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Abstract. As the ever-increasing gap between the speed of processor and the 
speed of memory has become the cause of one of primary bottlenecks of 
computer systems, modern architecture systems use cache to solve this 
problem, whose utility heavily depends on program data locality. This paper 
introduces a platform independent data-layout optimization framework to 
improve program data locality. This framework uses a variable relation model 
based on variables' reuse distance distribution to quantitate the relation of 
variables and accordingly assigns variables which are often accessed together in 
one group. At the same time this framework introduces a dynamic array 
regrouping method to group dynamic arrays assigned in a group. Experiments 
show that this data-layout optimization framework can effectively improve 
program data locality and program performance. 

1. Introduction 

Over the past 30 years, computer processor speed has been increasing about 60% 
annualy, but the increasing rate of memory speed has been less than 10% per year. 
The ever-increasing gap between the speed of processor and the speed of memory has 
become the cause of one of the primary bottlenecks of computer system [1]. Now 
many computer programs and systems widely employ cache to decrease the impact of 
the gap and cache performance has an increasing influence on system speed, cost and 
energy usage [9]. The utility of cache mostly depends on program instruction locality 
and program data locality, especially the program data locality. Thus, optimizing 
program data locality and improving computer system performance have been an 
active area of research [2,3,4,5,6,7]. 
   Past existing works provide mainly two ways to optimize program data locality: one 
is code transformation [2], such as loop tiling, loop fusion and loop interchange, 
which can significantly increase both temporal and spatial locality, however most of 
the code is too complex to be transformed; the other is data reorganization [5,6], such 
as structure field reordering, structure splitting and array regrouping, which 
reorganize the layout of data structures to improve spatial locality. 
  Data-layout optimization needs to know program cache behavior. While current 
static program analysis techniques are inadequate because of the complex control 



flow and indirect data access [6], most existing works about data-layout optimization 
are either profile-guided [3,5,6] or exploiting programmer-supplied application 
knowledge [7]. In recent years, reuse distance has become a metric for program cache 
behavior [8], and reuse distance can be used to analyze and predict cache behavior 
[9], which shows reuse distance maybe a suitable model for profile-guided data-
layout optimization. 
  In this paper, we propose a data-layout optimization framework for C language 
based on reuse distance distribution. Our framework takes use of source level 
transformation and can be employed on many platforms, including some embedded 
systems. The framework defines a variable relation model based on variables’ reuse 
distance distribution to quantitate the relation of variables. Variables often accessed 
together sequentially will be found by this model and be assigned in one group, which 
later can be used by data reorganization. At the same time our framework builds an 
array regrouping method for dynamic array. Experiments show that this data-layout 
optimization framework can effectively improve program data locality and program 
performance. 

The rest of the paper is organized as follows. Section 2 introduces reuse distance. 
Section 3 gives an overview of the data-layout optimization framework. Section 4 
presents main processes about variable analysis. Section 5 describes the compiler 
support for dynamic array regrouping. The last three sections present the experimental 
evaluation, related work, and conclusions, respectively. 

2. Reuse Distance 

In 1970, Mattson et al. introduced the concept of stack distances to analyze the 
behavior of demand paged memory systems and evaluate the performance of memory 
management schemes. To describe program cache behavior using architecture 
independent characteristic, Ding uses reuse distance substitute for stack distance [9]. 

Definition 1: data element is the sign of data accessed by program at run time, 
which may be memory address or memory region. We use letters such as a, b, c to 
represent data elements. 

Definition 2: In a sequential execution, reuse distance is the number of distinct data 
elements accessed between two consecutive references to the same data element. It 
measures the volume of the intervening data between two references. 

For example, given a sequence of data references, abcdeaedb, the reuse distance is 
∞∞∞∞∞4124 by the definition, while ∞ means the first time reference and there is no 
reuse. Program reuse distance is composed of reuse distance of all references of the 
whole program, which is normally expressed by histogram and is used to evaluate the 
data cache behavior and data locality of the whole program. A variable’s reuse 
distance infers the reuse distance of references which access this variable’s memory 
region, which can show some characteristics of variable reference. 

If the data element of reuse distance is cache line, reuse distance indicates the 
number of distinct cache line accessed between two consecutive references to the 
same cache line. In a fully associative LRU cache with n lines, a reference with reuse 
distance d < n will hit, while a reference with reuse distance d ≥  n will miss, by 



 

which reuse distance can be used to analyze program cache miss rate [8]. Reuse 
distance can be employed not only to accurately analyze cache miss rate of fully 
associative LRU cache, but also to approximately analyze cache miss rate of set 
associative LRU cache. 

3. Optimization Framework 

Our data-layout optimization framework is depicted in Figure1, which includes two 
main parts: the variable analysis part and the data reorganization part. The variable 
analysis part is mainly composed of the following processes: 
− Source-Level Instrumentation: source-to-

source transformation for C source code, 
adding new code into source code to collect 
memory reference information at run time.  

− Reuse Distance Analysis: analyzing the 
reuse distance of memory reference. 

− Variable Relation Analysis: analyzing 
variables’ reuse distance distribution, using 
variable relation model to quantitate relation 
of variables, and assigning variables which 
are often accessed together in one group 
The data reorganization part is composed of 

a source-to-source transformer based on the 
information of variable analysis. In the 
transformation the data layout is reorganized to 
improve data locality. Now our transformer 
only supports dynamic array regrouping. 

4. Variable Analysis 

4.1 Source-Level Instrumentation 
Our framework takes use of source-level instrumentation to collect program 

memory reference information, including address and variable information. We finish 
a source-to-source transformer based on the SUIF compiler infrastructure of Stanford 
University [10] to do instrumentation. When source codes are transformed, new code 
is added to record memory access information. The addresses of variables, including 
the pointer dereference, array, scalar variables, are profiled as memory access address. 
There are some differences with actual memory reference information at run time: (1) 
because of the register file, reference to some scalar variables doesn’t access memory; 
(2) there are many times of memory access in a variable reference, such as copy 
operation of structure. Reuse distance of most scalar variables is small and the 
instance of the second difference is little in normal program, at the same time we only 
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Fig.1. Optimization framework 



care the relative difference of reuse distance distribution, so all difference can be 
ignored. 

4.2 Reuse Distance Analysis 
When computing reuse distance, we have found two important characteristics: (1) 

reuse distance of most references is of small value; (2) only a few of data elements in 
stack bottom (we use a stack to compute reuse distance) can be reused. If we limit the 
search length in reuse distance analysis, we only need a limited memory size to save 
the reference record and the search time will be limited also. We call this kind of 
reuse distance as limited reuse distance. 

In actual reuse distance computation, we use probable max cache size as the search 
limit length. Here gives the algorithm of limited reuse distance (using a stack to 
compute reuse distance): 

Repeat following steps for each memory reference ( 0 )Nτχ τ≤ < : 

1) Search: find the location in the stack of the most recent reference to the 
address accessed by current reference τχ . The finding distance is no more 

than the max cache size; 
2) Count: compute the reuse distance ( )dist τ of current reference τχ . If the 

most recent reference exists in (1), count the number of elements on the stack 
above it as the value of ( )dist τ ;  otherwise, ( )dist τ  is defined as ∞; 

3) Update: bring current reference τχ  to the top of the stack. If the most recent 

reference exists in (1), delete it; if the length of stack is more than max cache 
size, remove the reference at the bottom of the stack. 

Limited reuse distance limits the stack size to no more than max cache size, which 
has two advantages: for one thing, the space of algorithm is limited and doesn’t 
increase with the reference number increase; for another, the time of algorithm is 
linear to the reference number, and the speed of reuse distance analysis is increased. 

4.3 Variable Relation Analysis 
Reuse distance distribution of variables always accessed together is very similar 

[6], which can be used to group program variables and improve program data locality. 
In this section we introduce how to group variables by their reuse distance in our 
framework, which can be divided into the following steps:  

The first step is variable’s reuse distance grouping. We study the distribution 
regulation of reuse distance by grouping. Figure 2(a) uses a histogram to express our 
reuse distance grouping example of five variables of 183.equake: the x-axis is a 
sequence of bins representing difference ranges of reuse distance (the value of x-axis 
infers the region [2i-1, 2i)); the y-axis gives the number of memory references whose 
reuse distance falls into each region (0 means reuse to itself, so we don’t show it; and 
memory reference whose reuse distance is ∞ means over max cache size). We can 
see that reuse distance distribution of M23 and V23 is very similar, and reuse distance 
distribution of M and C is very similar except one bin. 



 

 
(a) Variables’ reuse distance distribution 

 
 C M M23 V23 vel 

C 100% 99.9% 40.1% 40.1% 39.0% 

M 72.3% 100% 29.0% 29.0% 28.2% 

M23 100% 99.9% 100% 99.9% 17.8% 

V23 100% 99.9% 99.9% 100% 17.8% 

vel 99.9% 99.9% 18.3% 18.3% 100% 

(b) R value table of variables                             (c) Groups of variables 
Fig.2 Variable analysis based on reuse distance distribution 

 
The second step is computing R value of variable. R value of variable is defined by 

variable relation model and is employed to quantitate relation of variables. Definition 
of variable relation model is as follows: The relation between variable i and variable j 
can be expressed by R(i, j), and R(i, j) can be computed by following formulas: 

( , )   ( ( ) ,  ( ))  k k kS i j M in N i N j=  (1) 

G G

= 1 = 1

( ,  )  =   ( , ) ( )  k k
k k

R i j S i j N i∑ ∑  (2) 

In formula (1), Nk(i) infers memory reference number of the kth group of  variable 
i. Sk(i, j ) is min value of memory reference number of the kth group between variable 
i and variable j, which indicates the same part of the kth bin. In formula (2), G means 
number of groups, which also equals the number of bin. R(i, j) implies the ratio that 
the same part of i’s reuse distance distribution and j’s reuse distance distribution takes 
in reuse distance distribution of variable i. Figure 2(b) gives the R value table of five 
variables of 183.equake, and figure 3 shows the algorithm of computing R value. 

The third step is variable grouping. R(i, j) and R(j, i) reflect relation between 
variable i and variable j, so we use value of R(i, j) + R(j, i) to describe relation 
between variable i and variable j. if the value is bigger, so will be the chance of 
variable i and variable j be accessed together, by which we can search the variables 
which are often sequentially accessed. Figure 2(c) shows result of variable grouping 
of five variables of 183.equake. Figure 3 gives the algorithms of variable regrouping. 

vel 
C M 

M23 V23 

99.9% 

72.3% 

99.9% 

99.9% 



Computing_R_Value(RDi, RDj){ 
//RDi is reuse distance distribution array of i 
//RDj is reuse distance distribution array of j 

  //N is length of arrary RDi 
//R is R value table 

 
Refi = 0; 
Refj = 0; 
Refij = 0; 
 
for (int k=0; k<N; k++){ 
    if (RDi[k]>RDj[k]){ 
        Refij += RDj[k]; 
    }else{ 
        Refij += RDi[k]; 
    }//end of if 
    Refi += RDi[k]; 
    Refj += RDj[k]; 
 }//end of for 
 
R(i, j) = Refij / Refi; 
R(j, i) = Refij / Refj; 

} 
 

Variable_Grouping(G, max){ 
//G is variable name set 
//max is limit value of variable relation 

    //R is R value table 
while (G≠ ∅ ){ 

        choose s∈ G; 
        T = {s}; 

      G = G\{s};//delete s from G 
         exist = true; 
         while (exist){ 
               exist = false; 
               for each g∈ G{ 

              for each t∈ T{ 
                   if (R(g, t) +R(t, g) >= max){ 
                         T =  T ∪  {g}; 
                         G = G\{g}; 
                       exist = true;  break;  

}//end of if 
              }//end of for 
              if (exist) break; 

}//end of for 
}//end of while 

   save group T; 
}//end of while 

} 
Fig.3 Computing R value and variable grouping 

5. Data Reorganization 

By the variable analysis, we can find variables which are often accessed together. 
In C programs, the attributes of a structure are stored together. If we reorganize the 
variables given by analysis result of section 4, program data locality can be improved. 
There are some existing data reorganization technologies for different data structures, 
such as array regrouping for array, structure splitting and structure field reordering for 
structure [6]. In this section we will introduce a regrouping technology for dynamic 
array. 
  Our dynamic array regrouping technology includes two main steps: the first is 
memory allocation merging, by allocating a uniform memory region for an array and 
substituting pointer for array access; the second is normal array regrouping [6]. We 
implement a source-to-source transformer based on the SUIF compiler infrastructure 
of Stanford University [10] to do dynamic array regrouping. The transformer changes 
the allocation and the reference of the dynamic arrays. Figure 4 gives an example of 
two-dimensional dynamic array regrouping. Initially M23, C23 and V23 are three 
two-dimensional dynamic arrays whose elements are double type. After dynamic 
array regrouping they can be grouped into a region indicated by a pointer. 
  In dynamic array regrouping there are two problems: First, the dimensions and the 
each dimension’s size of dynamic array must be the same, but the type of element of 
array can not be the same. All of these are profiled by source-level instrumentation in 



 

our framework. Second, in program transformation, the alias of dynamic array must 
be considered. In our framework points-to analysis in [11] is implemented to solve 
this problem. 
 

 
Fig.4 Regrouping example of two-dimensional dynamic array (183.equake) 

6. Experiments 

As described earlier, we take use of two transformers based on SUIF [10] to do the 
source-level instrumentation and dynamic array regrouping. The transformed C code 
is compiled by GCC 3.2.2 at –O3. Experiments run on an Intel Celeron(R) (2.0G) 
processor running Red Hat Linux 9.0, which has 8K L1 data cache (4-way) and 128k 
L2 cache (2-way), and the cache line size is 64byte. Our testing programs are three 
programs from SPEC CPU2000 with some dynamic arrays: 183.equake, 179.art and 
188.ammp. Our optimization framework analyzes relationship of all dynamic arrays 
at the test input, and regroups some dynamic arrays. 

Table1 shows our optimization result. One program, 183.equake, has two groups 
including five dynamic arrays, and the other two programs, 179.art and 188.ammp, 
have only one group. For three programs with ten inputs, our framework gets speedup 
from 0.60% to 7.41%, and the average speedup is 4.22%.We find arrays grouped in 

//definition and initialization 
double **M23, **C23，**V23； 
M23 = (double **) malloc(ARCHnodes * sizeof(double *)); 
C23 = (double **) malloc(ARCHnodes * sizeof(double *)); 
V23 = (double **) malloc(ARCHnodes * sizeof(double *)); 
for (i = 0; i < ARCHnodes; i++) { 

M23[i] = (double *) malloc(3 * sizeof(double)); 
C23[i] = (double *) malloc(3 * sizeof(double)); 
V23[i] = (double *) malloc(3 * sizeof(double)); 

} 
 //reference 
disp[disptplus][i][j] += 2.0*M[i][j]*disp[dispt][i][j]-(M[i][j]-Exc.dt/2.0*C[i][j]) * 

disp[disptminus][i][j] -Exc.dt * Exc.dt * (M23[i][j] * phi2(time) / 2.0+ 
C23[i][j] * phi1(time) / 2.0 +V23[i][j] * phi0(time) / 2.0); 

(a) Definition and reference before regrouping 
 

//definition and initialization 
struct MCV{ 

double M23; 
double C23; 
double V23; 

}; 
struct MCV *pmcv = (struct MCV*)malloc(ARCHnodes*3*sizeof(struct MCV)); 
//reference 
disp[disptplus][i][j] += 2.0 * M[i][j] * disp[dispt][i][j]-(M[i][j]-Exc.dt/2.0* C[i][j])* 

disp[disptminus][i][j]-Exc.dt*Exc.dt*((*(pmcv+i*3+j)).M23*phi2(time)/2.0+ 
(*(pmcv+i*3+j)).C23*phi1(time)/2.0+(*(pmcv+i*3+j)).V23*phi0(time)/2.0); 

(b) Definition and reference after regrouping 



the first two programs are two dimensions, but arrays grouped in 188.ammp are one 
dimension. Therefore, the dimension of array is quite sensitive to optimization. 

 
Table 1. Optimization Result 

Memory Reference Times 
Benchmark 

Grouped 
Array 

Input 
Standard Optimized 

Speedup 

Test 542,890,080 539,682,079 5.86% 
train 7.41% 183.equake 

(M, C) 
(M23,C23, 

V23) ref 
  

6.12% 
test 1,390,572,801 1,388,948,481 6.74% 
train 7.36% 
ref1 2.74% 

179.art (tds, bus) 

ref2 

  

3.49% 
test 2,733,856,332 2,733,633,990 0.77% 
train 1.10% 188.ammp 

(x, y, z, 
xx, yy, 

zz) ref 
  

0.60% 
    Average 4.22% 
 
To evaluate the impact on program data locality, we measure the reuse distance of 

three programs at test input, and analyze the cache miss based on reuse distance. In 
our experiments, Pin [12] is availed to trace program memory references. Memory 
Reference Times in table 1 shows the number of memory reference computed by Pin 
[12]. We can see that optimization reduces the number of memory reference.  

 
Fig. 5 Reuse distance and cache miss distribution at test input 



 

Figure 5 gives the comparison of reuse distance and cache miss between normal 
program and optimized program. Both reuse distance and cache miss are given in 
cache blocks; multiplying by 64 converts the range to bytes. For reuse distance 
distribution, the x-axis shows the distance in a log scale (the max cache size is 4M), 
and the y-axis shows the number of memory reference. For cache miss distribution, 
the x-axis shows the cache size in a log scale, and the y-axis shows the number of 
cache miss. From figure 5, we can observe that the reuse distance of whole program 
decreases and the cache miss number reduces in all kinds of cache size after 
optimization. 

7. Related Work 

Program cache behavior analysis and data structure reorganization have been the 
subjects of much research. For example, T.M. Chilimbi [3] defines a cache behavior 
model named hot-streams, which uses the frequency of data sub-streams to quantitate 
relation of structure fields, and uses structure splitting to improve data locality. The 
model combines dynamic relation with frequency but does not give whole-program 
relation. Shai Rubin [5] proposes a parameterizable framework for data-layout 
optimization. Their framework finds out a good layout by searching the space of 
possible layouts, with the help of profile feedback, and takes use of field reordering 
and custom memory allocation to improve data locality. 

Yutao Zhong [6] defines a cache behavior model called reference affinity based on 
reuse distance signature, which measures how close a group of data are always 
accessed together in a reference trace. When applied for array regrouping and 
structure splitting, their model can effectively improve program data locality and 
program performance. This paper demonstrates that a similar model can serve as a 
metric of data structure reorganization. Together, we provide a new array regrouping 
method for dynamic array. 

8. Conclusion and Future Work 

In this paper we present a data-layout optimization framework. Unlike prior works 
on data-layout optimization, our framework uses a variable relation model based on 
variables’ reuse distance distribution to find variables which are often accessed 
together. In addition, our framework introduces a new data reorganization technology 
for dynamic array to improve data locality. Our framework takes use of source code 
transformation and is platform independent. Experiments show that this framework 
can optimize program data locality and improve program performance. Three test 
programs have gotten an average speedup of 4.22% by improving data locality. 

Our future work includes: (1)optimizing the variable relation model, and enabling it 
to find variable relation more accurately; (2)implementing more data reorganization 
on our data-layout optimization framework, such as normal array regrouping, 
structure splitting, and structure field reordering. 
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