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Abstract. At the transition from a tangent section to a curved section, it is pos-
sible for a following vehicle with adaptive cruise control in car-following mode 
to lose track of the lead vehicle. This occurs because the lead vehicle enters the 
curve and its path diverges from the axis of the following vehicle, yet the fol-
lowing vehicle does not yet have lateral acceleration information that would in-
duce its range sensor to bend according to the curvature of its own path.  This is 
a temporary situation, but one that could have an impact on cruise control 
safety and appropriate algorithms.  In this paper, the conditions of time and dis-
tance that produce this circumstance are derived. Examples are given using 
typical values of roadway and vehicle parameters. Finally, some conclusions 
regarding possible solutions are offered 

1. Introduction 

Correct functioning of an adaptive cruise control system is predicated on the assump-
tion that the following vehicle can continually acquire range information from the 
vehicle in front of it. This is important both when the subject vehicle is traveling at its 
desired speed and is alert to potential conflicts in front of it, and while it is in a “car-
following” mode because a leading vehicle is obstructing its ability to travel at its 
own desired speed. The acquisition of range information (and any of its derivatives, 
including relative velocity and relative acceleration) is accomplished via electromag-
netic sensor, most often employing infrared radar or laser technology. A variety of 
sensors are available, and testing regimes have been established to ensure that they 
perform adequately [1]. For our purposes, the sensor can be visualized in plan view as 
a beam with a given angular range θ. 

Several rangefinder sensors, such as the Omron units employed in some Nissan 
ACC systems, employ multiple beams. Primarily, this capability is used to support 
sensing of lane-changing and other potential conflicts outside the lane of the subject 
vehicle.  Each beam has an aiming angle and included angle similar to θ, and each 
could be analyzed individually using the methods in this paper. 



ACC is becoming a more popular accessory in cars, following the traditional tra-
jectory of new technology, which is to filter its way down from the most expensive 
models to the lesser so. It is currently marketed as a convenience system rather than a 
safety aid [2]. This is due in part to the fact that its operation is not yet robust. This 
paper is concerned with a specific instance where the intended functionality of the 
ACC range sensor can be hampered, due to a combination of vehicle locations, 
speeds, and roadway geometry. The next section describes, qualitatively, a number of 
known issues from the ACC literature. Following that, we present the quantitative 
methodology for determining the specific circumstances under which rangefinder 
dropouts can occur at curve transitions, and some examples with specific parameter 
values. This is followed by a discussion of how this and other sensor issues relate to 
the design of ACC strategies and algorithms. Finally, some conclusions and sugges-
tions for future research are offered. 

2. Target Determination in Circular Curve 

One of the interesting challenges of ACC control lies in the fact that when both the 
subject vehicle and the target vehicle are on a curve, the target vehicle is not directly 
in front of the subject vehicle, as measured along its own axis. To counter this, most 
ACC sensors have the ability to deflect their beams at appropriate angles. The deter-
mination of the proper angle requires an estimate of the curvature of the road being 
traversed, which is accomplished via a combination of an on-board yaw rate sensor 
and feedback from the vehicle’s speed sensor. 

What is assumed in this calculation, however, is that the subject vehicle is on the 
curve, allowing it to measure its own lateral acceleration. During the transition from a 
tangent section to a curved section, however, the lead vehicle enters the curve first, 
and it might be possible for it to turn out of the path of the sensor beam before the 
following vehicle is even aware that a curve is coming [1]. In their report [3] on a 
major demonstration project in the U.S., General Motors acknowledges that curve 
entry-exit transitions present a challenge to target acquisition and tracking in an ACC 
system. The issue is more complicated than simply losing track of the vehicle - from 
the perspective of the rangefinder in the following vehicle (if it is of the multi-beam 
variety equipped to take such measurements), this maneuver might just as easily re-
semble a lane change. As a result, if the following vehicle were traveling below its 
desired speed, it might interpret this as a circumstance where it would be safe to ac-
celerate back to its desired speed. In fact, however, it would soon discover, once it 
was on the curve, that the lead vehicle did not change lanes, and therefore because of 
its own acceleration, the safe following distance had been compromised. Other issues 
related to losing track of an appropriate target, or acquiring a stationary target incor-
rectly, have been documented in [1, 4] and elsewhere. The methodological portion of 
this paper is concerned only with the issue of temporary losing track of a lead vehicle 
at a curve transition, although the geometric procedure can be adapted to other prob-
lems. 

It should be noted that a similar problem might arise with vertical curves. In this 
case, the “visibility” of the lead vehicle might be hampered. In general, particularly 



on high-speed facilities where ACC systems are currently most useful, vertical curva-
ture tends to have less of an egregious effect than horizontal. Nevertheless, this is 
probably an important issue, although it is not treated in the scope of this paper. 

We present the geometry of this situation in a way that enables to determine, as a 
function of the speed of the vehicles (and therefore the safe following distance), the 
distance and time that the following vehicle is on the tangent, after losing track of the 
target vehicle, but before entering the curve where it might re-acquire. It is this inter-
val that is most dangerous, and it might be wise to not attempt to accelerate during 
this time. 

3. Geometric Derivation 

It is assumed that the horizontal alignment consists only of a smooth series of con-
nected tangent sections and circular curves. While clothoid spirals are also used fre-
quently for curve transitions, they do not lend themselves to closed-form geometric 
calculations [5]. Furthermore, their effect is to reduce the rate of change of curvature 
and spread it over a longer distance, giving a following vehicle more time to enter the 
curve and become aware of the new circumstances. Thus, the worst case-scenario is a 
direct tangent-to-circular arc transition, so spirals will not be considered in this paper.   
Figure 1 shows the geometry of tangent and circular curve sections. In the derivation 
that follows, coordinates are shown in vector representation for conciseness. 
 

 
Fig. 1. Geometry of tangent and circular curve sections 

The origin of the coordinate system in the figure is at the point PC, which is the 
point of curvature, or transition from the tangent to the circular curve. The circular 
arc has radius r. The safe following distance between the two vehicles is given by d, 
which is then partitioned into d = da + dl, where da is the distance along the arc of the 



center of the vehicle travel lane, and dl is the remaining distance, which is appor-
tioned to the tangent.  While d might be given exogenously, we will also show an 
example where it is a commonly used function of the vehicle speed v. The included 
angle ∆, on the circular arc, between its start and the location of the lead vehicle, is 
given by 
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where wl  is the lane width.  Throughout this paper, all angles are given in radians. 
The point A is the middle of the driving lane at the curve transition; it is given by 
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The point B is the middle of the driving lane at the rear of the lead vehicle.  To 
find this point, first we find the length C, of the chord AB: 
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The point B is then determined by  
 [ ]T( ) 0 1c R δ= +B A     (4) 

where R(δ) is the transformation matrix that effects a counter-clockwise rotation 
about the origin through an angle of δ radians (for examples of this form of vector 
algebra for highway design purposes, see [5,6]), and is given by 
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and δ is the deflection angle (measured in radians, counter-clockwise from the 
positive abscissa) of the line that is tangent to the circular curve. This can also be 
written  
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Hence R(δ) is given by 
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Simplifying and combining then yields 
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Removing the intermediate variables c and x then leaves   



( )
2 2

22 sin sin
2 2 2 2

2sin
2 2

w a w a
w

w w

w a

w

l d l dr l r
r l r l

l dr
r l

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥− + − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥+ +⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦= ⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟ +⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

B

     (10) 

Assuming that the edge of the sensor beam is effective all the way to the right rear 
corner of the vehicle (point D in Figure 1), that point is derived as follows: 

 0
12 2

wvR π ⎡ ⎤⎛ ⎞= + ∆ −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
D B

   (11) 

where vw is the assumed width of the lead vehicle.  The transformation matrix 
( )2R π∆ −  can be simplified: 
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Hence the coordinate of the right rear corner of the lead vehicle in terms of basic 
parameters is given by 
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The other point of interest is then the point E, which is the front middle of the fol-
lowing vehicle.  This can be given as 
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With the knowledge of the two points D and E, we can determine the angle α be-
tween the center axis of the following vehicle and the right rear corner of the lead 
vehicle.  More importantly, if we equate that angle to θ/2, we are determining the 
angle at which the lead vehicle departs the sensing region of the range sensor.  Thus, 
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In this equation, the quantities lw and vw, can be assumed to be constant values de-
termined a priori.  For particular circumstances, a value of r can be chosen, although 
from the perspective of the ACC control logic, it must be expected that a range of 
curve radii can be encountered.  The speed is not known ahead of time, and that has 
an impact on both the curve radius r and the following distance d.  Nevertheless, we 
posit that the most appropriate use of Eq. (15) is to choose values for all of these 
parameters, as well as for the sensor angle θ, and then solve for da. Knowing da, one 
can then also determine dl = d – da, which is the distance over which the car must 
travel after having lost the range signal, until it enters the curve and can then bend its 
sensor beam and re-acquire. Combined with the speed, this gives the time during 



which the vehicle is vulnerable to conditions outside the expectations of the sensing 
system. Equ. (15) cannot be solved for da in closed form; in the examples that follow, 
we used the non-linear root finder in Matlab to solve the equation numerically. 

4. Numerical Example 

In this numerical example, we will solve for da as a function of v, assuming that some 
of the other parameter values can be fixed, and the remaining variables can be chosen 
also to be single-valued functions of v. For example, we chose as standardized pa-
rameter values lw = 12 feet, and vw = 7 feet.  In the latter case, this is the design vehi-
cle width for a typical passenger car [7]. We chose θ = 10 degrees = 0.1745 radians, 
which is the included angle for the center beam of the Omron AR211 unit used in 
Nissan ACC systems. Finally, we chose r = 800 feet. This last choice was arbitrary 
but acceptable; the same analysis can be conducted with any other value. 

The safe following distance maintained between vehicles when the ACC is in fol-
lowing mode can be represented by car-following stopping distance, which includes 
perception/reaction and braking distance and is given in consistent units by 
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where t is the perception-reaction time for ACC system, which typically has a 
value of the order of 0.5 s [8]. This is a much shorter reaction time than is expected in 
manual driving, which is typically around 2-3 seconds [9]. The denominator of the 2nd 
term of the right hand side of Eq. (16) contains all modifiers to the effect of gravity, 
including the coefficient of friction f and the grade of the road G in dimensionless 
form. If we assume g is 32.2 ft/sec2, f is 0.30, G is zero and v is 73.33 ft/sec (ap-
proximately 50 mph) for both vehicles in this example, then Eq. (16) yields d = 314.5 
feet. By moving all terms of Eq. (15) to one side of the equality, we turn the problem 
of solving for da into a root-finding exercise, which Matlab can do with standard 
numerical techniques. For the values given in this example, this yields da = 221.5 feet.  
Thus, dl = d - da = 93 feet. At the speed of 73.33 ft/sec, this means that the vehicle is 
“driving blind” for approximately 1.27 seconds. At least for the values given in this 
example, it seems wise to suggest that the ACC control unit pause at least a second or 
two before accelerating to the driver’s desired speed, in order to distinguish between 
a situation where it is in fact safe to do so because the previously obstructing vehicle 
has left the lane in question, and a case where it only appears to be safe because of the 
effects of road curvature. 

This advice, of course, comes from a worst-case safety perspective. It may be that 
certain aggressive drivers would become impatient with such a system. For example, 
the car might choose to wait until it can distinguish between a lane change and a 
curve transition, but the driver might know which was actually the case. Perhaps 
some “aggressiveness” factor could be tuned by the driver according to their prefer-
ences. As vehicle functions become increasingly automated, it is apparent that hu-
man-machine interaction issues become more and more important, much the way user 



interface and ergonomics were with the last generation of automotive technology.  
Accordingly, this is an important area of research that should be pursued. 

5. Sensitivity Analysis 

We show how dl varies with marginal changes to other parameters such as the in-
cluded angle of sensor, the radius of circular curve and vehicle speed, using as our 
nominal state the data from the analysis. Because of the number of dimensions in-
volved, we cannot hope to completely characterize the behavior of Eq. (15) with this 
analysis, but it can serve to illustrate the shape of its partial derivatives, and reinforce 
the reasonableness of these relationships.   

The relation between dl and θ is approximately linear in this range of values, as 
shown in Fig. 2. Sensors with included angles between 4 and 12 degrees are consid-
ered. As the angle of sensor increases, the dl decreases which means that the blind 
time is decreasing. However, we have to make sure that increasing the sensor angle 
increases the likelihood of false readings from adjacent lanes, particularly at curves. 

While we chose a specific value of the curve radius r for the example, it is also fair 
to say that it depends in some measure on the speed v, which is presumably within the 
range of the design speed for the facility in question. It is not reasonable, however, to 
tie Eq. (15) to a specific relationship between speed and curve radius, since the vehi-
cles are not necessarily traveling at the design speed, and because any such relation 
only gives a minimum value of the curve radius anyway. Beyond that, ample room is 
left for trading off curve radius versus superelevation, and designers can always 
choose larger-than-necessary curve radii to improve comfort, aesthetics, and other 
considerations. Fig. 3 shows how a range of curve radii affects the computation of dl. 
All radii are greater than the minimum required for a speed of 50mph. With the same 
speed, but decreasing curvature, the lead vehicle does not deviate from the following 
vehicle’s axis as drastically, so the blind time decreases.   
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Fig. 2. Effect of the range sensor included angle             Fig. 3. Effect of curve radius 

Fig. 4 shows how d and dl are affected by v, via Eq. (15) and (16), together with 
factors to transform speed to the more customary units of miles per hour. We chose 
the minimum curve radius for each speed range and safe following distance as in-
creasing functions of velocity. Intuitively, blind time should decrease with curve 
radius, but increase with stopping distance. It is clear from this figure that the latter 



effect is more pronounced, so the blind time increases. Of course, there are limits to 
the range of the range sensor. 
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Fig. 4. Effect of the velocity of the lead vehicle 

6. Conclusion 

In this paper we have described and illustrated a situation where an autonomous 
cruise control in car-following mode may inadvertently lose track of the lead vehicle, 
and may mistake that loss of target as being clear to accelerate. This is a potentially 
dangerous conclusion, since the lead vehicle has not changed lanes in this scenario, 
and will re-appear within the sensor’s “vision” as soon as the following vehicle 
knows it is on a curve and rotates the sensor beam appropriately. We were not the 
first to discuss or even mitigate against this problem, but our presentation of the geo-
metric model of this situation is original to our knowledge. 

Using realistic example numbers, it is shown that the time lag between losing and 
re-acquiring the lead vehicle target is relatively small on the human scale, and there-
fore it might be wise not to employ ACC scenarios that over-react within time win-
dows this small. There is a trade-off, however, because the ACC would be forced to 
behave this way in safe situations as well. This “sluggishness” might downgrade the 
user’s perceived convenience of ACC, which is the ability to quickly get underway 
again at the desired speed once potential threats have moved aside. 

It is not necessarily true that this issue will remain forever; however, it is probably 
not within the limits of range-sensing technology alone to solve the problem. The 
addition and fusion of a second sensor input, such as precise geolocation and an accu-
rate underlying map database, or an intelligent vision system that can recognize the 
presence and curvature of circular arcs ahead, might allow the following vehicle to 
react to curvature that the lead vehicle is experiencing even before it is in the curve 
itself. This is the approach being followed in the ongoing Automotive Collision 
Avoidance System (ACAS) field operational test conducted by General Motors, and 
presumably by a number of other manufacturers as well. 
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