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Abstract. This paper first introduces the concept of universal desig-
nated verifier ring signature (UDVRS), which not only allows members
of a group to sign messages on behalf of the group without revealing their
identities, but also allows any holder of the signature (not necessary the
signer) to designate the signature to any designated verifier. According
to whether the designator has a registered public key, two kinds of UD-
VRS are proposed. In order to distinguish the two types of UDVRS, we
call it UDVRS Proof (UDVRSP) if the designator has not a registered
public key, and this protocol is interactive. We give the formal security
definitions and notions of UDVRS and UDVRSP. Then, we propose a
UDVRS and a UDVRSP scheme, with rigorous security proofs without
random oracles.
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1 Introduction

A ring signature scheme [10] allows members of a group to sign messages on
behalf of the group without revealing their identities. Different from a group
signature scheme (for example, [3]), the group formation is spontaneous and
there is no group manager to revoke the identity of the signer.

Ring signature schemes could be used for whistle blowing [10], anonymous
membership authentication for ad hoc groups [1,6] to keep the anonymity of the
signer and can be publicly verifiable. However, consider a situation, where an
authority, who has got a secret as well as a ring signature of the secret from a
whistleblower of a group, would like to confirm validity of the secret by seeking
help from a third party. In this situation, the authority sends the secret to the
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third party, and wants to convince the third party that he indeed holds a ring
signature on the secret from a whistleblower of the group. However, he does not
want to send the signature away. A normal ring signature will not reveal the
identity of signer, however, cannot satisfy the scenario. So, we present a new
notion UDVRS to solve this problem. The UDVRS allows the signature holder
to designate a verifier and generate a designated verifier ring signature such that
it can only be verified by the designator.

1.1 Related Work

Ring signature scheme was first formalized by Rivest [10] and the first practical
ring signature [14] without random oracles was proposed by Xu, Zhang, and
Feng. Very recently, Chow et al. [7] gave a formal security proof to [14]. The
concept of designated verifier signature (DVS) was introduced by Jakobsson et
al. [9]. These signatures are intended to a specific verifier, who is the only one
able to check their validity. The notion of universal designated verifier signature
(UDVS) was given by Steinfeld et al. [11]. These are ordinary signatures with
the additional functionality that any holder of a signature is able to convert it
into a designated verifier specified to any designated verifier of his choice. The
first UDVS scheme without random oracles was proposed by Zhang et al. [16].
Very recently, a new notion called universal designated verifier signature proof
(UDVS Proof) was proposed by Baek et al. [2] at AsiaCrypt’05. What is the
difference between UDVS and UDVS Proof is that the designator does not need
a registered public key in UDVS Proof, which is required in UDVS. In order to
protect the privacy of signer, the notion of ring signature was combined with
deniable authentication [9]. The result is called deniable ring authentication. In
deniable ring authentication, only the signer can designate a verifier such that
the signature can only be verified by the designator.

1.2 Contribution

In this paper, we first present formally the security model of UDVRS and also
construct a UDVRS scheme. Meanwhile, we first present the security definitions
and notions of UDVRSP, and construct a UDVRSP scheme in the standard
model.

2 Security Model

SYNTAX of UDVRS. A UDVRS consists of 8-tuple of probabilistic polynomial
time (PPT) algorithms (CPG, SKG, VKG, RS, RV, DRS, DRV, KR) defined as
follows:

CPG- The common parameter generation algorithm, on input security para-
meter 1k, outputs a string params consisting of common parameters of the
scheme.



SKG- The signer key generation algorithm, on input params, outputs a public
key pki and a secret key ski for the user i.
VKG- The verifier key generation algorithm, on input params, outputs a
public key pkv and a secret key skv.
RS- The ring signature generation algorithm, that takes as input a secret
key ski, a message m and a set of public keys L including the one that
corresponds to the private key ski, returns the signature σ.
RV- The ring signature verification algorithm, takes as input a set of L, a
message m and σ, returns 1 or 0 for accept or reject, respectively.
DRS- The designation algorithm, on input a set of public key set L including
the one that correspond to the private key ski, designated verifier’s public
key pkv, and a message/signature pair (m,σ), output designated verifier ring
signature σ′.
DRV- The designated ring signature verification algorithm, on input σ′, des-
ignated verifier’s secret key skv and a message m, outputs 1 or 0 for accept
or reject, respectively.
KR- The key registration algorithm, on input pkv, and proof knowledge of
corresponding secret key skv, output a pair (pkv, acc/rej), where acc/rej de-
notes the public key is valid or not, respectively.

The Oracles

– RS The ring signature oracle, on input message m, L, returns a ring signa-
ture σ ← RS(ski, L, m) such that RV(L, m, σ) = 1.

– DRS The designation oracle, on input any message m, L, designated verifier
public key pkv, first computes σ = RS(ski,m, L), and returns a designated
ring signature σ′ ← DRS(σ, L, m, pkv) such that DRV(L,m,σ′, skv) = 1.

– DRV: The designated verifier ring signature verification oracle, on input
L,m, σ′, pkv, returns a bit 1 or 0 by running the algorithm DRV.

– KR: Key registration oracle, on input (skvi , pkvi) ← KeyGen(1k), stores
(skvi , pkvi) as a registered key pair.

The correctness requires that valid signatures can always be proved valid. So,
we present our detailed security notions for unforgeability, non-transferability,
and signer ambiguity for UDVRS in the following.

2.1 Unforgeability

There are two types of unforgeability to consider: Publicly verifiable ring sig-
nature unforgeability (PV-unforgeability) and designated verifier ring signature
unforgeability (DV-unforgeability). Meanwhile, we also consider the strong ver-
sion of security model for existential unforgeability [7]. DV-unforgeability always
implies PV-unforgeability, because anyone able to forge a normal ring signature
can transform it into a designated verifier ring signature. Thus it is enough to
consider only DV-unforgeability. DV-unforgeability for UDVRS against adaptive
chosen public key attack and message attack is defined as in the following game
involving an adversary A.



– Let L = {P1, · · · , Pn} be the set of n public keys in which each key is
generated as (pki, ski) ← SKG(1k). A is given L and the public parameters.

– A accesses to RS, DRS, DRV, and KR oracles.

The adversary A wins the game if he can output (L, m∗, pk∗v , σ′∗), such that
(L,m∗, σ′∗) and (L,m∗, pk∗v , σ′∗) are not equal to any answer of RS oracle and
DRS oracle, respectively. The advantage of the adversary is the probability that
he wins the game.

Definition 1. (DV-unforgeability) A UDVRS scheme is DV-unforgeability se-
cure if no PPT adversary has a non-negligible advantage in the above DV-
unforgeability game.

2.2 Non-Transferability

Non-transferability is defined through the following game involving A, S, and
D. A is an attacker that tries to brag about its interaction with the signature
holder. S is a simulator that simulates the output of A. S is able to access A as
a black-box. D is a distinguisher that tries to distinguish whether a given output
is of A or of S.

– Let L = {P1, · · · , Pn} be the set of n public keys in which each key is
generated as (pki, ski) ← SPG(1k). A and S are allowed to access RS oracle.
However, after the challenge message m is output, they may not access to
RS oracle with respect to this challenge message.

– A and S are allowed to access KR oracle and DRV oracle. A is also allowed
to access to DRS, which S is not allowed.
Finally, A and S return to D their outputs with respect to m. D decides
whether this output is of A or of S. The advantage of D is the probability
that it guess correctly over 1

2 .

Definition 2. (Non-transferability) A UDVRS scheme is Non-transferability
secure against adaptive chosen public key attack and chosen message attack,
if there exists S to every A, such that the advantage of every computationally
unbounded D is only negligible.

2.3 Signer Ambiguity

In UDVRS, signer ambiguity means that it is hard to tell which signer out of
the n possible signers who actually generates a ring signature or a designated
verifier ring signature.

– Let L = {P1, · · · , Pn} be the set of n public keys in which each key is
generated as (pki, ski) ← SKG(1k). Meanwhile, (pkvi , skvi) ← VKG(1k) is
also generated. (pki, ski), (pkvi , skvi) are provided to adversary.

– Pick a random 1 ≤ t ≤ n, output a valid ring signature σ ← RS(skt, L, m)
such that RV (L,m,σ) = 1.



– Any unbounded adversary accepts as inputs σ.

The adversary wins the game if he can output t′ such that t′ = t who signs
the signature. The advantage of the adversary is the probability that he wins
the game, over 1

n , that he can guess t accurately.

Definition 3. (Signer Ambiguity) A UDVRS scheme is said to be uncondition-
ally signer ambiguous if any unbound adversary has a negligible advantage in the
above signer ambiguity game.

3 A UDVRS Without Random Oracles

3.1 Preliminaries

Let G1 and G2 be two (multiplicative) cyclic groups of prime order p. Let g1 be
a generator of G1 and g2 be a generator of G2. We also let ψ be an isomorphism
from G2 to G1, with ψ(g2) = g1, and ê be a bilinear map such that ê : G1×G2 →
GT with the following properties:

1. Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g1, g2) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(u, v).

We introduce the following problem used in [7]:

Definition 4 ((q, n)-DsjSDH). The (q, n)-Disjunctive Strong Diffie-Hellman
Problem in (G1,G2) is defined as follow: Given h ∈ G1, g, gx ∈ G2, distinct
ai ∈ Zp and Universal One-Way Hash Functions (UOWHF) Hi(·) for 1 ≤ i ≤ n,
distinct nonzero mτ for 1 ≤ τ ≤ q and σi,τ for 1 ≤ i ≤ n, 1 ≤ τ ≤ q, satisfying:∏n

i=1 σ
(xai+Hi(mτ ))
i,τ = h for all τ , output m∗ and (σ∗i , γi), for 1 ≤ i ≤ n such

that they satisfy:
∏n

i=1 σ∗i
(xai+Hi(m

∗)+γi) =h and Hi(m∗) + γi 6= Hi(mτ ) for all
i and τ . We say that the (q, n, t, ε)-DsjSDH assumption holds in (G1,G2) if no
t-time algorithm has advantage at least ε in solving the (q, n)-DsjSDH problem
in (G1,G2).

3.2 The UDVRS Scheme

We construct a UDVRS scheme without random oracles.

1. CPG. Choose bilinear groups (G1,G2) where |G1| = |G2| = p. Define a
bilinear map ê : G1 × G2 → GT with an isomorphism ψ : G2 → G1. g2 is
the generator of G2, and g1=ψ(g2). h is also a random generator of G1. Let
Hi be universal one-way hash function such that Hi : {0, 1}∗ → Z∗p. Then
params=(G1,G2, ê, g1, g2, h,H1, · · · ,Hn).

2. SKG. For signer i, it picks (xi, yi) ∈ (Zp)2 and outputs (xi, yi, Xi = gxi
2 , Yi =

gyi

2 ) as its key pair. The secret key is (xi, yi) and the public key is (Xi, Yi) ∈
(G2)2.



3. VKG. For verifier, it picks (xv, yv) ∈ (Zp)2 and outputs (xv, yv, Xv =
gxv
2 , Yv = gyv

2 ) as its key pair. The verifier’s secret key is (xv, yv) and the
public key is (Xv, Yv).

4. RS. Assume the signer wants to form a ring signature on message m of n
users {(X1, Y1), · · · , (Xn, Yn)} with his own public key at index t, he signs
as follows:
a. For i ∈ {1, · · · , n}\t, he picks zi ∈R Z∗p and computes σi = gzi

1 .
b. For i ∈ {1, · · · , n}, he picks ri ∈ Z∗p. Then he computes

ω=h/(
∏

i∈{1,...,n}\t ψ(Xi ·gri
2 ·Y Hi(m)

i )zi .
c. He computes σt=ω1/(xt+rt+ytHt(m)) with his secret keys (xt, yt).

The signature is σ = {(σ1, r1), · · · , (σn, rn)}.
5. RV. On input a set of L={(X1, Y1), · · · , (Xn, Yn)}, a message m and σ =
{(σ1, r1), · · · , (σn, rn)}, accept if

∏n
i=1[ê(σi, (Xi · gri

2 · Y Hi(m)
i ))] = ê(h, g2).

6. DRS. On input the signature σ = {(σ1, r1), · · · , (σn, rn)} on message m,
the signature holder generates the designated verifier ring signature σ′ =
{(σ1, A1), · · · , (σn, An), B1, · · · , Bn}, where Ai = gri

2 and Bi = ê(ψ(Xv), Yv)ri

if the designated verifier public key is (Xv, Yv).
7. DRV. On input σ′ = {(σ1, A1), · · · , (σn, An), B1, · · · , Bn}, designated ver-

ifier’s secret key (xv, yv) and a message m, accept if
∏n

i=1[ê(σi, (Xi · Ai ·
Y

Hi(m)
i ))] = ê(h, g2) and ê(ψ(Xv), Ai)yv=Bi.

4 Security Analysis

The correctness of the scheme is straightforward. Before prove the DV-unforgeability
of the UDVRS, we first derive a new ring signature without random oracles from
above UDVRS scheme.

The system parameters are also {G1,G2, ê, g1, g2, h, H1, · · · ,Hn } as defined
in section 3.

1. KeyGen. For user i, on input security parameter 1k, outputs (xi, yi, Xi =
gxi
2 , Yi = gyi

2 ), where (xi, yi) ∈ (Zp)2 and (Xi, Yi) ∈ (G2)2 are the secret key
and public key of user i, respectively.

2. RS. On input a secret key (xt, yt), a message m and a set of public keys
L including the one that corresponds to the private key (xt, yt), it signs as
follows:
a. For i ∈ {1, · · · , n}\t, he picks zi ∈R Z∗p and computes σi = gzi

1 .
b. For i ∈ {1, · · · , n}, he picks ri ∈ Z∗p. Then he computes

ω=h/(
∏

i∈{1,...,n}\t ψ(Xi ·gri
2 ·Y Hi(m)

i )zi .
c. He computes σt=ω1/(xt+rt+ytHt(m)) with his secret keys (xt, yt).

The signature is σ = {(σ1, r1), · · · , (σn, rn)}.
3. RV. On input a set of L={(X1, Y1), · · · , (Xn, Yn)}, a message m and σ =
{(σ1, r1), · · · , (σn, rn)}, return 1 if

∏n
i=1[ê(σi, (Xi · gri

2 ·Y Hi(m)
i ))] = ê(h, g2).

Otherwise, output 0.



Theorem 1. The new ring signature scheme is existentially unforgeable if (q, n)-
DsjSDH assumption holds in bilinear groups, and it also achieves signer-ambiguity
against unconditional adversary.

The new ring signature is a variant of [7,14]. However, if directly use the ring
signature [7,14], it is hard to construct a UDVRS by using the construction
method in our paper. The new ring signature without random oracles is different
from [7,14] in RS and RV. However, it can also easily be proved to be secure
without random oracles from the proof of [7].

Definition 5. (Knowledge of Exponent Assumption[4,16]) Suppose that an ad-
versary is given a pair (g, h) which is randomly chosen from uniform distribu-
tion of G2 and if the adversary is able to generate a pair (x, y) ∈ G2 such that
loggx = loghy, then there exists an extractor that extracts loggx.

We can get the following security results. For the page limitation, reader can
contact the author for full version of this paper if needed.

Theorem 2. The UDVRS scheme achieves DV-unforgeability provided that the
underlying ring signature is secure and knowledge of exponent assumption holds
in bilinear groups.

Theorem 3. The UDVRS scheme achieves signer-ambiguity against uncondi-
tional adversary.

Theorem 4. The UDVRS scheme achieves non-transferability against uncon-
ditional adversary.

5 UDVRSP

SYNTAX of UDVRSP. A UDVRSP consists of 6-tuple of poly-time algorithms
(CPG, SKG, RS, RV, Transform, IVerify) defined as follows:

CPG- The common parameter generation algorithm, on input security para-
meter 1k, outputs a string params consisting of common parameters of the
scheme.
SKG- The signer key generation algorithm, on input params, outputs a public
key pki and a secret key ski for the user.
RS- The ring signature generation algorithm, that takes as input a secret
key ski, a message m and a set of public keys L including the one that
corresponds to the private key ski, returns the signature σ.
RV- The ring signature verification algorithm, takes as input a set of L, a
message m and σ, returns 1 or 0 for accept or reject, respectively.
Transform- On input signature σ, it picks a secret mask sk′ and generates a
transformed signature σ′.



IVerify- This is an interactive verification protocol between a designator P
and a designated verifier V. Common input for P and V are a set of public
key L, a transformed signature σ′ and a message m. P’s private input is sk′.
V does not have any input. The output of this protocol is 1 or 0 depending
V accepts or rejects.

The UDVRSP should satisfy correctness, unforgeability, and signer ambigu-
ity. Definitions of unforgeability and signer ambiguity are the same with the ring
signature.

Another essential security requirement is resistance against impersonation
attack. This can be divided into two categories: Type-1 and Type-2 attacks.

In Type-1 attack, an attacker who has obtained a transformed signature par-
ticipates in the IVerify protocol as a cheating designated verifier and interacts
with an honest designator a number of times. The target of the attacker is to
impersonate the honest designator to other honest designated verifier.

In Type-2 attack, the attacker simply ignores the transformed signature that
he has obtained before but tries to create a new transformed signature on his
own and use this to impersonate the honest designator to an honest designated
verifier in the IVerify protocol. For more details, please refer to [2].

5.1 The UDVRSP Scheme

The algorithms CPG, SKG, RS, RV are the same with their corresponding al-
gorithms in section 3.

- Algorithms CPG, SKG, RS, and RV are the same with corresponding
algorithms in section 3.

- Transform. On input the signature σ = {(σ1, r1), · · · , (σn, rn)} on message
m, the signature holder chooses z ∈ Z∗p and generates the transformed ring
signature σ′ = {(σ′1, r1), · · · , (σ′n, rn)}, where σ′i = σz

i for 1 ≤ i ≤ n.
- IVerify. On input σ′ = {(σ′1, r1), · · · , (σ′n, rn)}, both the designator P

and designated verifier V compute R1=
∏n

i=1 [ê(σ′i, (Xi · gri
2 · Y

Hi(m)
i ))](=

(ê(h, g2))z), and R2 = ê(h, g2). Then they interactive as follows:
a. P picks s ∈R Z∗p and sends U = Rs

2 to V.
b. V chooses c ∈R Z∗p. and sends it to P.
c. P computes t=s + cz mod p and sends t to V.
d. V checks that if Rt

2 = U ·Rc
1.

If it holds, output 1. Otherwise, output 0.

As mentioned above, the UDVRSP scheme achieves signer-ambiguity and
unforgeability from the corresponding properties in the standard ring signature.

Definition 6. One More Discrete Logarithm Problem (OMDL Problem[2]): on
input n+1 challenge elements y1 = gx1

1 , · · · , hn+1 = g
xn+1
1 ∈ (G1)n+1, provided

to the discrete logarithm oracle at most n times, it is hard to output x1, · · · , xn+1

for any PPT algorithm.



Theorem 5. The UDVRSP scheme is secure against impersonation under Type-
1 attack assuming the OMDL problem is hard.

Theorem 6. The UDVRSP scheme is secure against impersonation under Type-
2 attack assuming the underlying ring signature is secure.

6 A Short DVS without Random Oracles

A DVS consists of three algorithms: the key generation algorithm KeyGen, the
designated verifier signature generation algorithm Sign, and the designated ver-
ification algorithm Verify.

The security requirements of DVS [8] are unforgeability and non-transferability.
It is known that DVS can be converted from ring signatures just by setting

the size of the ring signature to two-user [8]. So, we construct the first DVS
without relying on random oracles from the two-user ring signature in section 4.

The system parameters are the same with section 4.

1. KeyGen. For signer, it generates (xs, ys, Xs = gxs
2 , Ys = gys

2 ), where (xs, ys) ∈
(Zp)2 and (Xs, Ys) ∈ (G2)2 are the secret key and public key, respectively.
For verifier, it generates (xv, yv, Xv = gxv

2 , Yv = gyv

2 ), where (xv, yv) ∈ (Zp)2

and (Xv, Yv) ∈ (G2)2 are its secret key and public key, respectively.
2. Sign. The signer generates a designated verifier signature on message m for

the specific verifier as follows: The signer takes a secret key (xs, ys), then
a. The signer picks z ∈R Z∗p and computes σ2 = gz

1 .

b. He also picks r1, r2 ∈ Z∗p and computes ω=h/(ψ(Xv · gr2
2 ·Y H2(m)

v )z.
c. He computes σ1=ω1/(xs+r1+ysH1(m)).

The signature is σ = {(σ1, r1), (σ2, r2)}.
3. Verify. On input (Xs, Ys), (Xv, Yv), a message m and σ = {(σ1, r1), (σ2,

r2)}, return 1 if ê(σ1, Xs · gr1
2 · Y H1(m)

s ) · ê(σ2, Xv · gr2
2 · Y H2(m)

v ) = ê(h, g2).
Otherwise, output 0.

From the existentially unforgeability and non-transferability of the underly-
ing two-user ring signature, we can easily get the following results:

Theorem 7. The DVS is existentially unforgeable if (q, n)-DsjSDH assumption
holds in bilinear groups.

Theorem 8. The DVS achieves unconditional non-transferability.

7 Conclusion

We first propose the notion of UDVRS. It not only allows members of a group
to sign messages on behalf of the group without revealing their identities, but
also allows the signature holder to designate a verifier. We give a formal and
strong UDVRS security model. Then, a provably secure UDVRS scheme without



random oracles is proposed in this paper, with rigorous proofs under the security
model. To achieve our goal, we also present a variant ring signature scheme of
[7,14]. Meanwhile, we also propose the concept of UDVRSP and construct a
secure UDVRSP scheme in the standard model. Finally, a DVS without random
oracles is first given in this paper.
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