
An Analysis on the Web Technologies for Dynamically
Generating Web-Based User Interfaces in Ubiquitous

Spaces

Ilsun You1 and Chel Park2

1 Department of Information Science, Korean Bible University,
205 Sanggye-7 Dong, Nowon-ku, Seoul, 139-791, South Korea

isyou@bible.ac.kr
2 Fasoo.com, Product Planning Team,

KByeoksam bldg. 5th fl., Yeoksamdong, Kangnamgu, Seoul, 135-911, South Korea
pcman@fasoo.com

Abstract. In this paper, we study the web technologies that allow ubiquitous
spaces to create dynamic web pages in accordance with user profiles. Especially,
we explore the server-side scripting approach, the most popular technology for
dynamic web pages. This approach mainly adopts the execute-while-parsing
model, which suffers from the interpretation overhead. Recently, the compile-
then-execute model was proposed to address the overhead. This paper compares
and analyzes the two models, while performing benchmark test in Microsoft
ASP and ASP.NET environment. The benchmark results show that, due to the
high initialization overhead, the compile-then-execute model cannot substan-
tially improve the execute-while-parsing model. Also, the best performance can
be achieved through optimization rather than compiled execution. Based on the
results of the benchmark test, we develop a speedup model, which estimates the
maximum performance improvement achievable by the compile-then-execute
model.

1 Introduction

Since the introduction by Mark Weiser, ubiquitous computing technology has re-
ceived significant attention in the last few decades [1-5]. In ubiquitous computing
environment, users carry mobile access devices such as PDAs, mobile phones and
wristwatches, through which they can seamlessly access resources and services
within ubiquitous spaces. For example, as Alice enters an intelligent hotel room,
which is a ubiquitous space, her mobile access device is automatically detected and
joins the space. Then, her device alerts her that she is within the ubiquitous space,
thus allowing her to use resources and services provided by the space.

Nowadays, the dynamic web page service is becoming important in ubiquitous
computing environment because of the followings:

 It is preferred to use the web and its underlying HTTP protocol for interaction
between mobile access devices and ubiquitous spaces because they are standard
and mature technology easy to implement. Furthermore, since most mobile ac-
cess devices include a web browser, it is desirable to use the web browser as an
interface to ubiquitous spaces.

 Typically, ubiquitous spaces tend to offer various resources and services, all of
which should not be given to users. Therefore, interfaces to the spaces need to
be personalized according to user profiles. Such personalization requires a ser-
vice that dynamically generates web-based user interfaces for controlling re-
sources and services according to user profiles.

In this paper, we study the web technologies that allow ubiquitous spaces to create
dynamic web pages in accordance with user profiles. Especially, we explore the
server-side scripting approach, the most popular technology, which mainly adopts the
execute-while-parsing model. However, the execute-while-parsing model has a criti-
cal burden that server-side scripts must be interpreted every time they are requested.
Recently, the compile-then-execute model was proposed to address this burden. This
model allows a script page to be executed without any compilation, after the page is
first compiled. Thus, it is expected that the compile-then-execute model improves the
execute-while-parsing model. This paper compares and analyzes the two models,
which are expected to be popular in ubiquitous computing environment. For the pur-
pose, we design a benchmark program, implement three different versions of the
program and perform benchmark test in Microsoft Active Server Pages (ASP) and
ASP.NET environment.

The rest of the paper is organized as follows. Section 2 reviews the web technolo-
gies that enable creating dynamic web pages, and section 3 gives a brief overview of
ASP and ASP.NET. Section 4 describes test environment and our benchmark pro-
gram. In section 5, the results of the benchmark test are analyzed, and then a speedup
model is provided. Finally, section 6 draws some conclusions.

2 Web Technologies for Generating Dynamic Web Pages

Since the introduction of the web, there has been a tremendous demand for mecha-
nisms that enables creating dynamic web pages in accordance with user requests. The
Common Gateway Interface (CGI), a standard for running external programs (CGI
programs) on a web server, was the first widely means for generating dynamic web
pages. Though CGI has benefits such as ease of understanding, language independ-
ence, platform independence and so forth, it has the two significant drawbacks [6-
10]: low performance and high programming overhead.

The limitations of CGI have led to various approaches such as web server exten-
sions, Fast-CGI, java servlets and server-side scripting [7,8]. Unlike other approaches
whose goal is to address the low performance, server-side scripting focuses on mini-
mizing the programming overhead. Since script languages are easy and convenient to
build, debug and modify, this approach achieves the purpose, while becoming a
popular technology. However, it has a critical burden that server-side scripts must be
interpreted every time they are requested. To address this burden, the web technolo-
gies such as Practical Extraction and Report Language (PERL), Microsoft Active
Server Pages (ASP) and PHP: Hypertext Preprocessor (PHP) 3.0 implement an inter-
preter based on web server extensions. In spite of reducing the burden, the technolo-
gies still require the web server to interpret the scripts. Unlike the interpreter-based
technologies using an execute-while-parsing model, advanced technologies such as

PHP 4.x/5.x, Sun Java Server Pages (JSP) and ASP.NET use a compile-then-execute
model for removement of the interpretation overhead. This model allows a script page
to be executed without any compilation, after the page is first compiled.

3 Overview of ASP and ASP.NET

3.1 Active Server Page

Active Server Pages (ASP) is a server-side scripting technology that supports the
creation of dynamic web pages [11]. This technology allows a web developer to com-
bine Hypertext Markup Language (HTML), scripts, Extensible Markup Language
(XML), and reusable Component Object Model (COM) including ActiveX controls to
build powerful interactive web sites. An ASP page is an HTML page that contains
server-side scripts, and is executed as shown in Fig. 1. ASP.dll interprets a requested
ASP page and executes any script commands in it, while running as a script language
interpreter in the web server process. Also, it provides access to COM objects includ-
ing ADO and ASP components.

<HTML><HEAD></HEAD>
<BODY>
Hello ASP!
Current Time: 2005-07-30 오후 9:58:29
</BODY>
</HTML>

Result Page

Web Server

<HTML><HEAD></HEAD>
<BODY>
<%
Response.write "Hello ASP!
"
Response.write "Current Time: " & now
%>
</BODY>
</HTML>

HellASP.asp

(ASP.dll) ASP Interpreter

2. The web server finds, interprets
 and executes the requested page

3. The web server
 sends the result page
 to the browser

Web Browser
1. The web browser
 requests
 an asp page

4. The web browser displays
 the result page

Fig. 1. ASP page execution model

ASP offers the following competitive features:
 Server-side scripting
 Easy and Flexible Database Access
 Extensibility through COM Objects

3.2 ASP.NET

ASP.NET, which is more than the next version of ASP, is a set of technologies in the
Microsoft .NET framework for building web applications and XML web services
[12-14]. It provides a unified web development model that enables developers to
build enterprise-scale web applications. Also, it uses a compiled, event-driven pro-
gramming model that improves performance and enables the separation of application
logic and user interface. Because of being based on the fundamental architecture
of .NET framework, it allows web applications to be created in any .NET compatible
language, such as Visual Basic .NET, C#, and JScript .NET. Furthermore, developers
can easily leverage the benefits of .NET framework, which include the managed
common language runtime environment, type safety, inheritance, and so on. Fig. 2
describes five key advantages of ASP.NET [13].

Developer Productivity
Easy Programming Model
Separation of Code from HTML
Event-Driven Programming Model

 Graphical Development Environment
Flexible Language Options
Great Tool Support: Visual Studio .NET
Rich Class Framework

Improved Performance and Scalability
Compiled execution
Rich output caching
Web-Farm Session State

Enhanced Reliability
Memory Leak, DeadLock and Crash Protection

Easy Deployment
“No touch” application deployment
Dynamic update of running application
Easy Migration Path

New Application Models
XML Web Services
Mobile Web Device Support

Fig. 2. Key advantages of ASP.NET

GET /hello.aspx HTTP/1.1
Accept: ...
Accept-Language: ko
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
Host: www.testsite.net:8080
Connection: Keep-Alive

Web Server

Page Parser:
Get Compiled Page Instance

Web Browser

Request

Compiled assembly
already exsits?

Compiler

Assembly
Cache

Assembly IL

Memory

Assembly ILAssembly IL

No

Yes

Assembly IL

Execute

HTTP
Runtime

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Mon, 1 Aug 2005
05:10:59 GMT
Content-Type: text/html;
charset=ks_c_5601-1987
Content-Length: 5361

Content-Type: text/html
Content-Length: 1354

<html>....</html>

Result Page

Fig. 3. ASP.NET page execution model

In contrast to classic ASP pages, ASP.NET pages are compiled and then executed
as illustrated in Fig. 3. When an ASP page is first requested, it is compiled into
a .NET assembly. Without the requirement of interpretation, subsequent requests are

directly processed by the assembly, which is cached in assembly cache until its source
page is changed. Such a compile-then-execute model makes ASP.NET overcome the
performance penalties caused by interpreting the scripts. In addition to the improved
performance, ASP.NET requires no explicit compile step, thus making web applica-
tion development easier, faster and much more cost-effective.

4 Experiments

A main goal of this paper is to analyze the execute-while-parsing and compile-then-
execute models, which are expected to be popular in ubiquitous computing environ-
ment. For this goal, we measure web server performance through benchmark test.

4.1 Test Environment

For performance measuring, we use as a benchmark tool WebBench 5.0 developed by
VeriTest [15]. Fig. 4 shows our test environment based on WebBench. In this envi-
ronment, clients execute WebBench tests while sending repeated requests to the web
server, and controller provides a means to set up, start, stop, and monitor the Web-
Bench tests.

Controller
Client-1 Client-2 Client-N

Web Server

……

Fig. 4. Test environment architecture

System specification is as follows.
 Web Server

H/W: Intel Pentium III 1GHz processor, 256MB main memory
S/W: Microsoft Windows Server 2003, Internet Information Server 6.0

 Controller
H/W: Pentium III 733MHz processor, 256MB main memory
S/W: Microsoft Windows XP Home Edition, WebBench Controller

 Client
H/W: Pentium III 733MHz processor, 256MB main memory
S/W: Microsoft Windows XP Home Edition, WebBench Client

4.2 Benchmark Program

We design a benchmark program as shown in Fig. 5. The benchmark program is first
implemented as an ASP page, which is then migrated into an ASP.NET page accord-
ing to [16-19]. After migrated, the ASP.NET page is optimized. Especially, for mi-
gration from ASP to ASP.NET, we change just an ASP page's file extension
from .asp to .aspx. Such a port allows the impact of compiled execution on perform-
ance to be measured. In order to examine performance improvement caused by new
features of ASP.NET besides compiled execution, we optimize the migrated
ASP.NET page by creating strongly typed variable declarations.

Start

Dim i, j
Dim sum

i=0
j=0

i<2

sum=0

j<1000

j=0

i=i+1

sum=sum+j

j=j+1Start

no

yes

yes

no

<%
dim i, j
dim sum
for i=0 to 1

sum = 0
for j=0 to 1000

sum = sum + j
next

next
%>

<%
dim i, j
dim sum
for i=0 to 1

sum = 0
for j=0 to 1000

sum = sum + j
next

next
%>

<%@ Page Language="VB" %>
<script language="VB" runat="server">
dim sum as Long

Private Sub Page_Load(..)
dim i as Long, j as Long

for i=0 to 1
sum = 0
for j=0 to 1000

sum = sum + j
next

next
End Sub
</script>

test.asp

test.aspx

otest.aspx

Migration

Optimization

Implementation

changing
an ASP page's file extension

creating strongly typed variable
declarations

Fig. 5. Benchmark program

5 Benchmark Results and Analysis

In our benchmark test, three different versions of the benchmark program mentioned
above are tested to compare their performance. For that, multiple clients (from 16 to
96) concurrently send repeated requests to the web server during 300 seconds. The

main metric used for performance measuring is throughput, which is number of re-
quests processed per second.

5.1 Results of Benchmark Test

Fig. 6 compares throughputs produced by the three versions of the benchmark pro-
gram. Because of compiled execution, performance of an ASP.NET page is expected
to be better than that of an ASP page. However, our benchmark test shows that the
ASP page has better performance than the ASP.NET page. This strange result may be
caused by high initialization overhead of the ASP.NET page. That is, the ASP.NET
page, which is a .NET assembly, should be interpreted to native code at runtime by
Just-in-time (JIT) compiler and then loaded in memory before its execution. In addi-
tion, since the benchmark program has small code size, the ASP page does not suffer
from the interpretation overhead.

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96

ASP ASP.NET O-ASP.NET

Number of Concurrent Clients

Th
ro

ug
hp

ut

Fig. 6. Comparison of throughputs produced by three different versions

B-xxx: Blank xxx Page
O-xxx: Optimized xxx Page
Tbasp : response time of the blank ASP page
Tbaspx : response time of the blank ASP.NET page
Tasp : response time of the ASP page
Taspx : response time of the ASP.NET page
Toaspx : response time of the optimized ASP.NET page
eTasp : execution time of the ASP page
eTaspx : execution time of the ASP.NET page
eToaspx : execution time of the optimized ASP.NET page
eTasp = Tasp - Tbasp = 2.703105
eTaspx = Taspx - Tbaspx = 2.042106
eToaspx = Toaspx - Tbaspx = 0.024467

1.510011

2.570866

4.213116
4.612972

2.595333

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

B-ASP B-ASP.NET ASP ASP.NET O-ASP.NET

(m
illis

ec
on

d)
Re

sp
on

se
Tim

e

Fig. 7. Comparison of response times (64 clients, period of 600 seconds)

To analyze the initialization overhead, we make two blank pages with a file exten-
sion such as .asp or .aspx. Since such blank pages execute no commands, their re-
sponse time reflects only non-execution time including initialization, network transfer
time and so forth, thus being able to be used as non-execution time of three different
versions. These blank pages and three versions are tested in a way that 64 clients
repeatedly send requests to the web server during 600 seconds. Fig. 7 shows that the

response time of the blank ASP page, Tbasp, is much less than that of the blank
ASP.NET page, Tbaspx. Such difference between Tbasp and Tbaspx indicates that
the ASP.NET page has higher initialization overhead than the ASP page. But, the
actual execution time of the ASP.NET page, eTbaspx, is faster than that of the ASP
page, eTbasp. Thus, in ASP.NET environment, compiled execution cannot substan-
tially improve performance due to the initialization overhead.

To analyze the impact of code size on performance, we modify the benchmark
program to perform the same action without for-loop, and then build three different
versions from the modified one, which have large code size resulting in high interpre-
tation overhead.

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96

ASP ASP.NET O-ASP.NET

Number of Concurrent Clients

Th
ro

ug
hp

ut

Fig. 8. Comparison of throughputs produced by three different versions without for-loop

Fig. 8 compares throughputs produced by these three versions without for-loop. As
depicted in Fig. 8, the ASP page still has better performance than the ASP.NET page,
though their performance difference becomes small. On the other hand, the optimized
ASP.NET page, unlike the ASP.NET page, achieves the best throughput in both cases.
Thus, from the above benchmark tests, we can know that optimization rather than
compiled execution may considerably improve performance of the ASP.NET page.

5.2 Analysis

In this section, we develop a speedup model based on the above result. For that, we
first analyze the response times of both the ASP page and the ASP.NET one. Since,
as illustrated in Fig. 9, not only the optimization degree d2 but also the initialization
overhead degree d1 may influence performance, the speedup model should consider
them together. The speedup model is derived as follows:

d1 = neTaspx - neTasp ≈ Tbaspx - Tbasp, (1)
 where neTaspx ≈ Tbaspx, neTasp ≈ Tbasp
d2 = eTasp - eTaspx = (Tasp - neTasp) - (Taspx - neTaspx)

 = (Tasp - Taspx) + (neTaspx - neTasp) = (Tasp - Taspx) + d1
 ≈ (Tasp - Taspx) + (Tbaspx - Tbasp) (2)

Speedup S = Tasp/Taspx = Tasp/(neTaspx + eTaspx)

 = Tasp/((neTasp + d1) + (eTasp-d2)) = Tasp/(Tasp - (d2-d1))

 = Tasp/(Tasp-D), where D = d2- d1, d2 ≤ eTasp (3)

The maximum Speedup Smax = Tasp/(neTasp+d1) (4)

d2 = Tasp× (S-1)/S + d1, where S > 1 (5)

Given Tasp, Tbasp and Tbaspx, we can calculate speedup S according to d2 and

the maximum speedup Smax through equation (3) and (4). Also, equation (5) enables
d2 to be approximated according to speedup S.

Tbasp : response time of the blank ASP page
Tbaspx : response time of the blank ASP.NET page
Tasp : response time of the ASP page
Taspx : response time of the ASP.NET page
eTasp : execution time of the ASP page
eTaspx : execution time of the ASP.NET page
neTasp : non-execution time of the ASP page
neTaspx : non-execution time of the ASP.NET page

neTaspx eTaspx

neTasp eTaspASP:

ASP.NET:

Taspx = neTaspx + eTaspx

Tasp = neTasp + eTasp

d1

d2

Fig. 9. Analysis of response times

Table 1. Parameters given from the benchmark results presented in Fig. 7 and results computed
by our speedup model (* indicates the results computed from our speedup model)

Parameter or Result Values
Tbasp 1.510010615 ms (millisecond)
Tbaspx 2.570865919 ms
Tasp 4.213116274 ms
Taspx 4.612971676 ms
Toaspx 2.595333072 ms
d1* 1.060855304 ms
The maximum d2* eTasp = Tasp-Tbasp = 2.703105659 ms
d2* of the ASP.NET page (Tasp - Taspx) + d1 = 0.661 ms
d2* of the optimized ASP.NET page (Tasp - Toaspx) + d1 = 2.678638506 ms
S1*: speedup of the ASP.NET page Tasp / Taspx = 0.913319346
S2*: speedup of the optimized ASP.NET page Tasp / Toaspx = 1.623343192
Maximum speedup Smax* Tasp/(neTasp+d1) = 1.63879269

We apply the above equations to the benchmark results presented in Fig. 7. In Ta-

ble 1, there are the parameters given from the benchmark results and the results com-
puted by our speedup model. In Fig. 10, our speedup model estimates speedup S
according to d2 and d2 according to speedup S.

0

0.5

1

1.5

2

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.7

d2 (ms)

sp
ee

du
p

0
0.5

1
1.5

2
2.5

3

1 1.1 1.2 1.3 1.4 1.5 1.6 1.64

speedup

d2
 (m

s)

(a) (b)

Fig. 10. (a) speedup S according to d2 (b) d2 according to speedup S

The above figure and table show that, in the benchmark test of Fig. 7, the
ASP.NET page can achieve at most Smax (less than 2.0) and S2, the speedup of the
optimized ASP.NET page, is almost same as Smax. Thus, we can see that optimiza-
tion is the most important factor for substantially improving performance in
ASP.NET environment.

6 Conclusions

Due to not only the popularity of the web technology but also the importance of per-
sonalized interfaces, the dynamic web page service is becoming important in ubiqui-
tous computing environment. In this paper, we explore the web technologies that
allow ubiquitous spaces to create dynamic web pages in accordance with user profiles,
especially concentrating on the server-side scripting approach, which is expected to
be popular in ubiquitous computing environment. The server-side scripting approach
mainly adopts the execute-while-parsing, which suffers from the interpretation over-
head. Recently, the compile-then-execute model was proposed to address the over-
head. Thus, it is assumed that the compile-then-execute model improves the execute-
while-parsing model. We compare and analyze the two models. For this goal, we
perform benchmark test in Microsoft ASP and ASP.NET environment by using
WebBench 5.0 as a benchmark tool.

The results of the benchmark test may be summarized as follows.
First, the compile-then-execute model cannot substantially improve performance

due to the high initialization overhead. Second, the best performance can be achieved
through optimization rather than compiled execution. Thus, it is necessary for the
compile-then-execute model to be accompanied by optimization to gain the maximum
performance improvement. Since optimization needs expensive development costs, it
is desirable for developers to estimate the maximum possible speedup in advance. For
that, we develop a speedup model based on the benchmark results.

References

1. M. Weiser, "The Computer for the Twenty-First Century," Scientific American, pp. 94-10,
Sept. 1991

2. M. Weiser, "Hot Topics: Ubiquitous Computing" IEEE Computer, Oct. 1993.
3. A. Shahi, V. Callaghan, M. Gardner, "Introducing Personal Operating Spaces for Ubiquitous

Computing Environments," In Proceedings of Pervasive Mobile Interaction Devices
(PERMID 2005), pp. 10-14, May 2005

4. T. Nakajima and I. Satoh, "Personal Home Server: Enabling Personalized And Seamless
Ubiquitous Computing Environments," In Proceedings of the 2nd IEEE International Con-
ference on Pervasive Computing and Communication (PerCom’2004), pp.341-345, Mar.
2004

5. R. Jimeno, Z. Salvador, A. Lafuente, M. Larrea, A. Uribarren, "An architecture for the per-
sonalized control of domotic resources," In Proceedings of the 2nd European Union sympo-
sium on Ambient intelligence, pp.51-54, Nov. 2004

6. S. Coolbrandt, "An introduction to CGI," Software Engineering Group 5, Feb. 2004
http://wilma.vub.ac.be/~se5/files/tutorials/CgiIntroduction.htm

7. B. Kothari and M. Claypool, "Performance Analysis of Dynamic Web Page Generation
Technologies," Proceedings of International Network Conference (INC), July 2000

8. G. Gousios and D. Spinellis, "A Comparison of Portable Dynamic Web Content Technolo-
gies for the Apache Server," Proceedings of the 3rd International System Administration
and Networking Conference, pp.103-119, May 2002

9. B. Doyle and C. V. Lopes, "Survey of Technologies for Web Application Development,"
ACM Journal Narne, Vol. 2, No.3, pp. 1-43, June 2005

10. P. Simons and R. Babel, "FastCGI The Forgotten Treasure," ApacheCon Europe 2001, Oct.
2001

11. Microsoft Corporation, "Active Server Pages Tutorial," Microsoft MSDN, Dec. 2000
12. Microsoft Corporation, "Introduction to ASP.NET, " Microsoft MSDN
13. Microsoft Corporation, "Why ASP.NET?," Microsoft ASP.NET,

http://www.asp.net/whitepaper/whyaspnet.aspx
14. Sudhirmangla, "Beginners Introduction to ASP.NET, " The Code Project, June 2003

http://www.codeproject.com/
15. VeriTest and PC Magazine, "WebBench 5.0", ZDNet, 2002

http://www.veritest.com/benchmarks/webbench/
16. B. VedanthaRamanujan, "Migration From ASP to ASP.NET," BadreNarayanan.V's Radio

Weblog, Sept. 2003
17. J. Kieley, "Migrating to ASP.NET: Key Considerations," Microsoft MSDN, Nov. 2001
18. S. Mitchell, "Converting ASP to ASP.NET, " Microsoft MSDN, Nov. 2001
19. Microsoft Corporation, "Using the ASP to ASP.NET Migration Assistant," Microsoft

MSDN

