
A New Context Script Language for Developing Context-
Aware Application Systems in Ubiquitous Computing*

Jae-Woo Chang and Yong-Ki Kim

Dept. of Computer Engineering
Chonbuk National University, Chonju, Chonbuk 561-756, South Korea
jwchang@chonbuk.ac.kr, ykkim@dblab.chonbuk.ac.kr

Abstract. In order to develop a variety of context-aware application systems, we
require a context script language to describe both various decisions on context-
awareness and appropriate procedures according to the decision. In this paper, we
propose a new context script language which can represent a variety of contexts as a
standard syntax. The proposed context script language is a general purpose one to
provide users with functions to define a given context in a clear and precise manner.
To show the usefulness of the proposed context script language, we develop a con-
text-aware application system using it, which can provide users with a music play-
ing service in ubiquitous computing environment.

1 Introduction

Ubiquitous computing is embedded in the users’ physical environments and inte-
grates seamlessly with their everyday tasks [1, 2]. An effective software infrastruc-
ture for running ubiquitous computing applications must be capable of finding, adapt-
ing, and delivering the appropriate applications to the user’s computing environment
based on the user’s context. Thus, context-aware application systems determine
which user tasks are most relevant to a user in a particular context, and they may be
determined based on history, preferences, or other knowledge of the user’s behavior,
as well as the environmental conditions. In order to develop a variety of context-
aware application systems in an effective manner, we require a context script lan-
guage to describe both various decisions on context-awareness and appropriate pro-
cedures according to the decision.

In this paper, we propose a new context script language which can represent a va-
riety of contexts as a standard syntax. The proposed context script language is a gen-
eral purpose one to provide users with functions to define a given context in a clear
and precise manner. To show the usefulness of the proposed script language, we
develop a context-aware application system using it, which can provide users with a
music playing service in ubiquitous computing environment. The remainder of this
paper is organized as follows. The next section discusses related work. In section 3,
we describe the design of our context script language. In section 4, we present the

* This work is financially supported by the Ministry of Education and Human Resources Develop-

ment(MOE), the Ministry of Commerce, Industry and Energy(MOCIE) and the Ministry of La-
bor(MOLAB) though the fostering project of the Lab of Excellency.

development of our context-aware application system. Finally, we draw our conclu-
sions in section 5.

2 Related Work

In this section, we introduce some related work on context description languages.
First, Arizona State Univ. [3] presented a context definition language called CA-IDL
(Context-enabled Interface Definition Language). That is, context tuples for defining
context can be represented as Context tuple : < a1, ... , an, tm>. Here, n means the num-
ber of unique context data, ai means the value of the i-th context data, and tm means
the time for tuple creation. For example, if the context tuple consists of location,
direction, and velocity, it can be represented as <(x,y), north, m, t> when its context
object is moving toward north. Secondly, INRIA in France [4] proposed a general
infrastructure based on contextual objects to design adaptive distributed information
systems in order to keep the level of the delivered service despite environmental
variations. The contextual objects (COs) are mainly motivated by the inadequacy of
current paradigms for context-aware systems. The use of COs does not complicate a
lot of development of an application, which may be developed as a collection of COs.
The COs are defined as CO(id) : <Variant Vx Attribute Ai: value, Attribute Aj:
value, ...>. For example, two contextual Web documents can be defined as <V1; Lo-
cation:L1, Language:French, Browser:with frame> and <V2; Location:L2, Lan-
guage:English, Browser:without frame>. The Web documents can be browsed by
selecting its appropriate variant according to users’ location, users’ language, and
browser type.

3 Context Script Language for Context-awareness

In this section, we will propose a new context script language to represent contexts
precisely and describe a grammar specification for it.

3.1 Components of context script language

A context object is any logical concept that can be used to characterize the situation
of any entity [5]. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and applications
themselves. In order to develop a variety of application software for context-
awareness in an effective manner, a context script language is required to describe
both various decisions on context-awareness and appropriate procedures according to
the decision. Even though the CA-IDL was proposed as a context script language, it
is not a general purpose one because of being dependant on a specific system. Thus,
we propose a new context script language which can represent a variety of contexts as
a standard syntax. The context script language is a general purpose one to provide

users with functions to describe a given contexts in a clear and precise manner. Our
context script language has such components as context object definition, context
creation & destroy, context instance insertion & deletion, and context instance activa-
tion & deactivation.

3.1.1 Context object definition
A context object is a logical concept that can be used to represent any entity or device
around application software for context-awareness. Some attribute values for a con-
text can be updated by hardware devices, which can be used in a conditional clause to
be mentioned in the next. The definition clause of the context objects is shown as
follows. Here object_name and element_name never begin with a numeric or special
letter, and they have less than 256 in length. In addition, data_type consists of two
types; string data type (i.e., string) and numeric data type (i.e., int, float, long, double,
time, date).

ContextObject object_name (
 data_type element_name1,
 data_type element_name2,
 data_type element_name3
 :)

3.1.2 Context creation and destroy
A context creation makes a rule to execute an action when a context satisfies a given
condition. It consists of a conditional expression and an action being executed. The
context creation defines the template of context table and the values of context table
are actually inserted in case of inserting a context instance. The clause of the context
creation is shown as follows, where context_name being less than 256 in length can-
not begins with a numeric or special letter. Here a condition clause is used to repre-
sent a given condition while action and parameter clauses are used to indicate both a
function and its parameters being called when satisfying the condition.

ContextCreate context_name
Condition (condition_expression) [during time_value]
Action function_name
 [before/when/after time_value] or
 [from time_value to time_value]
Param (param1, param2, ...)

First, the conditional expression (i.e., condition_expression) can be composed of N
conditional clauses and N-1 logical operators (i.e., AND, OR, NOT). The conditional
clause has two operands and one relative operator (i.e., =, >, <, <=, >=). The during
time_value clause being optional can be used to represent a condition related with
time. The time_value expresses a time interval with s(second), m(minute), and
h(hour). For example, if you need a time interval for 1 hour and 12 min and 30 sec, it
can be expressed as 1h12m30s. Thus, the condition that a person P locates in A or B
place for 1 minute and 30 seconds can be expressed as (((P_person.location =
A_place) during 10s) or ((P_person.location = B_place) during 1m30s)). Secondly,

the function_name means the name of a function to be executed when a given condi-
tion is satisfied. If there is no need to call a function, NULL can be used as the func-
tion_name. The optional clauses of [while/when/after time-value] and [from
time_value to time_value] can be used to determine when and how long an action
should be executed. For the while/when/after time-value, an action should be exe-
cuted once before, exactly when, and after a given time, respectively. For the from
time_value to time_value, an action should be executed continuously during the time
(from time_value to time_value). Figure 1 shows time relationship in the action
clause.

current

whenbefore after

end
from tocurrent

whenbefore after

end
from to

Fig. 1. Time relationship in the action clause

Finally, Param (param1, param2, ..) means a list of parameter names which are used
in a function being executed by Action. If there is no parameter, NULL can be used
for parameter names. The created context can be destroyed by the clause of Con-
textDestroy as follows. When a context is destroyed, all the instances of the context
are deleted and a status for checking a condition to activate the context is disabled.

ContextDestroy context_name

3.1.3 Context instance insertion and deletion
Once a context is created, it is necessary to add context instances into the context. The
clause of context instance insertion is shown as follows, where ContextInsert, Condi-
tion, and Param are used. Here the context_name means the name of a context which
the instance will be inserted into, while the instance_name means the name of a con-
text instance to be inserted. The condition_value, which has a constant or constant
literal, is used to instantiate a variable in the condition_expression for creating a
context. Similarly, the parma_value has a real value for a parameter of a function
being called by Action in the context creation clause.

ContextInsert instance_name Into context_name
Condition (condition_value1, condition_value2, ...)
Param (param_value1, param_value1, ...)

The context instance inserted can be deleted by the clause of ContextDelete as follows.
Here the context_name means the name of a context which the instance will be de-
leted from, while the instance_name means the name of a context instance to be de-
leted.

ContextDelete instance_name In context_name

3.1.4 Context instance activation and deactivation
Once a context is created and its context instances are inserted, the activation of a
context instance makes it possible to check a condition and execute an appropriate

action when satisfying the condition. On the contrary, the deactivation of a context
instance makes it impossible to execute an action by checking its corresponding con-
dition. The clause of context instance activation and deactivation is shown as follows.

ContextActiv instance_name In context_name
ContextDeAct instance_name In context_name

Here the context_name means the name of a context whose instance will be activated
or deactivated, while the instance_name means the name of a context instance to be
activated or deactivated. In addition, the asterisk symbol (*) can be used when all the
instances in a context are activated or deactivated.

3.1.5 Example of context script language
As an example of a user’s context, his (or her) popular music is used where each user
is moving from room to room. When someone is staying in a room for 2 seconds, he
(or she) can hear his (or her) popular music playing in the room after one second. This
example can be described by using our context scrip language, where the bold name
means reserved words as shown in Figure 2.

ContextObject person (
 string name,
 string location);
ContextCreate music
Condition ((person.name = someone_name) AND

(person.location = someone_location) During 2s)
Action PlayMusic When 1s
Param (music_name)

Fig. 2. Example of a user’s context as his (or her) popular music

In the example, we suppose that when a person named ‘Chul-Su Kim’ enters into a
room 7401, a music named ‘Arirang’ is playing while when he is in a room 7429, a
music named ‘Doragi’ is playing. The context instance insertion for this example can
be expressed as Figure 3, where someone_name, someone_location, and music_name
in Figure 2 are instantiated as ‘Chul-Su Kim’, 7401, and ‘Arirang’, respectively.

ContextInsert kim Into music
Condition ('Chul-Su Kim‘, ‘7401 ‘)
Param (' Arirang ‘);
ContextInsert kim Into music
Condition (' Chul-Su Kim ‘, ’ 7429 ‘)
Param (' Doragi ‘);

Fig. 3. Example of context instance insertion

We have to check a condition to activate all the context instances of music, by using
the context activation clause as follows.

ContextActiv * In music

3.2 Grammar Specification of the context script language

Reserved words used in our context scrip language are composed of script commands,
subsidiary words, time-related words, relative operators, logical operators, constants,
comment symbols, and system-defined data types. Table 1 shows the reserved word
of our context scrip language. To describe a grammar specification for script com-
mands in the context scrip language, we make use of Backus normal form (BNF).
White spaces are used for the readability of the grammar specification using BNF.

Table. 1. Reserved words

description reserved words

script commands
ContextObject, ContextCreate, ContextDestroy,
ContextDelete, ContextInsert, ContextActive,
ContextDeact

subsidiary words for building script
commands Condition, Action, Param, in, into

time-related words for building
script commands during, when, while, after, period

relative operators =, <>, <,>, <=, =>
logical operators and, or , not, AND, OR, NOT
constants NULL, TRUE, FALSE, null, true, false
system-defined data types string, int, float, long, double, time, date

3.2.1 ContextObject
An element for a context object consists of data_type and variable. Thus, a statement
to define a context object can be defined as follows.

command context_name [(] element ([,]element)* [)]
element : data_type variable

3.2.2 ContextCreate & ContextDestroy
A conditional expression (i.e., condition_expression) can define not only a simple
conditional clause, but also a set of conditional clauses with logical operators (i.e.,
AND, OR, NOT). In addition, a conditional clause belongs to one of the following
four types, such as the comparison between the value of a context instance and a
variable, the comparison between the value of one context instance and that of
another context instance, the comparison between two variables, and the comparison
between a variable and the value of a context instance.

condition_expression : [(] condtion[lo_op condition]* [)]
condition : context_name[.]context_obj_name re_op var |

 context_name[.]context_obj_name re_op
context_name[.]context_obj_name |

 var re_op var |
 var re_op context_name[.]context_obj_name

Thus, a statement to create a context can be defined as follows.
command context_name
command_ad condition_expression (command_time time_value){0,1}
command_ad func_name (command_time timevalue){0,1}
command_ad [(] func_name ([,]func_name])* [)]

The context created can be destroyed by using ContextDestroy as follows.
command context_name

3.2.3 ContextInsert & ContextDelete
A clause for inserting a context instance is defined as follows. Here the clause is used
to insert real values into the variables in the Condition and the Param clauses.

command context_ins_name command_ad context_name
context_ad [(] value_const ([,]value_const)* [)]

context_ad [(] value_const ([,]value_const)* [)]

A clause for deleting a context instance is defined as follows.
command context_ins_name command_ad context_name

3.2.4 ContextActive & ContextDeact
A clause for activating the context instance inserted is defined as follows. Here the
clause for Period can be optional.

command context_ins_name command_ad context_name (command_time time
value){0,1}

A clause for deactivating the context instance inserted is defined as follows.
command context_ins_name command_ad context_name

4 Development of a Context-aware Application System

In order to show the efficiency of our context script language, we develop a context-
aware application system which provides users with a music playing service in
ubiquitous computing environment. Figure 4 shows an overall architecture for
supporting our music playing service.

Fig. 4. Overall architecture for supporting context-aware application services

Network
Middleware

(Fixed Node 1)

Context Server

Middleware
(Fixed Node 2)

Middleware
(Fixed Node n)

Moving Node 1
user K

context DB

A

B

Here, when a user belonging to a moving node approaches to a fixed node, the fixed
node starts playing the user’s music with his (her) preference according to his loca-
tion. In general, each user has a list of his (her) music with his preference and even a
user can have a different list of his (her) popular music depending on time, i.e.,
morning time, noon time, and night time. For example, when a user K hearing his
music with his preference in the place A moves to the place B, the fixed node 1 stops
playing his music in the place A while the fixed node 2 starts playing his music in the
place B.

We develop our context-aware application system providing a music playing service
by using affix 2.0.2 as a Bluetooth device driver protocol stack [6] and by using GCC
2.95.4 an a compiler, under Redhat Linux 7.3 (kernel version 2.4.20) with 866 MHz
Pentium-III CPU and 64 MB main memory. In addition, the Bluetooth device follows
the specification of Version1.1/Class1 and makes a connection to PCs using USB
interfaces [7]. To determine whether or not the context-aware application system
implemented works well, we test it by adopting a scenario used in Cricket [8], one of
the MIT Oxygen project. For this, we test the execution of our context-aware
application system in the following three cases; the first case when a user covered by
a moving node approaches to a fixed node or move apart from it, the second case
when two different users approaches to a fixed node, and final case when a user
approaches to a fixed node at different times. Among them, because the first case is
the most general one, we will explain it in more detail. For our testing environment,
we locate two fixed nodes in the database laboratory (DB Lab) and the media
communication laboratory (Media Lab) of Chonbuk National University, respectively,
where their middleware can detect a moving node by using Bluetooth wireless
communication. There is a corridor between DB Lab and Media Lab and its distance
is about 60 meter. We test the execution of our middleware in case when a user
having a moving node moves from DB Lab to Media Lab or in a reverse direction.
Figure 5 shows a testing case when a user having a moving node approaches to a
fixed node. First, the fixed node receives a user name from the moving node as the
moving node is approaching to it (○1). Secondly, the fixed node determines whether
the information of the user has already been stored into a server or not. If the
information has been there, the context server searches the music file belonging to the
user in a current time and downloads the music file from the database (○2). Finally,
the fixed node starts playing the downloaded music file using a MP3 player (○3).
Similarly, we will explain a testing case when a user having a moving node moves
apart from a fixed node. First, when the fixed node detects that a user is too far from
the fixed node to communicate with it, the fixed node stops the process to play music
and removes the music playing process. Conclusively, when a user approaches to a
fixed node, the fixed node starts playing the user’s music while when a user moves
apart from the fixed node, the fixed node stops playing the music.

To analyze the performance of our context-aware application system, we measure an
average time by adopting a boundary detection of beacons used in Cricket. Table 2
shows the average time to aware contexts. First, as a moving node is approaching to a
middleware, it takes 1.34 second to make a connection between them. It means the
time for the fixed node to detect the presence of a moving node when a moving node

enters into its communication boundary. The time mainly depends on the specifica-
tion of Bluetooth wireless communication. Secondly, it takes 0.5 second for the fixed
node to start music playing service after making the connection between them. It
means the time for the fixed node to search the profile of the corresponding user and
to call the module to play music. The searching time for a user’s profile is dependant
both on the packet transfer time of TCP/IP and on the DBMS performance of the
context server. The calling time for the music playing module means the one for an
operating system (OS) to load it, which is affected by the available memory of the OS
kernel and the speed of a hard disk. Finally, as a moving node is going apart from a
fixed node, it takes 1.45 second to make a disconnection between them. It means the
time for the fixed node to detect the absence of the moving node. The time is rela-
tively long because the kernel tries to communicate with the moving node even
though the moving node is beyond the communication boundary of the fixed node.
Therefore, when the kernel is disconnected with the moving object, it is very reason-
able for the fixed node to set a time limit to two seconds. If it takes long time for a
fixed node to establish a connection to a moving node and to detect a context from it,
a user may consider the situation as a fault. Because the detection time for a context is
less than two seconds, our context-aware application system is reasonable for the
music playing service in ubiquitous computing environment.

Fig. 5. Testing case when a user approaches to a fixed node

Table 2. Average time for connection and disconnection
activities Time(sec)

 Average time for a middleware to make a connection to a moving node 1.34
Average time for a middleware to start a music playing service 0.50

Average time for a middleware to make a disconnection to a moving node 1.45

5 Conclusions and Future Work

In this paper, we proposed a new context script language which can represent a
variety of contexts as a standard syntax. The proposed context script language is a
general one to provide users with functions to define a given context in a clear and
precise manner. To show the usefulness of the proposed script language, we
developed our context-aware application system which can provide users with a
music playing service in ubiquitous computing environment. We tested our context-
aware application system by adopting a scenario used in Cricket, one of the MIT
Oxygen projects. It was shown that it took about 1.5 seconds to make a connection (or
disconnection) between a fixed node and a moving node, thus being considered
reasonable for our music playing service. As future work, it is required to study on a
rule description language which can be used to express the inference of a new context
from the existing contexts.

References

1. G. Banavar, A. Bernstein, "Issues and challenges in ubiquitous computing:
Software infrastructure and design challenges for ubiquitous computing
applications", Communication of ACM, Vol 45(12), pp. 92-96, 2002.

2. M. Weiser, "Some Computer Science Issues in Ubiquitous Computing",
Communication of the ACM, Vol 36(7), pp. 75-84, 1993.

3. S. S. Yau and F. Karim, "Context-sensitive Middleware for Real-time Software in
Ubiquitous Computing Environments", Proc. of 4th IEEE Symposium on Object-
oriented Real-time Distributed Computing, pp.163-170, 2001.

4. P. Couderc, A. M. Kermarrec, "Improving Level of Service for Mobile Users
Using Context-Awareness", Proc. of 18th IEEE Symposium on Reliable
Distributed Systems, pp. 24-33, 1999.

5. A. K. Dey, "Understanding and Using Context", Personal and Ubiquitous
Computing Journal, Vol. 5, No. 1, pp. 4-7, 2001.

6. Affix: Bluetooth Protocol Stack for Linux, http://affix.sourceforge.net.
7. Bluetooth Version 1.1 Profile, http://www.bluetooth.com.
8. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The Cricket Locaion Sup-

port System", 6th ACM/IEEE Int'l Conf. on Mobile Computing and Network-
ing(MOBICOM), pp. 32-43, 2000.

