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Abstract. In this paper, we propose an identities(ID) based watermark-
ing scheme for Java programs. In our scheme, the watermark is generated
by participants’ identities, embedded via the watermarked opaque pred-
icates, and verified using zero-knowledge proof. We also present a con-
struction of a family of opaque predicates by Legendre symbol, which is
resilient, cheap, and stealthy. The order of the watermark is encoded and
embedded into the watermarked opaque predicates, and the watermarked
opaque predicates are treated as threads of a Java program. Thus, the
embedded watermark is dynamic and secure against all usual types of
watermarks algorithms attacks and watermarks protocols attacks, and
also secure against static and dynamic attacks.
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1 Introduction

As the international network is becoming faster and more widespread, there has
been an increased need for digital rights management, especially the protection
of intellectual property rights over softwares becomes a paramount issue. Water-
marking schemes which had been developed to assert authorship or ownership
control over digital works such as images, video or audio, are being extended
to cover software objects. However, most software watermarking schemes fail
because it is easy to tamper or delete software watermarks, keeping the overall
semantics of the program constant.

A software watermark should fulfill the following criteria:

1. The watermark should be robust, i.e., it should be resistant to watermarks
algorithms attacks, such as software transforms which preserve the meaning
of the program.

2. The watermark should be invisible, i.e., it should only be detectable by
using special forensic software.



3. The watermark should be secure [13], i.e., it should be resistant to malicious
attacks, such as watermarks protocols attacks , statical attacks, dynamic
attacks. Additional, the purchaser also should have no way of removing the
watermark, even if provided with the forensic software.

4. The watermark should have authentication, i.e., it should contain infor-
mation which validate original creators, ownership and purchasers, etc.

Here we give a brief overview of previous work done in the field of software
watermarking. The first formal software watermarking approach was described in
paper [1], in which a watermark is embedded into a program by rearranging the
order in which basic blocks of the program were arranged. A method of encoding
the watermark inside a dummy method in the form of opcodes is described in
paper [2], but using simply applying semantics-preserving transforms can easily
damage or remove watermarks in paper [1, 2] without changing the semantics
of the programs. Paper [3] firstly described a dynamical watermarks scheme, in
which the watermark is constructed in the form of a graph dynamically during
the program execution, the scheme is against static-time analysis, but it is not
very difficult to be recognized which parts of the software belong to the original
codes and which belong to the dynamic watermark generating code. In paper [4],
a final dynamic experimental watermarking method relies on multi-threading to
encode watermarks, and all encoded watermarks are in the choice of execution
of basic blocks depending on the input pattern of the program, but for every
encoded watermarks bit, the size of the software increases by nearly 1 KB, so
this is a low capacity scheme.

Opaque predicates were first presented in paper [8] as a technique to aid in
code obfuscation. Later opaque predicates were incorporated in Java programs
watermarking technique proposed in paper [10]. Informally, the inserted opaque
predicates make it difficult for an adversary to analyze the control-flow of the
programs. This makes it more difficult to identify what certain portions of the
programs are superfluous, but the opaque predicate library must remain secret,
if an adversary knows even a few of the predicates he may be able to identify
and remove them from the programs. Regrettably, the method [10] hasn’t con-
sidered cryptographically secure, so it shouldn’t stand against copy attacks and
ambiguity attacks [5].

In this paper, we propose an identities (IDi) of participants based water-
marking scheme. In our scheme, the identities (IDi) and a Java program J are
signed using extended aggregate signatures scheme, then the concatenation of
signatures is regarded as the watermark information ω, thus our watermarking
scheme can stand against copy attacks, passive ambiguity attacks, and others
of watermarked protocols attacks. We also construct a family of watermarked
opaque predicates {Oj}j=n

j=1 using Legendre symbol, and the bits of ω and some
appended information are encoded inside these predicates. Our watermarked
opaque predicates have better resilience to resist static and dynamic attacks.
Because the watermarked opaque predicates are treated as threads of J , they
are difficult to be distinguished from original codes. Additionally, our water-
marking scheme has a lower data bloating.



The remainder of our paper are structured as follows. Section 2 describes the
basic of knowledge, including construction of a family of watermarked opaque
predicates and watermark determining. Section 3 introduces our watermarking
scheme, including encoding watermark algorithms, embedding watermark algo-
rithms and detecting watermark algorithms. Section 4 analyzes the security of
our watermarking scheme for Java programs. Finally, conclusions are presented
in section 5.

2 The Basic of Knowledge

2.1 Notations

Denote by J a Java program, which is available for manipulation in the current
state, denote by ω the watermark information which is encoded and embedded
into the program J, and denote by K embedding watermark key. Let E be a
watermark embedding function, i.e. E : (J, ω,K) → Jω, and let D be a watermark
detecting function, i.e. D : (Jω,K) → ω̃, if V erω̃=ω = True, Jω is accepted as
legal, otherwise it is accepted as illegal.

For i ∈ (1, 2, ...,m), let IDi be the identity of the i-th participant, let si

be the signature of IDi. Write < ID1, ID2, ..., IDr > for an ordered sequence
of r elements ID1, ID2, ..., and IDr. If Lr =< ID1, ID2, ..., IDr > is some finite
sequence, then < Lr, α >=< ID1, ID2, ..., IDr, α > is also a finite sequence.

2.2 Constructing Opaque Predicates

According to the interleaving semantics, n statements in a parallel programs can
be executed in n! different ways, so they are more difficult to analyze statically
than their sequential counterparts. It is well-known that parallel regions are con-
structed by threads in Java, Java’s threads have two very useful properties to be
used for obfuscation: one is that their scheduling policy is not specified strictly
by the language specification, hence it will depend on the implementation, an-
other is that the actual scheduling of a thread will depend on asynchronous
events generated by user interaction, network traffic, etc., so we will use these
observations combining with watermarking technique to create highly resilient
watermarked opaque predicates.

Definition 1 (Watermarked Opaque Constructs). From paper [8], A vari-
able V is opaque at a point o in a program, if V has a property p at o which is
known at encoding and embedding watermark time. We write this as V p

o if p is
clear from context.

Definition 2 (Watermarked Opaque Predicate). For j ∈ (1, 2, ..., n), a
watermarked predicate Oj is opaque at program point o if and only if its outcome
is previously known to the obfuscator (or watermark embedder) at encoding and
embedding watermark time, but which is difficult for the deobfuscator to deduce
at encoding and embedding watermark time.



If Oj always evaluates to True /False at point o, we write (Oj)o
T /(Oj)o

F ;
if Oj sometimes evaluates to True and sometimes evaluates to False at point o,
we write (Oj)o

?.

Definition 3 (Core of Watermarked Opaque Predicates). Let A be the
information which is contained in the watermarked opaque predicate Oj, If the
watermark ω is encoded in A, we define A as “core” of Oj.

For j ∈ (1, 2, ..., n), “core” perhaps in the constants of Oj , or perhaps in the
rank within {Oj}j=n

j=1 .

Definition 4 (Trapdoor Watermarked Opaque Predicate).
For j ∈ (1, 2, ..., n), let kj be the secret key of a opaque predicates Oj. A trapdoor
opaque predicate Oj is one that is difficult to be determined at encoding and
embedding watermark time if its secret key kj is unknown, but it is easy to be
determined by kj.

Constructing a family of Watermarked Opaque Predicates. To resist
the attacks, the number of opaque predicates Oj must be large enough. One
way of making Oj larger is using parametrized predicates(see paper [10]). This
paper utilizes Legendre symbol [11] to construct a family of watermarked opaque
predicates {Oj}j=n

j=1 .
Let Legendre symbol of module a prime p be (d

p ).

1. Let p = 2tx+1, t > 3, 2 - x, choose b ∈ Z, compute (d
p ), and the correspond-

ing family of watermarked opaque predicates is:

(
d

p
) = 1. (1)

In eq.(1), if the bit of encoded watermark information is 1, we choose b
to be satisfied with ( b

p ) = −1; else if the bit is 0, choose b to be satisfied
with ( b

p ) = 1. Inversely, as also, these are considered as the “core” of our

watermarked opaque predicates {Oj}j=n
j=1 .

2. Let p = 4x + 3, compute (d
p ), and the corresponding family of watermarked

opaque predicates is:

(
d

p
) = 1. (2)

3. Let p = 8x + 5, compute (d
p ), and the corresponding family of watermarked

opaque predicates is:

(
d

p
) = 1. (3)



A family of watermarked opaque predicates {Oj}j=n
j=1 is parametrized by a

given prime p above. This parameter can be generated by picking random values
of x ∈ Z, t ∈ Z, and then testing if the resulting p is prime. The value of the
variable d and b should be determinable at run-time only. Individual predicate
should be hard to be resolved.

The watermarked opaque predicates {Oj}j=n
j=1 are secret.

2.3 Determining the Watermark

In this paper, a Java program J and identities (IDi) are signed by participants
using extended aggregate signatures scheme in turn, then the concatenation of
signatures is regarded as the watermark information ω. The participants include
all programmers, copyright holder, and purchasers, etc.

Aggregate signature is firstly proposed in paper [6], paper [7] presented an
extended aggregate signature. Our extended aggregate signature schemes is as
approximately same as paper [7] except our bilinear mapping e being the map-
ping from elliptical cyclic G1 to finite field G2.

System Parameters. Suppose that a trusted central authority(CA) is respon-
sible for generating the system parameters, as follows:

– Choose G1 as a elliptic curve additive group of prime order q, P ∈ G1 as a
generator of G1, and G2 as a cyclic multiplicative group of the same order.

– Choose e: G1 ×G1 7→ G2 as a bilinear mapping.
– Choose two secure strong hash functions : h: (0, 1)∗ 7→ Zq; H : (0, 1)∗ 7→ G1.

Then CA declares parameters < G1,G2, e,P, h,H >.
For i ∈ (1, 2, ..., m), each participant ID i generates his(her) private key:

xi ← h(IDi), xi ∈ Z q. and his(her) public key: yi ← xiP ∈ G1.

Extended Aggregate Signature Schemes S. For i ∈ (1, 2, ..., m), a Java
program J is signed by every participants IDi, the order of signatures is passed
from IDi to IDi+1, the signature method is extended aggregate signature scheme,
as follow

– Sign si: for i ∈ (1, 2, ..., m), let Lr =< ID1, ID2, ..., IDr >, (1 ≤ r < m), let
s0 = (0, 0) ∈ G1, and recursive functions si be:

si = (xiH(J,Lr) + si−1) ∈ G1. (4)

The signature of IDi on the Java program J is < si,Li >.
– Verify: IDi+1 accepts the signature < si,Li > of IDi as valid if and only if

e(si,P) =
∏i

r=1 e(H(J,Lr), yr).



Value of Watermarks For i ∈ (1, 2, ...,m), let si = (six, siy) as watermarks
information, i.e.

ω ←< (s1x, s1y), (s2x, s2y), ..., (smx, smy) > (5)

3 Watermarking Scheme PJ

Select g ∈ Z randomly, and decompose the program J into (g+1) branching
segments with points {of}f=g

f=1, these segments are {J0, J1, J2, ..., Jg}.
Use the embedding watermark key K to insert ω into J by the embedding

watermark functionE .
The secret parameters are K, the order of ω, the watermarked opaque pred-

icates {Oj}j=n
j=1 , the opaque predicates’s key kj , and each participant’s private

key xi, and the public parameters are each participant’s public key yi.

3.1 Encoding Watermark Algorithms

1. Choose a number of dual data randomly, such as, (a1x, b1y), ..., (alx, bly) ∈ Zq.
2. Append these dual data behind ω:

ω′ ←< (s1x, s1y), ..., (smx, smy), (a1x, b1y), ..., (alx, bly) > (6)

3. Choose an invertible encode permutation σ, and rearrange ω′ in a bits se-
quence by permutation σ :

ω′σ ← σ(ω′) ∈ (0, 1)∗. (7)

4. Encode the bits of ω′σ in “core” of our opaque predicates {Oj}j=n
j=1 .

In eq.(1), if the bit of ω′σ is 1, we choose b to be satisfied with ( b
p ) = −1; else

if the bit of ω′σ is 0, choose b to be satisfied with ( b
p ) = 1, this is regarded as

encoding rule R1.

Remark 1. Let the number of bits encodable with our predicates Oj be N(Oj),
in any case, the bits length of ω′σ is satisfied with

|ω′σ| ≤
g∑

f=1

N(Oj)f − g log 2g (8)

(see paper [10]).

3.2 Embedding Watermark Algorithms

For j ∈ (1, 2, ..., n), f ∈ (1, 2, ..., g), c ∈ (1, 2, ..., h), if a number of transforma-
tions Tc always evaluate a predicate (Oj) to True at point of , then append
∧(Oj)

T
of

to the branching condition. Otherwise, if the transformations always

evaluate a predicate (Oj) to False at point of , then append ∨(Oj)
F
of

to the
branching condition, these would not change the final value of the branching
condition. This can be regarded as embedding watermarking rule R2.



Remark 2. The permutation σ, the rule R1 and the rule R2 are regarded as the
embedding watermark key K, i.e. K ← σ ⊗ R1 ⊗ R2,

3.3 Detecting Watermark Algorithms

1. For j ∈ (1, 2, ..., n), c ∈ (1, 2, ..., h), extract watermarked opaque predicates
{Oj}j=n

j=1 from a number of transformations Tc using the watermarked opaque
predicates’s key kj .

2. Decode and get the bits of ω̃′σ from the predicates {Oj}j=n
j=1 with R−1

2 .
3. Compute and choose (σ−1 is the inverse permutation of σ):

ω̃ ← ω̃′ ← σ−1(ω̃′σ) (9)

4. Verify: for i ∈ (1, 2, ..., m), if each

e(si,P) =
i∏

r=1

e(H(J,Lr), yr) (10)

is true, verifier accepts Jω as legal; otherwise, accepts Jω as illegal.

4 Security

Theorem 1. Our watermarking scheme PJ is secure against passive ambiguity
attacks and copy attacks.

Proof. The DHP in G1 is hard, so our extended aggregate signatures scheme S
is secure against existential forgery on messages or sequence of identities. This
assertion is shown in Theorem 1 of [7] and in Theorem 4.5 of [13].

Let the length of J be n, and yi be the public key of IDi. Named an adversary
Alice. We treat passive ambiguity attacks and copy attacks separately.

CASE 1. Suppose that Alice can (t, ε)-break our scheme PJ using passive
ambiguity attacks, here, ε is attack successfully probability and t is a polynomial
time. We will deduce a contradiction.

Construct a signature forging algorithm Forg1n in the following manner:

1. For i ∈ (1, 2, ...,m), Alice forges IDi’s signature si on a Java program J using
yi, runtime is ts.

2. Alice generates an alleged watermark ω′ by si, runtime is tn. In fact, there
isn’t the watermark ω′ in J

3. Alice attacks our scheme PJ using a passive ambiguity, runtime is t(n).
(J, ω′,K) ←Alice (J, yi).

4. If Alice attacks successfully, then verifies: output e(si,P) =
∏i

r=1 e(H(J,Lr), yr),
runtime is O(n), else output FALL, end.
Thus, there is an attack that (ts + tn + t(n) + O(n), ε)-breaks our extended
aggregate signatures scheme S. This contradicts the assumption above.



CASE 2. Suppose that Alice can (t′, ε′)-break our scheme PJ using copy at-
tacks. Then, We will also get a contradiction.

Construct another signature forging algorithm Forg2n:

1. Runs system’s parameter (1)n, produce embedding watermark key K, run-
time is tk

2. Generates two alleged Java program, J1 and J2, each length is n, runtime is
2tn.

3. For i ∈ (1, 2, ...,m), from the signature inquiry of < ID1, ..., IDi > on J1

gets watermark ω, runtime is tω.
4. Encodes the watermark ω (ω′σ ← ω), then embed it into J1.

J′1 ← Embed(J1, ω
′
σ,K), runtime is tω′σ .

5. Alice attacks our scheme PJ using a copy: copies ω′σ from J′1, then embeds
ω′σ into J2, J′2 ← Alice(J′1, J2,K), runtime is t(n).

6. If Alice attacks successfully, then verifies: output e(si,P) =
∏i

r=1 e(H(J,Lr), yr),
runtime is O(n), else output FALL, end.
Thus, there is another attack that (tk + 2tn + tω + tω′σ + t(n) + O(n), ε′)-
breaks our extended aggregate signatures scheme S. This also contradicts
the assumption above.

Hence, our watermarking scheme PJ is secure against passive ambiguity and
copy attacks.

Theorem 2. Our watermarked opaque predicates {Oj}j=n
j=1 are trapdoor water-

marked opaque predicates.

Proof. From paper [9, 10], most of the number-theoretical opaque predicates are
complex, and complex number-theoretical opaque predicates are one-way. With-
out opaque predicates key (kj)

j=n
j=1 , three formulas (Eq.(1), Eq.(2), Eq.(3)) are

very difficult to be distinguished from the program J. Intuitively, the complexity
of {Oj}j=n

j=1 is superpolynomial. It is one-way.
On the other hand, using opaque predicates keys (kj)

j=n
j=1 , it is very easy to

distinguish the formulas Eq.(1), Eq.(2), and Eq.(3). It is also easy to compute
Legendre symbol of module a prime p.

Hence, our watermarked opaque predicates {Oj}j=n
j=1 are trapdoor.

Corollary 1. Our embedding watermark algorithms are robust.

Proof. It can be proved from theorem 2 above.
So, the “core” of predicates {Oj}j=n

j=1 must be contained within the transforma-
tions Tc(Jω) for any feasible composition of transformations Tc.

Corollary 2. Our watermarking scheme PJ is more invisible.

Proof. From theorem 2 above, compare with the opaque predicates proposed
in paper [10], without opaque predicates keys (kj)

j=n
j=1 , three formulas (Eq.(1),

Eq.(2), Eq.(3)) are also more difficult to be distinguished each other, and any of
the predicates is easier to be hidden. Intuitively, our watermarking scheme PJ

is more invisible.



Theorem 3. Our watermarking scheme PJ is more secure under statical and
dynamic attacks.

Proof. Because our watermarked opaque predicates {Oj}j=n
j=1 are constructed

based on the intractability of Legendre symbol static analysis problems, so our
opaque predicates {Oj}j=n

j=1 are resilient against static attacks.
On the other hand, our predicates {Oj}j=n

j=1 are designed in such a way that
several predicates have to be cracked at the same time. Thus they stand against
dynamic attacks. It is shown in paper [3, 8].

According to Corollary 2 again, our watermarking scheme PJ is more secure
against statical and dynamic attacks.

Theorem 4. Our watermarking scheme PJ is zero-knowledge proof of the wa-
termark ω.

Proof. It is obvious from Eq.(10). In Our watermarking scheme PJ , the verifying
of the watermark ω uses zero-knowledge proof [6, 12], which is a non-interactive
proof involving many provers and one verifier.

Corollary 3. From above, our watermarking scheme PJ is secure against wa-
termarks protocol attacks. The watermark ω can’t be removed or modified by
anyone even if any other participants and purchasers. The order of ω also can’t
be changed. The watermark is verified as correct if and only if the correct order
of ω and all honest provers.

Theorem 5. Our ID-based watermarking scheme PJ is authenticated.

Proof. It’s evident. Whereas, most of former watermarking schemes hadn’t con-
sidered authentication.

5 Conclusions

The construction of our watermarked opaque predicates is based on Legendre
symbol, and the data structure of Legendre symbol is simple, so the data bloating
is lower in our scheme than other schemes previously.

From Theorem 4 and Corollary 3, we can choose the order of the watermark
ω according to the priority of the participants, the lowest prior participant signs
at first and the highest prior participant signs at last.

Our watermarking scheme is dynamic and secure against all usual types of
attacks, it is clear that our scheme might can be applied equally well to other
languages programs.
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