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Abstract. The analysis of time series using data mining rieghes can be
effective when all targets have their own inhefgaiterns in a sparse sampling
acoustic sensor network where no valid featurererfifency can be extracted.
However, both problems of local time shifting anqit$al variations should be
solved to deploy the time series analysis. Thisepgmesents time-warped
similarity measure algorithms in order to solve tive problems through time
series, and we propose the IDDC (Improved Derieat®TW-Cosine)
algorithm to deliver the optimal result and prowe fperformance with some
experiments. The experimental results show that dbgect classification
accuracy rate of the proposed algorithm outperfothes other time-warped
similarity measure algorithms by at least 10.23%c&this proposed algorithm
produces such a satisfactory result with sparsepléagndata, it allows us to
classify objects with relatively low overhead.

1 Introduction

The target classification using sparsely sampled @& one of the key issues of a
Wireless Sensor Network (WSN) application sinceansists of a large number of
low-power and inexpensive sensor nodes. When loliggd sensor nodes sense and
transfer data to a base station (BS) through W8N ,network cost might increase
dramatically as the hop count increases. Espedialliye case of acoustic data, while
it is one of the most frequently used and inforr@sensors in a target classification
system, it is so complicated and variable thae#ds more numerous and dense data
to obtain sufficient information. The bigger the WSs, the less data should be
basically transferred to increase the life spais liecause the mechanism of sensing
frequently and transferring all of the data caubesnodes to be exhausted very fast.
Most of the existing research [1][2][3] for clagsiftion in acoustic WSNs have
extracted features using the FFT and classifiedetar with some classification
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algorithms such as k-nearest neighbor (KkNN), marinikelihood (ML), support
vector machine (SVM), etc. However, frequency asialytypically need a high
computational cost as well as a high sampling @nseg) rate to affirm the
performance and thus, a broader bandwidth netwatkainsfer. That is why a new
approach is needed in the area of sparse frequéviogn all targets have their own
inherent patterns, time series analysis can be féactige method for target
classification with sparse sampling data in acoug#iSNs. A lot of research have
been performed for this manner, mainly to retrissene patterns in a large database
or to do data mining [5][6][7]1[8][9]. However, theroblem of time shifting and the
problem of spatial variations caused by the sttengt volume over different
distances should be solved to apply the manner3dlsy

In this paper, we assume the innate pattern of &aget could be found, and we
focus on target classification with the patternmgithe Improved Derivative DTW-
Cosine (IDDC) algorithm proposed as a new technigder data set are made by
adding various effects to each original signal naukate some distortion effects, and
the performance is analyzed over volumes to considespatial variations. We first
do preprocessing all data and make the referenaelmesing the PAA (Piecewise
Aggregate Approximation) [7] which draws the comtaf each target. The input
signal array is then used to get a similarity (elation) for each reference by the
proposed algorithm. Finally, the weak performariodewer and higher volumes are
improved using a smoothing technique.

The rest of this paper is organized as follows.tiSB2 contains a discussion of
characteristics of acoustic signal in a sparse BagWpVSN, and section 3 describes
our algorithms. Our data collection and experimes&up are illustrated, and the
performance of proposed algorithm is empiricallynpared in section 5. Finally,
Section 6 concludes our experiments and discussdstfire works.

2 Characteristics of Acoustic Signal in a Sparse Sampling WSN

We can see how much information of frequency renmaia sparse sampling WSN
through looking into the spectrogram. The sparaenm@ed, the more smoothed with
respect to frequency in the spectrogram of sighéd. 1 shows an example of
aggravated spectrogram caused by sparse sampling.shown to be plain with
respect to frequency, which means little frequemdfgrmation is contained in the
signal as a result of sparse sampling.
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Fig. 1. Spectrogram of airplane signal sampled at 100Hz 8@points-STFT (Short-Time
Fourier Transform), Hamming window and 90% overlap.



As shown in Fig. 2, the shape of sampled signalteudifferent despite of being
generated by the same target whenever samplesl bedause the sampling point of
each signal differs from the others, which is oig¢he characteristics of WSN to
make it more difficult to classify. To reduce themplexity of the signals, they are
preprocessed as will be discussed in Sec 4.1. ditiae, each signal not only is
shifted with respect to time axis but also hasedéht strength associated with the
distance between the sensor node and the targee ifield of WSN. So, we need a
new algorithm which can solve the above problerfisieftly.
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Fig. 2. Comparing two sampled signals made by different $amgoints for the signal of
airplane. Their shapes are different with eachrothe

3 Improved Derivative DTW-Cosine (IDDC) Algorithm

There are two problems, local time shifting andtigpaariations, in applying the time

series manner to the classification system of WEIN first problem arises when a
sequence is shifted or has different lengths frbm dther. It is solved by a time
warping algorithm which uses dynamic programminige 6ther problem is caused by
distance, which means that all the signals fromstime object should be identified
regardless of the strength of volume.

3.1 Timewarped Algorithms

Three algorithms namely DTW [4], ED [5] and LCS [&n be typically applied as a
time warping algorithm. Table 1 shows comparingdbee parts, distance function, of
these algorithms. The DTW algorithm is frequentsed to find the warped path
through a matrix of points representing possibifeetalignments between two patterns.
Given two time sequences, it fills amby n matrix representing the distances of the
best possible partial path using a recursive foanadl its distance function in Table 1.
The alignment that results in the minimum distabhebwveen the two sequences has
value D(m, n). To solve the problem of time scaling in time ssyithe DTW aligns
the time axis and easily produces the matched arfrdyne series in a well aligned
manner. The ED, also known as the Levenshteinrdistabetween two strings is to
find the minimum number of operations needed todiam one string into the other,
where an operation is an insertion, deletion, dastution. Lastly, the LCS finds the
longest subsequence that two sequences have in@onmegardless of the length and



the number of intermittent mismatching symbols. ldger, the performances of the
LCS and the ED depend heavily on correct settinghefscaling threshold, which
may be a particularly difficult problem for somepéipations as well as in WSNs.

Tablel. Comparing the time warping algorithms

Name Distance function
D(i,j-1)
Dynamic Time Warping (DTW) D(,j)=d(,j)+min<DG{-1j)
D(i-1,j-1)
0 ifx=y
Edit Distance (ED) d(x,y)=4 1 ifx ory, isaga
1 otherwise
0, if i=0 or j=0
Longest Cor(wr_ngcgr; Sub-sequenge d(i, j)={d(-1,j -1+ 1, ifij>0 &x =y
maxd(.j-1d{-1j)l,
otherwise

3.2  Similarity Measure Algorithms

The similarity measure algorithm is to measuresih@larity settling the problem of
spatial variations caused by distance. All sigfias an object should be identified
regardless of the strength of volume. The simifas@n be measured with the degree
of correlation or distance between two sequentesn be reflected by the Euclidean,
the Pearson [11], or the Cosine correlation algoré described in Table 2 assuming
that x' and y' is a matched array respectively.

Table2. Comparing the correlation (similarity) measurgoaithms

Name Distance function

Euclidean Cx,y) =2 (X =y )?

S (x-m)(yi-m,)

Pearson Clx.y)= N N
JZec-mp [ vi-my]
i N X' X y'
Cosine cix,y)=N== P
[ Ty Il

To compare these algorithms with each other in Wa&pHlications, suppose that
there are three signals which have been colleatea BS in a WSN as shown in Fig.
3. y1 and y2 can happen when a moving object igimauin distance to sensor nodes



over time, which means a similarity measure albaritshould identify them.
Referring to Table 3, the measures by the Euclid@gorithm represent distance
values while the Cosine and the Pearson algoritbomspute similarity. The more
similar the signals are, the less is the Eucliddiatance and the larger the measure of
the Cosine and the Pearson similarities. The Peassw the Cosine similarity
algorithms identify y1 and y2 while the Euclideagaaithm can not classify them
well. On the other hand, y3 and the others maybeotaused by the same object,
which means they can be regarded as not exactlyaime but similar. Table 3 shows
that the Cosine similarity identifies minute di#eces while the Pearson similarity
does not. An original signal should not be confusétth the others to maintain the
performance. That is why the former outperformslatier. Consequently, we can say
that the Cosine similarity can represent the charatics of signal in WSN better
than the others, which will be discussed in moraitiein Sec. 4.2.

yil=sin(x)
y2=0.5*sin(x)
— — — —y3=sin(x)-0.2

-0.5

Fig. 3. Three signals that could occur in a WSN field

Table3. The distance/correlation measures of three dlyos

Algorithm Euclidean Pearson Cosine
yl e y2 2.8025 1.0000 1.0000
y2 & y3 1.5875 1.0000 0.9622
y3 eyl 3.2211 1.0000 0.9622

3.3 Improved Derivative DTW-Cosine (IDDC) algorithm

The IDDC algorithm combines the derivative DTW (DB among variants of the
DTW with the Cosine algorithm as the best classifléne classic DTW algorithm has
a tendency of producing unreasonable alignmentsrewlze single point in one
sequence is mapped onto a large subsection ofttiex sequence when making a
matching array (see the (a) of Fig. 4). It is baeatlne algorithm finds an optimal path
considering only the distance between a point @& sequence and its corresponding
points of the other sequence. The problem led Bgkd6] to perform the DTW on
the derivative of the time series instead of ongbguence itself. The (a) and (b) of



Fig. 4 is to compare the results of the DTW andDRETW. The DTW seems to fail
to find the optimal alignment while the alignmemoduced by the DDTW look
better. However, the DDTW has a tendency of beingensensitive to noise than the
DTW. So, E. Keogh [6] suggested the following estienfor robustness to outliers
through simplicity and generality.

(g-9.,)+(9.,,-9.,)/2) 1<i<m. D
> )

where g is a point of a sequence. Assume that the averggend the standard
deviation o  of background noise are known, the estim@teould be regarded as
zero whemg< (my +0 ) to avoid the influence of noise. The noise of backgd is
mostly close to zero. In addition, the diagonalhpd{tn-1,n-1) should be given the
priority among the next paths not to lose the airpath when the next path will be
found as described in (c) and (d) of Fig. 4. Acomgdo our experiments, this scheme
should be considered especially for matching thentpoof background sounds.
Finally, the Cosine algorithm measures the simifamwith the array which this
improved derivative DTW produced.

Q=

(c) DDTW (ii) (d) ImprovedDTW
Fig. 4. Comparing the DTW, the DDTW, and the improved DDTW

4  Experimentsand Evaluations

We first describe our experimental setup brieflyd ahe performances of the ED, the
LCS, the DTW, and the IDDC are compared with eatttero We then show the

effectiveness of similarity measure algorithms tiglo several experiments of the
time-warped similarity measure algorithms includangmoothing technique.



4.1 Data Collection and Experimental Setup

Three types of military objects, airplane, tank aattier, in Fig. 5 are classified in
the experiment. As shown, the sound of a soldiea istep sound which is very
periodic and the duration of local frame is vergrshwhile the sound of an airplane is
sleek a little and has a long local frame. The tamkkes the sound of irregular
explosions against a background of the sound ofnengnd wheels, which has a
monotonous energy. We added some effects and neiseh produces some
distortion to the signals, e.g. various Dopplereef$, some hissing noises by size,
echo, flanger, mechanize, pitch change, some voltnaesforming effects(fade
infout), and time warping. We made 31 test datagigect and totally have 93 test
data. Each file is sampled sparsely at 10 Hz 2@4iand classified 1860 times against
objects before obtaining the result.
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Fig. 5. Assumed signal patterns of military targets whiah be occurred in a field of WSN

The overall experimental system architecture cemsi$ preprocessing, making
reference, and classification parts. First, in pneprocessing part, input signals are
scaled between -1 and 1, and its absolute valgetaken to reduce the variation and
the computational complexity. Fortunately sinceythenstitute the piecewise power
values of symmetry at each point and are highlyetated with each other, the
absolute values are very efficient without losimy &nformation. Also, the smoothing
technique is used to improve the accuracy in higimer lower volumes in this paper.
It is computed by Eq. 2 assuming tiwis the number of elements to smooth.

1 i+N
=N @)
j=i+



Second, to model the outline of the reference apaihe input signal, each
reference signal is compressed to the length aftisgnal using the PAA technique,
Keogh et al. [7] proposed, because each input libi$eaent length case by case. The
PAA compresses or models a signal as it drawsdheoar of the reference signal of
an object as follows: Lell be the dimensionality of the transformed time esefive
wish to work with (1< N < n). Theith element of is calculated by Eq. 3. Lastly,
the signal is classified to the object categorychtias the best similarity caused by
the time-warped similarity measure algorithm areldbcision rule.

=Nk ©

4.2  Comparison of timewar ping algorithms

Before comparing the effectiveness of the three timarping algorithms, the ED, the
LCS and the DTW, we experimented with the perforoeaaf the ED and the LCS

with three levels of volume - half (-6.02dB), noiraad double (6.02 dB) as shown
Table 4. This is because the ED and the LCS shasgda scaling threshold to apply
to time series data, which consist of numeric valaed compare with the DTW. We
explored the performance by varying the value efttireshold from 0.02 to 0.2. As
shown in Table 4, the optimal threshold has a tecgléo move following the level of

volume. i.e., the threshold shifts to a smalleueah higher volume while it becomes
larger in lower volume. While the optimal threshaldmes to be 0.06 in double
volume, it is 0.08 and 0.1 in normal and half volurespectively. Consequently, it is
clear that the threshold cannot be easily estaddislver volume.

Table 4. Optimal threshold of ED and LCS

Volume level ED LCS
Double Volume (6dB) 0.07 0.06
Normal Volume (0dB) 0.08 0.08

Half Volume (-6dB) 0.1 0.1

The Fig. 6 shows the comparison of the performaotethe time warping
algorithms including the DDTW as well as the ImpedvDDTW (IDDTW). All of
the DTW, the DDTW, and the IDDTW give a similar frsmance with the optimal
accuracy of the ED and the LCS in normal and higlume and all of them have a
poor performance in lower volume. It means thahalgorithm which can improve the
performance, especially in the case of lower voluim@eeded. The IDDTW can not
only produce a matching array with ease but is algeerior to the DTW and the
DDTW over all volumes. Consequently, it is reasdeahat any similarity measure
algorithm should be combined with the IDDTW to tfet highest performance.
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Fig. 6. Comparison of time warping algorithms

4.3 Comparison of Time-warped Similarity Measure algorithms based on the
IDDTW

We tested the IDDTW combined with all similarity aseire algorithms as mentioned
in section 3, and we found that the IDDC (IDDTW+®&3 algorithm improves the
performance in the area of lower volume very effety and outperforms the other
algorithms as depicted in Fig. 7. Although the perfance of the IDDTW and the
IDDE (IDDTW+Euclidean) algorithm shows a good penfiance from 5 to 8 dB,
their performances are poor in lower volumes as$ agehave a tendency of degrading
dramatically after 8 dB, which means they are higtiépendent on the level of
volume. On the other hand, the IDDP (IDDTW+Pearsany the IDDC have
saliently better accuracies in lower volume and @mparatively less affected by
volume.

| | | | | —<— IDDTW only
0.3 ---- -t - -4 - - - 17 A +Euclidean (IDDE) -7
: : : : : —<—— +Pearson (IDDP)
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Fig. 7. Comparison of time-warped similarity measure alions



We experimented the IDDC algorithm + Gaussian shiagtwhich is helpful in
improving the accuracy through avoiding distorticg@mised by odd elements. We
found the optimal number of elements for smoothshguld be 3 through several
experiments, so that the 3 elements came to bededpfidr smoothing in Fig. 7.
Anyway, it turned out to be effective in improvitlge accuracy in both lower and
higher volumes.

Table 5 shows the confusion matrix of targets @poading to volumes. The
accuracies of tank and airplane outperform soldjeand large because the width of
pillars of signal from the soldier are so narrovatthhey are often unable to be
sampled while the interval between them are sceldhgt even skipping sampling
once can be critical to the performance. The imfb@geof volume is also shown to
depend on the sort of sound. i.e. monotonous sgswath as an airplane is affected
negatively by strong volume while complicated amadiable signals such as a tank is
positively affected. It is because more monotorgigeal is modeled relatively better
in lower volumes than in higher volumes. Consedyedbnsidering a range from -10
dB to 10 dB, the accuracy of the IDDTW is 65.35%¢ tDDE is 63.77%, IDDP is
68.75%, the IDDC algorithm is 76.55%, and the IDBIGorithm with the smoothing
technique 78.98% on the average. It means the watimIDDC algorithm
outperforms the other algorithms by at least 10.23%

Table. 5. Confusion matrix by the finally proposed algoritienrresponding to volumes

O;jséfled Volume | Soldier Tank Airplane
Half 0.61335 | 0.23832| 0.14833
Soldier Normal | 0.63748 | 0.20700| 0.15552
Double | 0.52383 | 0.32384| 0.15233

Half 0.09468 | 0.76488 | 0.14044
Tank Normal | 0.01512| 0.96205 | 0.02283
Double | 0.00463| 0.99075 | 0.00462

Half 0.01600| 0.03681| 0.94759
Airplane Normal | 0.00636 | 0.05602 | 0.93762
Double | 0.00512| 0.14042| 0.85446

5 Conclusion and Futureworks

We described the characteristics of acoustic sigimah sparse sampling WSN and
proposed the IDDC algorithm as the best class#figorithm of time series. Since the
acoustic signals not only comprise dense positia reegative values, but they also
constitute the piecewise power values of symmeteaah point and highly correlated
with each other, their absolute values and the énmg technique are taken to
improve the accuracy. Even though the experimetiégh are made artificially, it

makes sense that the proposed algorithm has #as&tiy accuracy over volumes and
outperforms compared to the other time-warped #lyos by at least 10.23% on the
whole. We can also infer that the method of timeiese analysis can work

collaboratively with the method of frequency an@ys operate a WSN economically.



So, it is sure that our work could be a baselinettie research of target classification
using the time series approach in the future.

Our future works will focus on applying physicakfares, the ZCR (Zero Crossing
Rate), energy, etc, and multi-modal fusion to inwerthe accuracy since objects have
different signatures from each other correspondingmultiple modalities, e.g.
magnetic and seismic. The HMM (Hidden Markov Modetuld also give us the
capability to analyze more diverse, more generdllanger signals.
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