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Abstract.  Runtime data alignment has been paid attention recently since it 
can allocate data segment to processors dynamically according to applications’ 
requirement.  One of the key optimizations of this problem is to schedule 
simultaneous communications to avoid contention and to minimize the overall 
communication costs.  The NP-completeness of the problem has instigated 
researchers to propose different heuristic algorithms.  In this paper, we 
present an algorithm independent technique for optimizing scheduling stability 
of different scheduling heuristics.  The proposed technique introduces a new 
scheduling policy, Local Message Reduction (LMR), to obtain better 
communication schedule adaptive to different environments.  To evaluate the 
performance of the proposed technique, we have implemented LMR along with 
two existing algorithms, the two-phase degree reduction and the list scheduling 
algorithms.  The experimental results show that the proposed technique is 
effective in terms of scheduling stability, communication efficiency and easy to 
implement. 

1. Introduction 

The data parallel programming model has become a widely accepted paradigm 
for parallel programming on distributed memory systems.  To efficiently execute 
a data parallel program, appropriate data distribution is critical.  An optimal 
distribution of data can balance the computational load, increase data locality, and 
reduce inter-processor communication.  In general, BLOCK-CYCLIC is employed 
for regular data distribution while GEN_BLOCK allows different size of data 
segments be partitioned and aligned to different computing nodes, which is usually 
referred as irregular data distribution.   

In many applications, an origin data distribution that is well-suited for one 
phase of a parallel program may not be good, in terms of performance, for a 
subsequent phase.  Therefore, dynamic data alignment (or data redistribution) 
may be invoked as runtime operation or occur implicitly at subprogram boundaries.  
The use of dynamic data alignment represents a performance tradeoff between the 
expected higher efficiency of the new distribution scheme for subsequent 
computation and the overheads of redistributing data among processors.  Thus, 
optimizing the communication costs of data redistribution has obvious merit.   
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Some research results were presented in previous published literature.  
However, the variant of transmission overheads of local and remote messages was 
not considered in these scheduling heuristics.  That is, local and remote 
transmissions are distinguished only by message size in existing scheduling 
policies.  This usually leads scheduling instability, namely, a local transmission 
waits the completion of the other remote transmission in the same communication 
step if both have the same message size.  To remedy this shortcoming, improving 
the scheduling stability is the main objective of this paper. 

The main idea of the proposed technique is first estimate remote access time 
(RAT) of transmitting a message to other computing nodes through the 
interconnection network and the local access time (LAT) of moving a message in 
local memory upon the same computing node.  According to the ration of remote 
to local access time (RLR), a constant for reducing size of local message, one can 
schedule communications of irregular data redistribution more precisely.  The 
proposed Local Message Reduction (LMR) technique is an algorithm independent 
technique for scheduling GEN_BLOCK redistribution.  LMR enhances scheduling 
stability and produces better communication efficiency. 

The rest of this paper is organized as follows.  In section 2, a brief survey of 
related work will be presented.  In section 3, we will give an example of 
scheduling GEN_BLOCK data redistribution as preliminary.  Section 4 presents 
the proposed local message reduction (LMR) technique.  A detailed description of 
incorporating the LMR scheme with TPDR scheduling algorithm [7] will also be 
investigated.  The theoretical performance analysis and experimental comparison 
will be given in Section 5.  Section 6 briefly concludes this paper.  
 

2. Related Work 
Techniques for dynamic data alignments are discussed in many researches and 

can be classified into regular and irregular instances.     
Prylli et al. [9] focused on index sets generation for the regular problems.  

Zapata et al. [1] presented algorithmic codes for parallel sparse redistribution 
based on CRS data structure.  For communication scheduling techniques, 
different heuristic scheduling algorithms for regular BLOCK-CYCLIC data 
redistribution between arbitrary processor sets were proposed in [10].  In [3], 
Guo et al. also presented an approach for scheduling all-to-many communications 
in redistribution.  Hsu et al. [5] discussed processor mapping techniques for array 
redistribution.  Wakatani et al. [11] proposed techniques for overlapping 
communication and computational overheads.  The multiphase redistribution 
method for minimizing the startup cost was presented in [6].  Guo et al. [2] 
presented techniques for message generation and communication scheduling which 
not only minimize communication steps but also eliminate node contention.  They 
also presented an efficient data distribution technique on distributed memory 
parallel computers. 

For irregular problems, Guo et al. [4] proposed communication optimization 
techniques for generating GEN_BLOCK communication sets.  For communication 
schedule, Lee et al. [8] presented logical processor reordering algorithms to 



minimize the size of messages that will be transmitted through the redistribution.  
Wang et al. [12] proposed a Divide-and-Conquer (DC) algorithm for 
communication schedule.  In DC, messages are separated into groups and then 
merged to produce minimal communication steps.  Yook et al. [13] proposed a 
reallocation scheduling algorithm.  Messages are sorted first and then scheduled 
in a decreasing order.  Once a message can’t be scheduled into minimal steps, the 
allocated messages will be reallocated until an appropriate schedule is found.   

In this paper, we present a scheduling stability improving scheme which is an 
algorithm independent technique for scheduling GEN_BLOCK redistribution.  The 
proposed scheduling algorithm introduces a new scheduling policy that based on 
Local Message Reduction (LMR) to obtain better scheduling result. 

3. Preliminary 
 
The following code segment is an example of GEN_BLOCK data 

redistribution in HPF.  An origin GEN_BLOCK distribution is declared as 
parameter S which is used to perform data decomposition onto five processors.  
Parameter new declares a different GEN_BLOCK distribution scheme and then 
used to redistribute array A.  

PARAMETER (S = /99, 10, 113, 114, 164/) 
!HPF$ PROCESSORS    P(5) 

  REAL A(500), new (5) 
!HPF$ DISTRIBUTE A (GEN_BLOCK(S)) onto P 
!HPF$ DYNAMIC  

  new = /132, 76, 114, 122, 26/ 
!HPF$ REDISTRIBUTE A (GEN_BLOCK(new)) 

 
Figure 1 (a) shows the two GEN_BLOCK distribution schemes on array 

A[1:500] as shown in the above HPF code.  The GEN_BLOCK distribution 
schemes of S and new are regarded as the source and destination distribution for 
different computational phases, respectively.  SP0~SP4 and DP0~DP4 are denoted 
as those processors who have corresponding data according to the source and 
destination distribution schemes, respectively.  Size represents the size of data 
segment that distributed to each corresponding processor. 

A convex bipartite graph is used to illustrate the communication patterns 
between source and destination processors in figure 1 (b).  Vertices are denoted 
as processors while edges are denoted as communication messages.  Numbers that 
are attached with SP0~SP4 and DP0~DP4 represent the size of data segment that 
owned in each processor according to the source and destination distribution 
parameters.  The weight of edges denotes the size of messages.  Indices of m1, 
m2, …, m9 show the serial of these messages. 

In general, node contention is usually avoided by ensuring one processor 
sends or receives at most one message at a communication step.  For example, if 
messages m1, m2 and m3 are sent to DP0 in the same communication step, 
contention will be occurred.  These messages are usually scheduled into different 



communication steps to avoid such situation.  Those messages that can not be 
scheduled in the same communication step are called conflict tuple [12]. 

 
Distribution Scheme of Source Processor 

SP SP0 SP1 SP2 SP3 SP4 

Size 99 10 113 114 164 
 

Distribution Scheme of Destination Processor 

DP DP0 DP1 DP2 DP3 DP4 

Size 132 76 114 122 26 
 

    

(a)                                (b) 

   

 
Schedule Table Cost 

Step 1 m3、m6、m8 122  (m8) 

Step 2 m1、m5、m9 99   (m1) 

Step 3 m2、m4、m7 76   (m4) 

Total cost = 297 
 

 

(c)                                (d) 

Fig. 1. An example of scheduling irregular data redistribution using TPDR. (a) 
GEN_BLOCK distribution schemes. (b) A bipartite graph represents the 
communications between source and destination processors. (c) The adjustable 
coloring mechanism colors edges red and blue. (d) The scheduling result of TPDR. 

 
TPDR scheduling algorithm [7] employs two scheduling phases: a degree 

reduction iteration phase and an adjustable coloring mechanism phase.  The aim 
of degree reduction phase is to reduce the maximal degree (dmax) of the bipartite 
graph equals to 2.  As dmax is reduced to 2, the TPDR algorithm goes into the 
coloring phase.  The adjustable coloring mechanism separates messages by two 
colors as step 1 and step 2.  It is usual to see that the degree reduction phase 
results the bipartite graph consists of several connected components.  Therefore, 
colors can be exchanged among these groups to shorten the overall cost.  In 
figure 1(c), messages are colored red (m1, m5 and m8.) and blue (m3, m6 and m9.).  
There are two connected components in the resulting bipartite graph from the first 
phase’s completion.  The first sub-graph includes messages m1, m3, m5 and m6.  
The second one includes m8 and m9.  The two colors lead messages to be 
scheduled in different steps.  The scheduling result of TPDR is shown in figure 
1(d).  (If size of m8 is 26 and m9 is 122, the adjustable coloring mechanism will 
exchange the colors of m8 and m9).  Communication cost of a step is defined by 



the maximal message size in that step.  The theoretical communication cost will 
be the sum of communication cost of each step.  In this example, the cost of steps 
1~3 are 122, 99 and 76, respectively.  The total communication cost of these 
three steps is 297.   

The above example demonstrates that both local and remote transmissions are 
scheduled together.  For those messages sent to other processors must be 
transmitted through interconnection network while local messages are moved in 
local memory, e.g. m1, m5 and m9.  It is known that local access time is smaller 
than remote access time.  This notion should hint that ignoring the difference may 
lead inefficient scheduling results. 

4. Local Message Reduction Technique 

Local message reduction is an algorithm independent technique for improving 
scheduling efficiency of dynamic data redistribution.  The notion of LMR is to 
modify the communication cost of local messages to reflect actual data 
transmission overheads.  The scheduling of communications will be performed 
based on the size-modified messages. 

In order to generate communication cost of messages more fairly, local 
message reduction method is used to adjust the way we evaluate the transmitting 
cost of a message.  The concept of incorporating LMR with TPDR is abstracted as 
follows. 

Phase 1: Estimate RLR, the remote to local data access ratio, which is defined 
as RLR = RAT / LAT, where RAT is remote access time and LAT is local access 
time.  In our implementation, RAT and LAT are measured by transferring 10 MB 
data between two processors that are interconnected by 100 MB Layer 2 switch. 

Phase 2: Identify all local messages in a given irregular data redistribution 
instance. 

Phase 3: Reduce the communication cost of those messages found in last 
phase by the factor RLR. 

We are now giving an example to clarify the above description.  For the 
example in Figure 1, the transmitting cost of m1 is 99 originally, let RLR be 8, and 
then the cost of m1 will be reduced by a factor, RLR=8, becomes 13. 

In the example illustrated in figure 1, there are three local messages.  The 
transmitting cost of m1, m5 and m9 are modified to be 13, 2 and 4, respectively.  
The cost of step 2 will become 13, and total cost becomes 211.  The complete 
schedule is given in figure 2. 

Figure 2 shows the example of LMR been applied after the communications 
are scheduled by TPDR.  In fact, the LMR policy should be considered before the 
communications are scheduled.  Namely, the communication cost of messages 
should be reduced properly before they are scheduled.  The result of using LMR 
before scheduling is given in figure 3.  Comparing with the result in figure 2, the 
communication cost is reduced by 56.  This example demonstrates that modifying 
the transmitting cost of messages could make TPDR schedule better result which is 
expected more precisely.  We will discuss this expectation by the experimental 
test in next section. 



 
Schedule Table Cost 

Step 1 m3、m6、m8 122  (m8) 

Step 2 m1、m5、m9 13   (m1) 

Step 3 m2、m4、m7 76   (m4) 

Total cost = 211 
 

       

 
Schedule Table Cost 

Step 1 m1、m4、m6、m8 122  (m8) 

Step 2 m3、m7 23   (m3) 

Step 3 m2、m5、m9 10   (m2) 

Total cost = 155 
   

Fig. 2. Scheduling result by LMR been 
applied after the communications are 
scheduled by TPDR. 

 

Fig. 3. Scheduling result by LMR been 
applied before the communications are 
scheduled by TPDR. 

5. Performance Evaluation 
5.1 Simulation Comparison 

To evaluate the performance of the proposed technique, we have implemented 
the TPDR scheduling algorithm, the coloring scheduling strategy, a modified 
size-oriented TPDR scheduling algorithm and list scheduling with coloring 
mechanism to verify the beneficial of the LMR technique.  To simplify the 
presentation, we use TPDR, Coloring, Max-TPDR and List-Coloring to represent 
these four algorithms.  We briefly describe each of these algorithms as follows. 

Coloring is a simple scheduling method that guarantees minimal 
communication steps for GEN_BLOCK redistribution.  The idea comes from the 
edge coloring on bipartite graph.  This algorithm focuses on communication steps 
but disregards the transmitting cost of messages.  

TPDR employs two phases to schedule messages, the degree reduction phase 
and the adjustable coloring phase.  Details of TPDR were described in section 3. 

Max-TPDR is a TPDR based scheduling algorithm.  It employs the same 
policy as the TPDR does.  The degree reduction method is first used to schedule 
communications in the first phase and followed by the adjustable coloring 
mechanism.  The main difference between TPDR and Max-TPDR is that TPDR 
schedules small messages in the degree reduction phase.  In contrast, Max-TPDR 
schedules large messages first.  This modification makes both algorithms of 
TPDR and Max-TPDR deliver different scheduling result although they are almost 
the same. 

The List-Coloring is composed by two scheduling methods, a list scheduling 
(size-oriented) algorithm and a coloring strategy.  In the first phase, the 
List-Coloring sorts messages in non-increasing order according to message size.  
Larger cost messages will be scheduled first.  The first d-2 communication step(s) 
will be determined in this phase.  The second phase of List-Coloring employs 
adjustable coloring mechanism to schedule messages that haven’t been scheduled.  
The second phase of List-Coloring is the same with TPDR and Max-TPDR 
scheduling.  

For simulation, 1000 GEN_BLOCK data redistribution instances were 
randomly generated based on an array A[1:10000] over P processors.  The 
average size of data segment been assigned to one processor will be 10000/P.  



The heterogeneity of irregular data decomposition is accomplished by varying the 
size of data segment from 1 to (10000/P)*2. 

Figure 4 shows the simulation results of estimating total communication costs 
for 1000 randomly generated redistribution instances.  Four different scheduling 
algorithms were compared.  In figure 4, the notations “LMR–” and “–LMR” 
denote that local message reduction policy is applied before and after the 
communications are scheduled, respectively.  The total communication cost is 
calculated by summing total costs of 1000 schedules in which local messages are 
reduced (by RLR=8).  The simulation results in figure 4 show the effect of 
algorithms incorporate with local message reduction policy.  An important 
observation is that LMR-XXX algorithm performs better than XXX-LMR algorithm.  
This phenomenon matches the results illustrated in figure 3. 
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Fig. 4. Total communication cost of 1000 randomly generated redistribution 

instances of different scheduling algorithms. 
 
Figure 5 shows the speedup of the LMR-TPDR, LMR-Max-TPDR and 

LMR-List-Coloring scheduling algorithms.  The speedups of these three methods 
are defined as follows. 

SpeedupLMR-TPDR = (Total cost of LMR-Coloring) / (Total cost of LMR-TPDR). 
SpeedupLMR-Max-TPDR = (Total cost of LMR-Coloring) / (Total cost of 

LMR-Max-TPDR). 
SpeedupLMR-List-Coloring = (Total cost of LMR-Coloring) / (Total cost of 

LMR-List-Coloring). 
LMR-TPDR and LMR-List-Coloring deliver similar speedup.  This result 

implies that LMR-TPDR and LMR-List-Coloring are well suited for scheduling 
irregular redistribution problems if the LMR strategy is applied before scheduling 
communications of irregular data redistribution. 

Figure 6 shows the speedup of the TPDR-LMR, Max-TPDR-LMR and 
List-Coloring- LMR scheduling algorithms.  The speedups of these three methods 



are defined as follows. 
SpeedupTPDR-LMR = (Total cost of Coloring-LMR) / (Total cost of TPDR-LMR). 
SpeedupMax-TPDR-LMR = (Total cost of Coloring-LMR) / (Total cost of 

Max-TPDR-LMR). 

SpeedupList-Coloring-LMR = (Total cost of Coloring-LMR) / (Total cost of 

List-Coloring-LMR). 
The speedup of TPDR-LMR is better than List-Coloring-LMR.  The result of 

figure 6 encourages that TPDR-LMR is the best choice for scheduling irregular 
redistribution problems if the LMR strategy will be applied.    
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Fig. 5. Speedup of LMR-TPDR, LMR-Max-TPDR and LMR-List-Coloring. 
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Fig. 6. Speedup of TPDR-LMR, Max-TPDR-LMR and List-Coloring-LMR. 

 
To further discover the improvement achievable by LMR technique, figure 7 

compares LMR-TPDR and TPDR-LMR separately using 1000 randomly generated 
instances.  The notation “LMR-TPDR better” represents LMR-TPDR performs 
better than TPDR-LMR; the notation ”TPDR-LMR better” represents LMR-TPDR 
performs worse than TPDR-LMR; When the number of processors is 2 and 3, there 
is no TPDR-LMR better case, LMR-TPDR performs much better than TPDR-LMR 
when processor number is from 4 to 24.  This result encourages us LMR-TPDR is 
a suitable policy for scheduling irregular data redistribution. 

5.2 Experimental Results 

We have implemented the TPDR, Coloring, Max-TPDR and List-Coloring 
algorithms incorporated with “LMR-“ and “-LMR” policies.  All programs were 
written in single program multiple data (SPMD) programming paradigm with 



C+MPI code and executed on a 16-nodes PC cluster.  The mean time of ten 
randomly generated GEN_BLCOK redistribution instances is used to report the 
execution time of an algorithm.  Experiments are performed base on array 
A[1:1000] over 4, 8, 12 and 16 processors.  Each data element is a 1 MB data file 
in this implementation.  In other words, the size of total data is 1 GB.  The value 
of RLR is set as 8.  The execution result is plotted in figure 8.  As predicted in 
figure 7, LMR-TPDR outperforms other methods for most cases.  This result also 
matches the expectation described in sections 4 and 5.1. 
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Fig. 7. The comparison of LMR-TPDR and TPDR-LMR. 
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Fig. 8. The average communication time of 10 randomly generated 

GEN_BLCOK redistribution instances executed on 4, 8, 12 and 16 processors. 

6. Conclusions 

In this paper, we have proposed a novel technique for enhancing the stability 
of scheduling GEN_BLOCK redistribution.  By measuring remote to local access 
ratio, a local message reduction (LMR) strategy is incorporated into our previous 
proposed scheduling heuristic, named LMR-TPDR scheduling algorithm.  
LMR-TPDR reflects fair transmitting cost and enhances scheduling algorithms to 
obtain better scheduling results.  The LMR scheduling scheme is an algorithm 
independent technique and easy to implement.  The simulation analysis shows 
that LMR-TPDR is in most cases equal or superior to other scheduling algorithms 



due to the enhanced scheduling upon actual communication cost.  Experimental 
results verified the simulation is trustworthy.  Overall speaking, the performance 
of the LMR technique has been observed to fit most irregular data redistribution. 
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