 3, 4 are three U-Matrix figures, respectively expressing the 
results of SOM training on three layers (system layer, process layer and network 
layer). Each small black mark in the figure means a neuron unit. 

Table 1. Training parameters of SOMs on layers of system, process and network 

 System layer Process layer Network layer 

Dimensions of input vector 9 6 6 
Topology Rhombus Rhombus Rhombus 
Adjacent domain function Bubble Bubble Bubble 
Dimension of Map’s X direction 12 12 12 
Dimension of Map’s Y direction 8 8 8 
Function of learning rate Linear Linear Linear 
Times of training at phase one 10000 10000 10000 
Initial value of learning rate at phase one 0.1 0.3 0.3 
Initial radius at phase one 10 10 10 
Times of training at phase two 100000 100000 100000 
Initial value of learning rate at phase two 0.02 0.01 0.02 
Initial radius at phase two 3 3 3 
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Fig.2 U-Matrix map of system layer 

 

 
Fig.3 U-Matrix map of process layer 

 
Fig.4 U-Matrix map of network layer 

In the learning algorithm of SOM, different choices of training parameters have 
different influence on training results. In this paper, different Maps are mainly 
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obtained through changing the training stages, learning rate and initialized radius at 
the two stages. Finally, make sure the parameter value relatively small, and then, train 
the

 layer Process layer Network layer 

 sampling data according to the above-mentioned parameter. The results can be 
viewed in Table2. The main content of the result is the training time and 
corresponding quantization error. 

Table 2. Training time and quantization error at two phases 

SystemIndex of performance 
Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1

Training time <1s 12s <2s 10s <2s 11s 

Quantization error 2 135.6 78.3 37.3 23.8 30.8 0.3 
 
Ta e avera lue o uantization err  orde eterm he 

ala w t f the la 1 ork he d ce 
bet rm ng i ces ndin U, he  is 
called BMU Distance. After working out every BMU Distance of every input vector, 
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veral distance values can be got from one BMU, and the biggest one is used as the 
alarm threshold. But not every neuron has such a distance value, and the alarm 
threshold value is specified as 0 when this happens. 

Table 3 shows the alarm threshold values of every neuron of the corresponding 
system layer MAPs. The most left column of the table shows the X-coordinate value 
of the MAP, respectively getting the integer between 0 and 11; the most above row 
shows the Y-coordinate value of the MAP, respectiv

d 8. 
The alarm threshold values of process layer and network layer can be obtained 

using the same method, and respectively show in Table 4 and Table 5. 

Table 3

   Y 0 1 2 3 4 5 

0 802 120 59 558 92 23 883 214 
1 49 135 70 91 35 68 26 55 
2 88 145 1  1  2  01 40 0 89 75 15
3 95 103 112 157 91 206 68 0 
4 682 150 142 0 0 111 83 83 
5 417 168 166 413 95 70 87 72 
6 0 220 0 98 99 145 86 86 
7 396 0 0 0 60 167 90 89 
8 1034 0 204 0 0 55 96 290 
9 347 1117 0 551 2  881 263 0 166 
10 0 657 0 0 0 0 32 143 
11 6868 0 1  5  20 38 0 0 481 34 
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Table 4.  thresh values e process layer 

   Y 
 X

Alarm old  on th

 0 1 2 3 4 5 6 7 

0 6.2 3.7 90.6 0 13.7 38.8 41.4 332.2 
1 0 12.1 77.0 50.1 0 6.0 75.9 100.1 
2 27.1 0 60.6 20.9 6.8 19.4 140.1 7.1 
3 12  18  120 33  10  25  20  3.6 0 .6 .5 .3 .4 .5 .1
4 0 0 4  3  1  10  1  4.7 0 6.2 4.7 3.3 7.2
5 45.8 0 0 1  1.2 136.4 0 0 82.9 
6 0 227.2 0 0 1  6.1 4.3 162.3 0 
7 40.7 1  25.9 95.0 39.5 0 15.7 0 56.7 
8 15.5 0 56.9 12.4 58.7 12.5 0 58.7 
9 8.1 2.0 17.7 0 0 36.1 44.5 75.1 
10 0 2  9  7  1.8 0 13.6 0 4.5 2.2 38.3 
11 6  0.7 28.6 1  5  11.0 7.6 17.9 56.8 126.6 59.0

Table 5.   thresh  values et ayer

   Y 
 

Alarm old  on the n work l  

X 0 1 2 3 4 5 6 7 

0 0.99 0 0 0.87 0.083 0 0.39 0.24 
1 0 0.33 0 0 0 0.13 0 5.07 
2 4.88 0 0 0 0.64 0 0.21 0 
3 4.  0.  0.  0  41 29 01 0 0 0 0.04
4 5  0 0  0.  1  0 .69 0 .18 81 0 .94
5 5.34 0 0  0.  0 .21 2.47 0 00 0.00 
6 0  .21 0 0 0 0 0 0 0 
7 0 0 0.  00 0 0.36 0 0 0 
8 1.50 0 0 0 0 0 0 5.88 
9 0 0 0  .00 0 0 1.  0 50 0 
10 0.58 0 0 0 0 0 0 0 
11 1.58 0 2.  0 90 4.  59 0 0 4  .23

4 Exp ent sult its analysis 

Using the ing al m M m ioned re elf-Or izing  
were trained from the training data on the layers of system, process and network. And 

very BMU as a cluster, then the 
bnormal of new instances.       

This paper uses Distance Function to measure the distance between new 

  erim  re and 

 learn gorith of SO ent  above, th e S gan  Maps

the alarm thresholds were determined. If considering e
cluster can be used to determine the normal or a

),( Ksfd  
instance s and cluster K, and uses it to decide whether the new instance abnormal or 
not. The concrete function is as follows: 

}|),(min{),( CKKsfNormalsf iidd ∈=                       (12) 
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In the above formulas, C is the set of normal subs

the threshold value between the normal class and the abnorm l. uses Euclidean 
distance: 
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In the above formulas, 
iKw  is the weight vector matrix of the cluster Ki . 

In orde
of the inn to intrude the Client, but running suspicious procedures 

t of detecting the abnormal of Client in this experiment, 
 mainly detect the abn al situation of system while it is running suspi
eration or suspicious p dures. So, anomaly intrusion on the Client is
pect of internal network intrusion detection. 

This paper uses NMAP and Hydra to produce the abnormal data of the system, 
in the meantime, the monitor procedure Monitor was run at the backstage. Through 
the detection during running these two tools, the abnormal circumstances of different 
layers are different, which mainly shows that the ratio of the abnormal data in the 
whole detected data is different. The size of ra

rent layers are different, also shows that, in the meantime, the invader is not 
continuous to make a system working abnormal during intrusion. Therefore, in order 
to enhance the detection rate, the sampling data should be sampled several times in 
the process of anomaly-based intrusion detection. Detection rate on different layers 
during intrusion with the same set of data can be seen from the Table 6.  

Table 6. Detection rate of different layers during intrusion 

Tools Detection rate of
system layer 

Detection rate of
process layer 

Detection rate of 
network lay

NMAP 0% 36% 100% 
HYDRA 66% 50% 86% 

 
Supposi me o a, an ty o normity 

effectively pling on data at ti is after continu pling n sets 
of data in al anom sed intrusion n rate is: 

)(                                              (15) 

 shows the relation 
diagram of n and p, whe
lab

ng the ti f intrusion is T d the probabili f discovering ab
 with sam e set of  p, so, ous sam

 Ta, the fin
1(1 −−=

aly-ba detectio
npAP )

Under the situation of not changing the threshold value of warning, if you want to 
make the rate of anomaly-based intrusion detection achieve more than 99%, just 
ensure np)1(1 −− >0.99, the same as np)1( − <0.01. Fig 5

n P(A) is more than 99% in the Formula 15. The numerical 
el in the form is the corresponding coordinate of Y axis. As long as values are 

taken above the curve, the total detection rate can achieve more than 99%. 
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Fig 5. Relation diagram of n and p 

The detection result above shows that the way of sampling many times makes the 
detection rate raise to a satisfactory extent, while not needing to change the size of the 

er raise the false positive rate. From Tab e 6 and Fig 5, 
ake the rate of anomaly-based intrusion detection 

pr

In this paper, a novel way of anomaly-based intrusion detection using SOMs is 
proposed. During the experiment, we use the theory of SOM to train three SOMs on 

rocess and network. Although our experiment environment is 
e, the result shows that it has its reference value for us to build 

threshold value of warning, eith
we discover that, in order to m

l

oduced by Hydra on the system layer achieve more than 99%, we should sample 6 
times during the running of Hydra; in order to make the rate of the anomaly-based 
intrusion detection produced by NMAP and Hydra on the process layer achieve more 
than 99%, we should sample 7 times and 13 times respectively during their running; 
in order to make the rate of the anomaly-based intrusion detection produced by 
NMAP and Hydra on the network layer achieve more than 99%, we should sample 1 
time and 3 times respectively during their running. Result shows that the method of 
anomaly-based intrusion detection and the choice of the monitor parameter are viable 
and meaningful. 

5   Conclusions 

the layers of system, p
simpler than the real on
intelligent IDSs. In larger and more complicated real experiment environment, the 
characteristic value should be selected more extensively, the bound of the time for 
training the normal sets of data should be a little bit larger, the data should also be a 
little bit more, and the dimension of the Maps should also be chosen a little bit larger. 
Thus, training time will consumedly increase, but as long as the training time is 
restricted in a certain bound, it is acceptable. 
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