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Abstract. The analysis of time series using data mining techniques can be 
effective when all targets have their own inherent patterns in a sparse sampling 
acoustic sensor network where no valid feature of frequency can be extracted. 
However, both problems of local time shifting and spatial variations should be 
solved to deploy the time series analysis. This paper presents time-warped 
similarity measure algorithms in order to solve the two problems through time 
series, and we propose the IDDC (Improved Derivative DTW-Cosine) 
algorithm to deliver the optimal result and prove the performance with some 
experiments. The experimental results show that the object classification 
accuracy rate of the proposed algorithm outperforms the other time-warped 
similarity measure algorithms by at least 10.23%. Since this proposed algorithm 
produces such a satisfactory result with sparse sampling data, it allows us to 
classify objects with relatively low overhead. 

1   Introduction 

The target classification using sparsely sampled data is one of the key issues of a 
Wireless Sensor Network (WSN) application since it consists of a large number of 
low-power and inexpensive sensor nodes. When distributed sensor nodes sense and 
transfer data to a base station (BS) through WSN, the network cost might increase 
dramatically as the hop count increases. Especially in the case of acoustic data, while 
it is one of the most frequently used and informative sensors in a target classification 
system, it is so complicated and variable that it needs more numerous and dense data 
to obtain sufficient information. The bigger the WSN is, the less data should be 
basically transferred to increase the life span. It is because the mechanism of sensing 
frequently and transferring all of the data causes the nodes to be exhausted very fast. 

Most of the existing research [1][2][3] for classification in acoustic WSNs have 
extracted features using the FFT and classified targets with some classification 
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algorithms such as k-nearest neighbor (kNN), maximum likelihood (ML), support 
vector machine (SVM), etc. However, frequency analysis typically need a high 
computational cost as well as a high sampling (or sensing) rate to affirm the 
performance and thus, a broader bandwidth network to transfer. That is why a new 
approach is needed in the area of sparse frequency. When all targets have their own 
inherent patterns, time series analysis can be an effective method for target 
classification with sparse sampling data in acoustic WSNs. A lot of research have 
been performed for this manner, mainly to retrieve some patterns in a large database 
or to do data mining [5][6][7][8][9]. However, the problem of time shifting and the 
problem of spatial variations caused by the strength of volume over different 
distances should be solved to apply the manner to WSNs. 

In this paper, we assume the innate pattern of each target could be found, and we 
focus on target classification with the patterns using the Improved Derivative DTW-
Cosine (IDDC) algorithm proposed as a new technique. Our data set are made by 
adding various effects to each original signal to emulate some distortion effects, and 
the performance is analyzed over volumes to consider the spatial variations. We first 
do preprocessing all data and make the reference model using the PAA (Piecewise 
Aggregate Approximation) [7] which draws the contour of each target. The input 
signal array is then used to get a similarity (correlation) for each reference by the 
proposed algorithm. Finally, the weak performances in lower and higher volumes are 
improved using a smoothing technique. 

The rest of this paper is organized as follows. Section 2 contains a discussion of 
characteristics of acoustic signal in a sparse sampling WSN, and section 3 describes 
our algorithms. Our data collection and experimental setup are illustrated, and the 
performance of proposed algorithm is empirically compared in section 5. Finally, 
Section 6 concludes our experiments and discusses for future works. 

2   Characteristics of Acoustic Signal in a Sparse Sampling WSN 

We can see how much information of frequency remain in a sparse sampling WSN 
through looking into the spectrogram. The sparser sampled, the more smoothed with 
respect to frequency in the spectrogram of signal. Fig. 1 shows an example of 
aggravated spectrogram caused by sparse sampling. It is shown to be plain with 
respect to frequency, which means little frequency information is contained in the 
signal as a result of sparse sampling. 
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Fig. 1. Spectrogram of airplane signal sampled at 100Hz with 80points-STFT (Short-Time 
Fourier Transform), Hamming window and 90% overlap.  



As shown in Fig. 2, the shape of sampled signal can be different despite of being 
generated by the same target whenever sampled. It is because the sampling point of 
each signal differs from the others, which is one of the characteristics of WSN to 
make it more difficult to classify. To reduce the complexity of the signals, they are 
preprocessed as will be discussed in Sec 4.1. In addition, each signal not only is 
shifted with respect to time axis but also has different strength associated with the 
distance between the sensor node and the target in the field of WSN. So, we need a 
new algorithm which can solve the above problems efficiently. 
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Fig. 2. Comparing two sampled signals made by different sampling points for the signal of 
airplane. Their shapes are different with each other. 

3   Improved Derivative DTW-Cosine (IDDC) Algorithm 

There are two problems, local time shifting and spatial variations, in applying the time 
series manner to the classification system of WSN. The first problem arises when a 
sequence is shifted or has different lengths from the other. It is solved by a time 
warping algorithm which uses dynamic programming. The other problem is caused by 
distance, which means that all the signals from the same object should be identified 
regardless of the strength of volume. 

3.1   Time-warped Algorithms 

Three algorithms namely DTW [4], ED [5] and LCS [9] can be typically applied as a 
time warping algorithm. Table 1 shows comparing the core parts, distance function, of 
these algorithms. The DTW algorithm is frequently used to find the warped path 
through a matrix of points representing possible time alignments between two patterns. 
Given two time sequences, it fills an m by n matrix representing the distances of the 
best possible partial path using a recursive formula as its distance function in Table 1. 
The alignment that results in the minimum distance between the two sequences has 
value D(m, n). To solve the problem of time scaling in time series, the DTW aligns 
the time axis and easily produces the matched array of time series in a well aligned 
manner. The ED, also known as the Levenshtein distance, between two strings is to 
find the minimum number of operations needed to transform one string into the other, 
where an operation is an insertion, deletion, or substitution. Lastly, the LCS finds the 
longest subsequence that two sequences have in common, regardless of the length and 



the number of intermittent mismatching symbols. However, the performances of the 
LCS and the ED depend heavily on correct setting of the scaling threshold, which 
may be a particularly difficult problem for some applications as well as in WSNs. 

Table 1.  Comparing the time warping algorithms 
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3.2   Similarity Measure Algorithms 

The similarity measure algorithm is to measure the similarity settling the problem of 
spatial variations caused by distance. All signals from an object should be identified 
regardless of the strength of volume. The similarity can be measured with the degree 
of correlation or distance between two sequences. It can be reflected by the Euclidean, 
the Pearson [11], or the Cosine correlation algorithms described in Table 2 assuming 
that x' and y' is a matched array respectively. 

Table 2.  Comparing the correlation (similarity) measure algorithms 
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To compare these algorithms with each other in WSN applications, suppose that 

there are three signals which have been collected on a BS in a WSN as shown in Fig. 
3. y1 and y2 can happen when a moving object is varying in distance to sensor nodes 



over time, which means a similarity measure algorithm should identify them. 
Referring to Table 3, the measures by the Euclidean algorithm represent distance 
values while the Cosine and the Pearson algorithms compute similarity. The more 
similar the signals are, the less is the Euclidean distance and the larger the measure of 
the Cosine and the Pearson similarities. The Pearson and the Cosine similarity 
algorithms identify y1 and y2 while the Euclidean algorithm can not classify them 
well. On the other hand, y3 and the others may not be caused by the same object, 
which means they can be regarded as not exactly the same but similar. Table 3 shows 
that the Cosine similarity identifies minute differences while the Pearson similarity 
does not. An original signal should not be confused with the others to maintain the 
performance. That is why the former outperforms the latter. Consequently, we can say 
that the Cosine similarity can represent the characteristics of signal in WSN better 
than the others, which will be discussed in more details in Sec. 4.2. 
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Fig. 3. Three signals that could occur in a WSN field 

Table 3.  The distance/correlation measures of three algorithms 

Algorithm Euclidean Pearson Cosine 
y1 � y2 2.8025 1.0000 1.0000 
y2 � y3 1.5875 1.0000 0.9622 
y3 � y1 3.2211 1.0000 0.9622 

3.3   Improved Derivative DTW-Cosine (IDDC) algorithm 

The IDDC algorithm combines the derivative DTW (DDTW) among variants of the 
DTW with the Cosine algorithm as the best classifier. The classic DTW algorithm has 
a tendency of producing unreasonable alignments where a single point in one 
sequence is mapped onto a large subsection of the other sequence when making a 
matching array (see the (a) of Fig. 4). It is because the algorithm finds an optimal path 
considering only the distance between a point of one sequence and its corresponding 
points of the other sequence. The problem led E. Keogh [6] to perform the DTW on 
the derivative of the time series instead of on the sequence itself. The (a) and (b) of 



Fig. 4 is to compare the results of the DTW and the DDTW. The DTW seems to fail 
to find the optimal alignment while the alignments produced by the DDTW look 
better. However, the DDTW has a tendency of being more sensitive to noise than the 
DTW. So, E. Keogh [6] suggested the following estimate for robustness to outliers 
through simplicity and generality. 

1 1 1( ) (( ) / 2)
, 1

2
i i i i

I

q q q q
Q i m− + −− + −= < < . (1) 

where qi is a point of a sequence. Assume that the average mN and the standard 
deviation σ N of background noise are known, the estimate Q could be regarded as 
zero when q≤ (mN +σ N) to avoid the influence of noise. The noise of background is 
mostly close to zero. In addition, the diagonal path d(m-1,n-1) should be given the 
priority among the next paths not to lose the correct path when the next path will be 
found as described in (c) and (d) of Fig. 4. According to our experiments, this scheme 
should be considered especially for matching the points of background sounds. 
Finally, the Cosine algorithm measures the similarity with the array which this 
improved derivative DTW produced. 
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(a) DTW                (b) DDTW(i) 
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                  (c) DDTW (ii)        (d) Improved DDTW 

Fig. 4. Comparing the DTW, the DDTW, and the improved DDTW 

4   Experiments and Evaluations 

We first describe our experimental setup briefly, and the performances of the ED, the 
LCS, the DTW, and the IDDC are compared with each other. We then show the 
effectiveness of similarity measure algorithms through several experiments of the 
time-warped similarity measure algorithms including a smoothing technique. 



4.1   Data Collection and Experimental Setup 

Three types of military objects, airplane, tank and soldier, in Fig. 5 are classified in 
the experiment. As shown, the sound of a soldier is a step sound which is very 
periodic and the duration of local frame is very short while the sound of an airplane is 
sleek a little and has a long local frame. The tank makes the sound of irregular 
explosions against a background of the sound of engine and wheels, which has a 
monotonous energy. We added some effects and noise which produces some 
distortion to the signals, e.g. various Doppler effects, some hissing noises by size, 
echo, flanger, mechanize, pitch change, some volume transforming effects(fade 
in/out), and time warping. We made 31 test data per object and totally have 93 test 
data. Each file is sampled sparsely at 10 Hz 20 times and classified 1860 times against 
objects before obtaining the result.  
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Fig. 5. Assumed signal patterns of military targets which can be occurred in a field of WSN 

 
The overall experimental system architecture consists of preprocessing, making 

reference, and classification parts. First, in the preprocessing part, input signals are 
scaled between -1 and 1, and its absolute values are taken to reduce the variation and 
the computational complexity. Fortunately since they constitute the piecewise power 
values of symmetry at each point and are highly correlated with each other, the 
absolute values are very efficient without losing any information. Also, the smoothing 
technique is used to improve the accuracy in higher and lower volumes in this paper. 
It is computed by Eq. 2 assuming that N is the number of elements to smooth. 
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Second, to model the outline of the reference against the input signal, each 
reference signal is compressed to the length of input signal using the PAA technique, 
Keogh et al. [7] proposed, because each input has a different length case by case. The 
PAA compresses or models a signal as it draws the contour of the reference signal of 
an object as follows: Let N be the dimensionality of the transformed time series we 
wish to work with (1 ≤  N ≤  n). The ith element of is calculated by Eq. 3. Lastly, 
the signal is classified to the object category which has the best similarity caused by 
the time-warped similarity measure algorithm and the decision rule. 

4.2   Comparison of time warping algorithms 

Before comparing the effectiveness of the three time warping algorithms, the ED, the 
LCS and the DTW, we experimented with the performance of the ED and the LCS 
with three levels of volume - half (-6.02dB), normal and double (6.02 dB) as shown 
Table 4. This is because the ED and the LCS should use a scaling threshold to apply 
to time series data, which consist of numeric values, and compare with the DTW. We 
explored the performance by varying the value of the threshold from 0.02 to 0.2. As 
shown in Table 4, the optimal threshold has a tendency to move following the level of 
volume. i.e., the threshold shifts to a smaller value in higher volume while it becomes 
larger in lower volume. While the optimal threshold comes to be 0.06 in double 
volume, it is 0.08 and 0.1 in normal and half volume respectively. Consequently, it is 
clear that the threshold cannot be easily established over volume. 

 

Table 4. Optimal threshold of ED and LCS 

Volume level ED LCS 

Double Volume (6dB) 0.07 0.06 

Normal Volume (0dB) 0.08 0.08 

Half Volume (-6dB) 0.1 0.1 

 
The Fig. 6 shows the comparison of the performance of the time warping 

algorithms including the DDTW as well as the Improved DDTW (IDDTW). All of 
the DTW, the DDTW, and the IDDTW give a similar performance with the optimal 
accuracy of the ED and the LCS in normal and high volume and all of them have a 
poor performance in lower volume. It means that an algorithm which can improve the 
performance, especially in the case of lower volume, is needed. The IDDTW can not 
only produce a matching array with ease but is also superior to the DTW and the 
DDTW over all volumes. Consequently, it is reasonable that any similarity measure 
algorithm should be combined with the IDDTW to get the highest performance. 
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Fig. 6. Comparison of time warping algorithms 

4.3   Comparison of Time-warped Similarity Measure algorithms based on the 
IDDTW 

We tested the IDDTW combined with all similarity measure algorithms as mentioned 
in section 3, and we found that the IDDC (IDDTW+Cosine) algorithm improves the 
performance in the area of lower volume very effectively and outperforms the other 
algorithms as depicted in Fig. 7. Although the performance of the IDDTW and the 
IDDE (IDDTW+Euclidean) algorithm shows a good performance from 5 to 8 dB, 
their performances are poor in lower volumes as well as have a tendency of degrading 
dramatically after 8 dB, which means they are highly dependent on the level of 
volume. On the other hand, the IDDP (IDDTW+Pearson) and the IDDC have 
saliently better accuracies in lower volume and are comparatively less affected by 
volume. 
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Fig. 7. Comparison of time-warped similarity measure algorithms 



We experimented the IDDC algorithm + Gaussian smoothing which is helpful in 
improving the accuracy through avoiding distortions caused by odd elements. We 
found the optimal number of elements for smoothing should be 3 through several 
experiments, so that the 3 elements came to be applied for smoothing in Fig. 7. 
Anyway, it turned out to be effective in improving the accuracy in both lower and 
higher volumes.  

Table 5 shows the confusion matrix of targets corresponding to volumes. The 
accuracies of tank and airplane outperform soldier by and large because the width of 
pillars of signal from the soldier are so narrow that they are often unable to be 
sampled while the interval between them are so large that even skipping sampling 
once can be critical to the performance. The influence of volume is also shown to 
depend on the sort of sound. i.e. monotonous signals such as an airplane is affected 
negatively by strong volume while complicated and variable signals such as a tank is 
positively affected. It is because more monotonous signal is modeled relatively better 
in lower volumes than in higher volumes. Consequently Considering a range from -10 
dB to 10 dB, the accuracy of the IDDTW is 65.35%, the IDDE is 63.77%, IDDP is 
68.75%, the IDDC algorithm is 76.55%, and the IDDC algorithm with the smoothing 
technique 78.98% on the average. It means the optimized IDDC algorithm 
outperforms the other algorithms by at least 10.23%. 

 

Table. 5. Confusion matrix by the finally proposed algorithm corresponding to volumes 

Classified 
Object 

Volume Soldier Tank Airplane 

Soldier 
Half 

Normal 
Double 

0.61335 
0.63748 
0.52383 

0.23832 
0.20700 
0.32384 

0.14833 
0.15552 
0.15233 

Tank 
Half 

Normal 
Double 

0.09468 
0.01512 
0.00463 

0.76488 
0.96205 
0.99075 

0.14044 
0.02283 
0.00462 

Airplane 
Half 

Normal 
Double 

0.01600 
0.00636 
0.00512 

0.03681 
0.05602 
0.14042 

0.94759 
0.93762 
0.85446 

5   Conclusion and Future works 

We described the characteristics of acoustic signals in a sparse sampling WSN and 
proposed the IDDC algorithm as the best classifier algorithm of time series. Since the 
acoustic signals not only comprise dense positive and negative values, but they also 
constitute the piecewise power values of symmetry at each point and highly correlated 
with each other, their absolute values and the smoothing technique are taken to 
improve the accuracy. Even though the experimental data are made artificially, it 
makes sense that the proposed algorithm has a satisfactory accuracy over volumes and 
outperforms compared to the other time-warped algorithms by at least 10.23% on the 
whole. We can also infer that the method of time series analysis can work 
collaboratively with the method of frequency analysis to operate a WSN economically. 



So, it is sure that our work could be a baseline for the research of target classification 
using the time series approach in the future. 

Our future works will focus on applying physical features, the ZCR (Zero Crossing 
Rate), energy, etc, and multi-modal fusion to improve the accuracy since objects have 
different signatures from each other corresponding to multiple modalities, e.g. 
magnetic and seismic. The HMM (Hidden Markov Model) could also give us the 
capability to analyze more diverse, more general and longer signals. 
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