
Optimizing Scheduling Stability for Runtime Data
Alignment1

Ching-Hsien Hsu, Chao-Yang Lan and Shih-Chang Chen

Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 300, R.O.C.

chh@chu.edu.tw

Abstract. Runtime data alignment has been paid attention recently since it
can allocate data segment to processors dynamically according to applications’
requirement. One of the key optimizations of this problem is to schedule
simultaneous communications to avoid contention and to minimize the overall
communication costs. The NP-completeness of the problem has instigated
researchers to propose different heuristic algorithms. In this paper, we
present an algorithm independent technique for optimizing scheduling stability
of different scheduling heuristics. The proposed technique introduces a new
scheduling policy, Local Message Reduction (LMR), to obtain better
communication schedule adaptive to different environments. To evaluate the
performance of the proposed technique, we have implemented LMR along with
two existing algorithms, the two-phase degree reduction and the list scheduling
algorithms. The experimental results show that the proposed technique is
effective in terms of scheduling stability, communication efficiency and easy to
implement.

1. Introduction

The data parallel programming model has become a widely accepted paradigm
for parallel programming on distributed memory systems. To efficiently execute
a data parallel program, appropriate data distribution is critical. An optimal
distribution of data can balance the computational load, increase data locality, and
reduce inter-processor communication. In general, BLOCK-CYCLIC is employed
for regular data distribution while GEN_BLOCK allows different size of data
segments be partitioned and aligned to different computing nodes, which is usually
referred as irregular data distribution.

In many applications, an origin data distribution that is well-suited for one
phase of a parallel program may not be good, in terms of performance, for a
subsequent phase. Therefore, dynamic data alignment (or data redistribution)
may be invoked as runtime operation or occur implicitly at subprogram boundaries.
The use of dynamic data alignment represents a performance tradeoff between the
expected higher efficiency of the new distribution scheme for subsequent
computation and the overheads of redistributing data among processors. Thus,
optimizing the communication costs of data redistribution has obvious merit.

1 The work of this paper is supported by National Science Council, Taiwan, under grant
number NSC94-2213-E-216-002.

Some research results were presented in previous published literature.
However, the variant of transmission overheads of local and remote messages was
not considered in these scheduling heuristics. That is, local and remote
transmissions are distinguished only by message size in existing scheduling
policies. This usually leads scheduling instability, namely, a local transmission
waits the completion of the other remote transmission in the same communication
step if both have the same message size. To remedy this shortcoming, improving
the scheduling stability is the main objective of this paper.

The main idea of the proposed technique is first estimate remote access time
(RAT) of transmitting a message to other computing nodes through the
interconnection network and the local access time (LAT) of moving a message in
local memory upon the same computing node. According to the ration of remote
to local access time (RLR), a constant for reducing size of local message, one can
schedule communications of irregular data redistribution more precisely. The
proposed Local Message Reduction (LMR) technique is an algorithm independent
technique for scheduling GEN_BLOCK redistribution. LMR enhances scheduling
stability and produces better communication efficiency.

The rest of this paper is organized as follows. In section 2, a brief survey of
related work will be presented. In section 3, we will give an example of
scheduling GEN_BLOCK data redistribution as preliminary. Section 4 presents
the proposed local message reduction (LMR) technique. A detailed description of
incorporating the LMR scheme with TPDR scheduling algorithm [7] will also be
investigated. The theoretical performance analysis and experimental comparison
will be given in Section 5. Section 6 briefly concludes this paper.

2. Related Work
Techniques for dynamic data alignments are discussed in many researches and

can be classified into regular and irregular instances.
Prylli et al. [9] focused on index sets generation for the regular problems.

Zapata et al. [1] presented algorithmic codes for parallel sparse redistribution
based on CRS data structure. For communication scheduling techniques,
different heuristic scheduling algorithms for regular BLOCK-CYCLIC data
redistribution between arbitrary processor sets were proposed in [10]. In [3],
Guo et al. also presented an approach for scheduling all-to-many communications
in redistribution. Hsu et al. [5] discussed processor mapping techniques for array
redistribution. Wakatani et al. [11] proposed techniques for overlapping
communication and computational overheads. The multiphase redistribution
method for minimizing the startup cost was presented in [6]. Guo et al. [2]
presented techniques for message generation and communication scheduling which
not only minimize communication steps but also eliminate node contention. They
also presented an efficient data distribution technique on distributed memory
parallel computers.

For irregular problems, Guo et al. [4] proposed communication optimization
techniques for generating GEN_BLOCK communication sets. For communication
schedule, Lee et al. [8] presented logical processor reordering algorithms to

minimize the size of messages that will be transmitted through the redistribution.
Wang et al. [12] proposed a Divide-and-Conquer (DC) algorithm for
communication schedule. In DC, messages are separated into groups and then
merged to produce minimal communication steps. Yook et al. [13] proposed a
reallocation scheduling algorithm. Messages are sorted first and then scheduled
in a decreasing order. Once a message can’t be scheduled into minimal steps, the
allocated messages will be reallocated until an appropriate schedule is found.

In this paper, we present a scheduling stability improving scheme which is an
algorithm independent technique for scheduling GEN_BLOCK redistribution. The
proposed scheduling algorithm introduces a new scheduling policy that based on
Local Message Reduction (LMR) to obtain better scheduling result.

3. Preliminary

The following code segment is an example of GEN_BLOCK data

redistribution in HPF. An origin GEN_BLOCK distribution is declared as
parameter S which is used to perform data decomposition onto five processors.
Parameter new declares a different GEN_BLOCK distribution scheme and then
used to redistribute array A.

PARAMETER (S = /99, 10, 113, 114, 164/)
!HPF$ PROCESSORS P(5)

 REAL A(500), new (5)
!HPF$ DISTRIBUTE A (GEN_BLOCK(S)) onto P
!HPF$ DYNAMIC

 new = /132, 76, 114, 122, 26/
!HPF$ REDISTRIBUTE A (GEN_BLOCK(new))

Figure 1 (a) shows the two GEN_BLOCK distribution schemes on array

A[1:500] as shown in the above HPF code. The GEN_BLOCK distribution
schemes of S and new are regarded as the source and destination distribution for
different computational phases, respectively. SP0~SP4 and DP0~DP4 are denoted
as those processors who have corresponding data according to the source and
destination distribution schemes, respectively. Size represents the size of data
segment that distributed to each corresponding processor.

A convex bipartite graph is used to illustrate the communication patterns
between source and destination processors in figure 1 (b). Vertices are denoted
as processors while edges are denoted as communication messages. Numbers that
are attached with SP0~SP4 and DP0~DP4 represent the size of data segment that
owned in each processor according to the source and destination distribution
parameters. The weight of edges denotes the size of messages. Indices of m1,
m2, …, m9 show the serial of these messages.

In general, node contention is usually avoided by ensuring one processor
sends or receives at most one message at a communication step. For example, if
messages m1, m2 and m3 are sent to DP0 in the same communication step,
contention will be occurred. These messages are usually scheduled into different

communication steps to avoid such situation. Those messages that can not be
scheduled in the same communication step are called conflict tuple [12].

Distribution Scheme of Source Processor

SP SP0 SP1 SP2 SP3 SP4

Size 99 10 113 114 164

Distribution Scheme of Destination Processor

DP DP0 DP1 DP2 DP3 DP4

Size 132 76 114 122 26

(a) (b)

Schedule Table Cost

Step 1 m3、m6、m8 122 (m8)

Step 2 m1、m5、m9 99 (m1)

Step 3 m2、m4、m7 76 (m4)

Total cost = 297

(c) (d)

Fig. 1. An example of scheduling irregular data redistribution using TPDR. (a)
GEN_BLOCK distribution schemes. (b) A bipartite graph represents the
communications between source and destination processors. (c) The adjustable
coloring mechanism colors edges red and blue. (d) The scheduling result of TPDR.

TPDR scheduling algorithm [7] employs two scheduling phases: a degree

reduction iteration phase and an adjustable coloring mechanism phase. The aim
of degree reduction phase is to reduce the maximal degree (dmax) of the bipartite
graph equals to 2. As dmax is reduced to 2, the TPDR algorithm goes into the
coloring phase. The adjustable coloring mechanism separates messages by two
colors as step 1 and step 2. It is usual to see that the degree reduction phase
results the bipartite graph consists of several connected components. Therefore,
colors can be exchanged among these groups to shorten the overall cost. In
figure 1(c), messages are colored red (m1, m5 and m8.) and blue (m3, m6 and m9.).
There are two connected components in the resulting bipartite graph from the first
phase’s completion. The first sub-graph includes messages m1, m3, m5 and m6.
The second one includes m8 and m9. The two colors lead messages to be
scheduled in different steps. The scheduling result of TPDR is shown in figure
1(d). (If size of m8 is 26 and m9 is 122, the adjustable coloring mechanism will
exchange the colors of m8 and m9). Communication cost of a step is defined by

the maximal message size in that step. The theoretical communication cost will
be the sum of communication cost of each step. In this example, the cost of steps
1~3 are 122, 99 and 76, respectively. The total communication cost of these
three steps is 297.

The above example demonstrates that both local and remote transmissions are
scheduled together. For those messages sent to other processors must be
transmitted through interconnection network while local messages are moved in
local memory, e.g. m1, m5 and m9. It is known that local access time is smaller
than remote access time. This notion should hint that ignoring the difference may
lead inefficient scheduling results.

4. Local Message Reduction Technique

Local message reduction is an algorithm independent technique for improving
scheduling efficiency of dynamic data redistribution. The notion of LMR is to
modify the communication cost of local messages to reflect actual data
transmission overheads. The scheduling of communications will be performed
based on the size-modified messages.

In order to generate communication cost of messages more fairly, local
message reduction method is used to adjust the way we evaluate the transmitting
cost of a message. The concept of incorporating LMR with TPDR is abstracted as
follows.

Phase 1: Estimate RLR, the remote to local data access ratio, which is defined
as RLR = RAT / LAT, where RAT is remote access time and LAT is local access
time. In our implementation, RAT and LAT are measured by transferring 10 MB
data between two processors that are interconnected by 100 MB Layer 2 switch.

Phase 2: Identify all local messages in a given irregular data redistribution
instance.

Phase 3: Reduce the communication cost of those messages found in last
phase by the factor RLR.

We are now giving an example to clarify the above description. For the
example in Figure 1, the transmitting cost of m1 is 99 originally, let RLR be 8, and
then the cost of m1 will be reduced by a factor, RLR=8, becomes 13.

In the example illustrated in figure 1, there are three local messages. The
transmitting cost of m1, m5 and m9 are modified to be 13, 2 and 4, respectively.
The cost of step 2 will become 13, and total cost becomes 211. The complete
schedule is given in figure 2.

Figure 2 shows the example of LMR been applied after the communications
are scheduled by TPDR. In fact, the LMR policy should be considered before the
communications are scheduled. Namely, the communication cost of messages
should be reduced properly before they are scheduled. The result of using LMR
before scheduling is given in figure 3. Comparing with the result in figure 2, the
communication cost is reduced by 56. This example demonstrates that modifying
the transmitting cost of messages could make TPDR schedule better result which is
expected more precisely. We will discuss this expectation by the experimental
test in next section.

Schedule Table Cost

Step 1 m3、m6、m8 122 (m8)

Step 2 m1、m5、m9 13 (m1)

Step 3 m2、m4、m7 76 (m4)

Total cost = 211

Schedule Table Cost

Step 1 m1、m4、m6、m8 122 (m8)

Step 2 m3、m7 23 (m3)

Step 3 m2、m5、m9 10 (m2)

Total cost = 155

Fig. 2. Scheduling result by LMR been
applied after the communications are
scheduled by TPDR.

Fig. 3. Scheduling result by LMR been
applied before the communications are
scheduled by TPDR.

5. Performance Evaluation
5.1 Simulation Comparison

To evaluate the performance of the proposed technique, we have implemented
the TPDR scheduling algorithm, the coloring scheduling strategy, a modified
size-oriented TPDR scheduling algorithm and list scheduling with coloring
mechanism to verify the beneficial of the LMR technique. To simplify the
presentation, we use TPDR, Coloring, Max-TPDR and List-Coloring to represent
these four algorithms. We briefly describe each of these algorithms as follows.

Coloring is a simple scheduling method that guarantees minimal
communication steps for GEN_BLOCK redistribution. The idea comes from the
edge coloring on bipartite graph. This algorithm focuses on communication steps
but disregards the transmitting cost of messages.

TPDR employs two phases to schedule messages, the degree reduction phase
and the adjustable coloring phase. Details of TPDR were described in section 3.

Max-TPDR is a TPDR based scheduling algorithm. It employs the same
policy as the TPDR does. The degree reduction method is first used to schedule
communications in the first phase and followed by the adjustable coloring
mechanism. The main difference between TPDR and Max-TPDR is that TPDR
schedules small messages in the degree reduction phase. In contrast, Max-TPDR
schedules large messages first. This modification makes both algorithms of
TPDR and Max-TPDR deliver different scheduling result although they are almost
the same.

The List-Coloring is composed by two scheduling methods, a list scheduling
(size-oriented) algorithm and a coloring strategy. In the first phase, the
List-Coloring sorts messages in non-increasing order according to message size.
Larger cost messages will be scheduled first. The first d-2 communication step(s)
will be determined in this phase. The second phase of List-Coloring employs
adjustable coloring mechanism to schedule messages that haven’t been scheduled.
The second phase of List-Coloring is the same with TPDR and Max-TPDR
scheduling.

For simulation, 1000 GEN_BLOCK data redistribution instances were
randomly generated based on an array A[1:10000] over P processors. The
average size of data segment been assigned to one processor will be 10000/P.

The heterogeneity of irregular data decomposition is accomplished by varying the
size of data segment from 1 to (10000/P)*2.

Figure 4 shows the simulation results of estimating total communication costs
for 1000 randomly generated redistribution instances. Four different scheduling
algorithms were compared. In figure 4, the notations “LMR–” and “–LMR”
denote that local message reduction policy is applied before and after the
communications are scheduled, respectively. The total communication cost is
calculated by summing total costs of 1000 schedules in which local messages are
reduced (by RLR=8). The simulation results in figure 4 show the effect of
algorithms incorporate with local message reduction policy. An important
observation is that LMR-XXX algorithm performs better than XXX-LMR algorithm.
This phenomenon matches the results illustrated in figure 3.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

2 3 4 8 12 16 20 24

Number of process

S
u
m
 o
f
to
ta
l
c
o
m
m
u
n
ic
a
ti
o
n

c
o
s
t
o
f
1
0
0
0
 c
a
s
e
s

LMR-Coloring LMR-TPDR LMR-Max-TPDR LMR-List-Coloring

Coloring-LMR TPDR-LMR Max-TPDR-LMR List-Coloring-LMR

Fig. 4. Total communication cost of 1000 randomly generated redistribution

instances of different scheduling algorithms.

Figure 5 shows the speedup of the LMR-TPDR, LMR-Max-TPDR and

LMR-List-Coloring scheduling algorithms. The speedups of these three methods
are defined as follows.

SpeedupLMR-TPDR = (Total cost of LMR-Coloring) / (Total cost of LMR-TPDR).
SpeedupLMR-Max-TPDR = (Total cost of LMR-Coloring) / (Total cost of

LMR-Max-TPDR).
SpeedupLMR-List-Coloring = (Total cost of LMR-Coloring) / (Total cost of

LMR-List-Coloring).
LMR-TPDR and LMR-List-Coloring deliver similar speedup. This result

implies that LMR-TPDR and LMR-List-Coloring are well suited for scheduling
irregular redistribution problems if the LMR strategy is applied before scheduling
communications of irregular data redistribution.

Figure 6 shows the speedup of the TPDR-LMR, Max-TPDR-LMR and
List-Coloring- LMR scheduling algorithms. The speedups of these three methods

are defined as follows.
SpeedupTPDR-LMR = (Total cost of Coloring-LMR) / (Total cost of TPDR-LMR).
SpeedupMax-TPDR-LMR = (Total cost of Coloring-LMR) / (Total cost of

Max-TPDR-LMR).

SpeedupList-Coloring-LMR = (Total cost of Coloring-LMR) / (Total cost of

List-Coloring-LMR).
The speedup of TPDR-LMR is better than List-Coloring-LMR. The result of

figure 6 encourages that TPDR-LMR is the best choice for scheduling irregular
redistribution problems if the LMR strategy will be applied.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2 3 4 8 12 16 20 24

Number of processors

S
p
e
e
d
u
p

LMR-TPDR LMR-Max-TPDR LMR-List-Coloring

Fig. 5. Speedup of LMR-TPDR, LMR-Max-TPDR and LMR-List-Coloring.

1

1.1

1.2

1.3

1.4

1.5

1.6

2 3 4 8 12 16 20 24

Number of processors

S
p
e
e
d
u
p

TPDR-LMR Max-TPDR-LMR List-Coloring-LMR

Fig. 6. Speedup of TPDR-LMR, Max-TPDR-LMR and List-Coloring-LMR.

To further discover the improvement achievable by LMR technique, figure 7

compares LMR-TPDR and TPDR-LMR separately using 1000 randomly generated
instances. The notation “LMR-TPDR better” represents LMR-TPDR performs
better than TPDR-LMR; the notation ”TPDR-LMR better” represents LMR-TPDR
performs worse than TPDR-LMR; When the number of processors is 2 and 3, there
is no TPDR-LMR better case, LMR-TPDR performs much better than TPDR-LMR
when processor number is from 4 to 24. This result encourages us LMR-TPDR is
a suitable policy for scheduling irregular data redistribution.

5.2 Experimental Results

We have implemented the TPDR, Coloring, Max-TPDR and List-Coloring
algorithms incorporated with “LMR-“ and “-LMR” policies. All programs were
written in single program multiple data (SPMD) programming paradigm with

C+MPI code and executed on a 16-nodes PC cluster. The mean time of ten
randomly generated GEN_BLCOK redistribution instances is used to report the
execution time of an algorithm. Experiments are performed base on array
A[1:1000] over 4, 8, 12 and 16 processors. Each data element is a 1 MB data file
in this implementation. In other words, the size of total data is 1 GB. The value
of RLR is set as 8. The execution result is plotted in figure 8. As predicted in
figure 7, LMR-TPDR outperforms other methods for most cases. This result also
matches the expectation described in sections 4 and 5.1.

0

200

400

600

800

1000

1200

2 3 4 8 12 16 20 24

Number of processors

N
u
m
b
e
r
o
f
c
a
s
e
s

The same

LMR-TPDR better

TPDR-LMR better

Fig. 7. The comparison of LMR-TPDR and TPDR-LMR.

0

10

20

30

4 8 12 16

Number of process

S
e
c
o
n
d

LMR-Coloring LMR-TPDR LMR-Max-TPDR LMR-List-Coloring

Coloring-LMR TPDR-LMR Max-TPDR-LMR List-Coloring-LMR

Fig. 8. The average communication time of 10 randomly generated

GEN_BLCOK redistribution instances executed on 4, 8, 12 and 16 processors.

6. Conclusions

In this paper, we have proposed a novel technique for enhancing the stability
of scheduling GEN_BLOCK redistribution. By measuring remote to local access
ratio, a local message reduction (LMR) strategy is incorporated into our previous
proposed scheduling heuristic, named LMR-TPDR scheduling algorithm.
LMR-TPDR reflects fair transmitting cost and enhances scheduling algorithms to
obtain better scheduling results. The LMR scheduling scheme is an algorithm
independent technique and easy to implement. The simulation analysis shows
that LMR-TPDR is in most cases equal or superior to other scheduling algorithms

due to the enhanced scheduling upon actual communication cost. Experimental
results verified the simulation is trustworthy. Overall speaking, the performance
of the LMR technique has been observed to fit most irregular data redistribution.

References
1. G. Bandera and E.L. Zapata, “Sparse Matrix Block-Cyclic Redistribution,”

Proceeding of IEEE Int'l. Parallel Processing Symposium (IPPS'99), San Juan,
Puerto Rico, April 1999.

2. Minyi Guo and I. Nakata, “A Framework for Efficient Array Redistribution on
Distributed Memory Multicomputers,” The Journal of Supercomputing, vol. 20,
no. 3, pp. 243-265, 2001.

3. Minyi Guo, I. Nakata and Y. Yamashita, “Contention-Free Communication
Scheduling for Array Redistribution,” Parallel Computing, vol. 26, no.8, pp.
1325-1343, 2000.

4. Minyi Guo, Yi Pan and Zhen Liu, “Symbolic Communication Set Generation for
Irregular Parallel Applications,” The Journal of Supercomputing, vol. 25, pp.
199-214, 2003.

5. C.-H Hsu, Dong-Lin Yang, Yeh-Ching Chung and Chyi-Ren Dow, “A
Generalized Processor Mapping Technique for Array Redistribution,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12, vol. 7, pp. 743-757,
July 2001.

6. S. D. Kaushik, C. H. Huang, J. Ramanujam and P. Sadayappan, “Multiphase data
redistribution: Modeling and evaluation,” Proceeding of IPPS’95, pp. 441-445,
1995.

7. Shih-Chang Chen, Ching-Hsien Hsu, Chao-Yang Lan, Chao-Tung Yang and
Kuan-Ching Li, "Efficient Communication Scheduling Methods for Irregular
Array Redistribution in Parallelizing Compilers," Lecture Notes in Computer
Science, Vol. 3606, pp. 216-225, Springer-Verlag, Sep. 2005. (PaCT’05).

8. S. Lee, H. Yook, M. Koo and M. Park, “Processor reordering algorithms toward
efficient GEN_BLOCK redistribution,” Proceedings of the ACM symposium on
Applied computing, 2001.

9. L. Prylli and B. Touranchean, “Fast runtime block cyclic data redistribution on
multiprocessors,” JPDC, vol. 45, pp. 63-72, Aug. 1997.

10. Neungsoo Park, Viktor K. Prasanna and Cauligi S. Raghavendra, “Efficient
Algorithms for Block-Cyclic Data redistribution Between Processor Sets,” IEEE
Trans. on PDS, vol. 10, No. 12, pp.1217-1240, Dec. 1999.

11. Akiyoshi Wakatani and Michael Wolfe, “Optimization of Data redistribution for
Distributed Memory Multicomputers,” short communication, Parallel Computing,
vol. 21, no. 9, pp. 1485-1490, September 1995.

12. Hui Wang, Minyi Guo and Daming Wei, "Divide-and-conquer Algorithm for
Irregular Redistributions in Parallelizing Compilers”, The Journal of
Supercomputing, vol. 29, no. 2, 2004.

13. H.-G. Yook and Myung-Soon Park, “Scheduling GEN_BLOCK Array
Redistribution,” Proceedings of the IASTED International Conference Parallel
and Distributed Computing and Systems, November, 1999.

