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Abstract. In this article, we present a cross-layer design scheme for
802.16-2005 system. The cross-layer design includes both MAC and PHY
and is implemented through platform-based methods. In this design, we
discuss how the cross-layer design affects radio resource management
efficiency and system timing by examining system throughput. As for
the platform-based design, we present a method that enables designers
to estimate the allocation of hardware costs at an early design stage.
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1 Introduction

As the demand of broadband wireless access (BWA) grows rapidly, people need
new standards to provide high speed wireless transmission services. The OFDMA-
based IEEE 802.16-2005 Standard (Mobile WiMAX) has become the most im-
portant candidates among all cellular technologies supporting BWA services.
However, the system design becomes more challenging with higher system per-
formance requirement. Designers are seeking for new design approaches to over-
come strict constraints such as a standby time, hardware size, and etc.

With suitable architecture and optimal performance, our research objective
is to discover new design approaches for the ratified Mobile WiMAX Standard
[1] [2]. An example of system architecture was discussed in [3]. Algorithm design
and performance simulation issues were discussed in [4].

An important issue for communication system implementation is the layer
structure. Traditionally, a layered model such as OSI 7-layer structure separates
the whole system into well defined layers. This is to facilitate system develop-
ment, and provide compatibility between products from different vendors. In
traditional layered designs, direct communications between layers are forbidden,
only procedure calls and responses are allowed [5].

However, for modern high-speed BWA systems, the traditional approaches
become an obstruction for designers to meet strict performance criteria. Lack
of instant RF information in upper layers causes inefficiency of radio resource
management (RRM), while procedure calls and responses bring unnecessary ex-
ecution overheads. In view of this, designers began to choose cross-layer design
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strategies, aiming to break inter- layer boundary and to enhance communica-
tion among layers. Many studies such as [5] [6] provide a theoretical view of
cross-layer design.

In our studies, we define a reduced system architecture, and try to imple-
ment the system including MAC and PHY layers. The design and implementa-
tion of advanced MAC and PHY layers in mobile communication is challenging.
Undoubtedly, the PHY layer functional blocks are mostly implemented as hard-
ware (possibly on DSP). For the MAC part, since the functions become more
complex, a pure-software design is not adequate, thus we need to partition the
system into hardware and software parts. Traditionally, we design hardware part
with FPGA and then port the software part onto the system such as [7] [8]. Now
we are able to design HW and SW parts simultaneously with a platform-based
strategy, in which the HW part can be modeled at the transaction level using
systemC. This method significantly facilitates the software design since software
can now be developed in parallel with hardware just after the hardware modules
are defined. This also helps us to have better insight on the whole architecture
and protocol issues.

The rest of the paper is organized as follows: First, we provide an overview of
the WiMAX standard in Section II. In Section I11, some cross-layer design issues
are discussed. In Section IV, the proposed architecture for the MAC and PHY
layer system are described. Section V includes a hardware-software co-design
example and simulation results. Finally, conclusions are drawn in Section VI.

2 802.16-2005 MAC and PHY Overview

MAC Layer - The MAC layer of Mobile WiMAX can be roughly separated in
to two planes, data plane and control plane, according to the functionality [1][2]:

A. Data Plane

Data plane is responsible for forming protocol data units (PDU) from data
packets, i.e. service data units (SDU) coming from upper layers. Construction
of the data plane is based on the data flow between upper layers and the PHY
layer, which can be classified into following steps:

— Convergence Sublayer
including Packet Header Suppression (PHS) and Packet Classification. The
packet classifier maps packets into various connections according to its ser-
vice flow.

— Fragmentation and De-fragmentation
For connections without ARQ support, the SDUs are subjected to further
fragmentation and packing. For connections with ARQ support, the SDUs
are reduced to fixed-sized blocks and are not apt for further changes.

— Header and Subheader
Headers and subheaders are appended to payload according to its contents
and properties or control messages in between BS and MS.
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— CRC Computation
CRC field is generated for error detection. This is optional in IEEE 802.16-
2004 but mandatory in 802.16-2005.

— Framing
The PDUs are collected and concatenated, i.e. PDUs are packed into data
bursts according to their destination.

— Interaction with Control Plane
Another source of PDU payloads are management messages. The decision of
message parameters is in the control plane, while the data plane is respon-
sible for accessing the parameters and turns them into PDU payloads. This
takes complicated bit manipulations.

B. Control Plane

— Mobility Control
This part handles mobility issues of MSs, such as motion, switching among
multiple cells, and power adjustments. This part includes the following func-
tional blocks:
1. Cell Reselection and Handover.
2. Idle Mode and Sleep Mode.
3. Active Mode Power Management.
4. Channel Measurement.
— Network Entry
Network entry part in Mobile WiMAX in responsible for initializing net-
work connection between MS and BS. It is also responsible for handling new
network entries if MSs wish to handover from one network to another.
— Scheduling
The system will arrange transmission order among SDUs of different connec-
tions according to scheduling rules. Scheduling algorithms vary in accordance
to different QoS classes.
— Management Message Composer
The parameters needed in a management message are gathered by the com-
poser, and then passed to the data plane in the form of C language structure.

PHY Layer - The mobile WiMAX system has an OFDMA-based physical layer:

— IFFT / FFT
The kernel of OFDM, also the part that occupies most hardware resources
in PHY implementation.

— Interleaving and randomization
To combat the burst error problem of time-varying wireless channel

— Channel coding and digital modulation
PHY encodes and modulates the signal to reflect the changes of link perfor-
mance
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— Synchronization and Channel Estimation
implemented at the receiver side with the help of preamble and MAC man-
agement messages

3 Cross-Layer Issues

As discussed in [5] [6], the cross-layer control and optimization strategy can be
categorized into several classes. For example, top-down approach, in which the
lower layer is controlled by a higher layer; feedback approach, which is top-down
controlled with some information feedback from the lower layer; integrated ap-
proach, in which two or more layers are considered together. While we have sev-
eral choices for each layer, an optimization task is setup to find a jointly optimal
solution. The following part describes some issues that need cross-layer solutions:

A. Radio Resource Management

The MAC layer makes decisions on many functions: scheduling, handover
triggering, power control, coding-modulation scheme selection, etc. These deci-
sions require PHY layer measurements such as CINR, RSSI, BER, and others.
In many circumstances, layered signaling is just not efficient enough for radio
resource allocation. Reference layered structure passes parameters layer-by-layer
and simply takes too much time, so that signaling contrarily becomes a bottle-
neck for high-speed MAC design. In view of this, new interfaces shall be added
between adjacent layers, and even non-adjacent layers to provide a quicker run-
time signaling.

B. Performance Considerations

As the system become more complex, cross-layer signaling is no longer as
simple as connecting adjacent layers. The interface must be efficient enough so
that overhead is minimized and thus can provide high speed and high through-
put. In mobile WiMAX, this is partially done by MAC management messages
parameters defined in the protocol. However, the actual passing of parameters
and data stream, through hardware pins or software variables, still needs to be
designed carefully.

To solve the problems stated above, we will examine the problems from the
architecture point of view. The main idea is that for those functional blocks
which are closely interacted should be designed as an integrated module. Some
examples are:

— Framing:
Framing includes selection of the coding-modulation scheme and bit-loading.
These are conventionally categorized as MAC functions. FEC encoding and
modulation are categorized as PHY functions. These functional blocks com-
prise the kernel of data transmission. In conventional layered structure, the
MAC layer constructs a complete frame including several data bursts and
necessary control fields, such as FCH and DL/UL-MAPs. After that, the
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MAC layer passes the whole frame to PHY layer in the form of bit-stream.
However, we shall show the problem of execution overhead in the later parts

of this article.

— Ranging/Handover:

In ranging or handover processes, a device detects the environment to adjust
its transmission parameter or switch to another base station. They both in-
clude the cross-layer signaling that the channel condition (CINR or RSSI) is
passed from PHY to MAC, and control information (e.g. power adjustment,
HO command) is passed from MAC to PHY. The measurements and param-
eters passing can be more efficient if we design specific connections among

related functional blocks.

4 System Architecture

A. Proposed System Architecture
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Fig. 1. Proposed System Architecture

Fig.1 is our proposed system architecture with cross-layer consideration, for
the transmitting function of a base station (BS). The architecture includes two
planes, the data plane and the control plane. Two planes are linked together by

a public parameter database.
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The data plane is based on the data flow between upper layers and the PHY
layer, with separated flows for ARQ and non-ARQ connections. The control
plane is classified into various blocks according to functionality. Between the
two planes there is a shared database. Parameters, BS/MS profiles and network
configuration profile are stored in the database. Control plane message com-
poser, data plane, and algorithm modules will access the shared database. The
receiver side is roughly the inverse of the transmitting one, except that the PHY
part should be a little more complex to include synchronization and channel
estimation. Receiver architecture is not discussed in this article.

B. Modulized Algorithm Development

To facilitate algorithm development, the algorithm functional blocks must
be fully modularized and can be easily added or removed. This can be done
by applying a standard interface, as illustrated in Fig.1. The standard interface
comes in the form of a variable database, accessed by all algorithm modules,
message composer and data plane. If necessary, new variables and algorithm
modules can be added at ease.

5 Design and Implementation Isssues

A. Design Flow
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= L

M
) : A Performance HW

¥
Verification v Analysis (._ implement

A

Fig. 2. Proposed System Design Flow

We implement the 802.16-2005 MAC and PHY layers in a platform-based
ESL (Electronic System Level) design manner. The complete design progress
starts from defining or understanding system specification, based on this, we
have an architecture containing functional blocks with control and data signal
flows. Then we implement the system with both hardware and software and then
verify the design at final. The proposed design flow is described in Fig.2 and will
be explained as follows.

To have a system view at a higher level, it is preferred to implement the
system with pure software from the start. Algorithm development and layer
interface issues are handled at this stage. We apply profiling in order to gain a
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rough insight of system performance, and then considering the cross-layer co-
simulation in order to ensure the function correctness.

After software development, to facilitate real-time operation, substitution of
bottleneck functional blocks with HW implementation is a necessary means. For
our communication system case, the PHY layer baseband processing is hardly
to be kept in software due to its high computation power, so it will be transfer
into a hardware model and than implemented with specific hardware architec-
ture. The MAC data plane, especially the part dealing with SDUs, also contains
computational operations that is routined and repeated, and is therefore more
favorable for HW substitution. The control plane, which contains less frequently
called functions and each requires variable amount of memory, is less favorable.

Note that the implementation of pure software does not need to have a com-
plete control plane. An important benefit of ESL design is that the hardware and
software can be developed simultaneously. This means, using hardware ”models”
with well-defined interfaces, we may refine the software without actual implemen-
tation (FPGA or ASIC) of hardware part. Take the scheduler as an example, we
may use a simple FIFO queue at the beginning (in order to verify the hardware
model), and applying more complex algorithms later.

In the example presented in Section VI, HW/SW co-simulation is done by
building a processor based platform. The design tool used for platform construc-
tion is the ARM RealView SoC designer; like other similar tools, there is a canvas
to draw a platform and simulate it.

B.  Effect of Cross-Layer Design on Timing

Besides radio resource issues, cross-layered design may bring great influence
on hardware timing. In traditional discrete-layered designs, MAC and PHY
threads are executed separately. The two layers are connected only through
buffering and signaling. Only after the procedure of one layer is completed, it will
then issue a procedure call and start another layer’s procedure. However, buffer-
ing and signaling bring excessive memory accesses, which is the main reason for
system throughput degradation. If a designer wishes to solve this problem, it
would be better if the procedure sequence is re-arranged. By merging MAC and
PHY layer into an optimized hardware module, we are able to reduce excessive
memory accesses and thus improve system timing.

Here is an example illustrating how hardware timing is improved by merging
both layers. Consider the sequential execution of packing- fragmentation, which
is a function of MAC data plane, and then FEC encoding and modulation, which
belongs to PHY layer. The sequence’s goal is to generate data for n bursts, and
then propagate these bursts through FEC coding and modulation.

Three execution schemes are examined:

A. Discrete-layered execution, without any hardware optimization.

B. Discrete-layered execution, with all PHY functions integrated into a hardware
module.

C. Cross-layered execution, with MAC and PHY functions integrated into a sin-
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gle hardware module.

For scheme A and B, the execution sequence can be expressed by the following
pseudo code:

MAC_Procedure()
{

for( i <= n_burst )
while( burst[i] is not full )
fragmentation/packing();

PHY_Procedure ();

}

PHY_Procedure ()

{
retrieve_MAC_parameters();
upper_PHY_buffer();
for( i <= n_burst ) FEC_encoding( burst[i] );
for( i <= n_burst ) Modulation( burst[i] );

}

For scheme C, the pseudo code expression is:

Integrated_Procedure()
{

for( i <= n_burst )
while( burst[i] is not full)
fragmentation/packing();

retrieve_MAC_parameters();

FEC_encoding( burst[i] );
Modulation( burst[i] );

From the pseudo codes, we observe that in scheme A and B, there are three
loop structures that each of them has n iterations, thus giving 3n conditional
branches. In scheme C, there is only one loop structure, giving n conditional
branches. Under massive amount of loop execution, this could bring obvious
performance difference.

Also to quickly estimate system performance, we model the system’s memory
access behavior with the following assumptions:

— Time needed for reading a burst’s bit load from system RAM, denoted by a.

— Time needed for writing a burst’s bit load to system RAM, denoted by b.

— Time needed for reading a burst’s bit load from hardware cache, denoted
by a/a. Note that « is the average speedup ratio between system RAM and
hardware cache access.
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— Time needed for writing a burst’s bit load to hardware cache, denoted b/«.

— Number of bursts, denoted by n.

— Computation time for packing/fragmentation, FEC encoding and modula-
tion respectively, denoted by c, e and f .

Scheme A: Discrete MAC and PHY Design without HW Optimization

i PHY j Jotal: i
Packing / Frag }—-l Buffer }—-l FEC I—b‘ Modulation ‘ (ba+6Bb)xn + H
: Hardware Computation Time |

(a+b+c)xn (a+b)xn (a+2b+ejxn (2a+2b+fixn

Scheme B: Discrete MAC and PHY Design with PHY HW Optimization
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; i Tmal
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Computation Time
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Scheme C: MAC and PHY Cross-Layered Design with Integrated HW Optimization
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Fig. 3. Execution Sequence and Memory Access Time Estimation for Three Schemes

Note that a burst’s bit load would increase through FEC encoding. Here we
assume the code rate is 1/2, and therefore the bit load after FEC process is
double of that before encoding. Also we focus on memory access time in this
part; the acceleration within each functional blocks, i.e. changes in execution
time c, e and f are not considered.

Refer to Figure 3, we can derive approximate memory access time for each
execution scheme, shown as follows:

— Scheme A: (5a + 6b)
— Scheme B: ((2+3/a)

X 1
+ (3+3/a)b) x n
— Scheme C: ((143/a)a + (

a
a+ (243/a)b) x n

Since the access speed of hardware cache is much faster than that of system
RAM, we can assume that o has a large value, and therefore we have further
approximation shown as follows:

— Scheme A: (5a + 6b) x n
— Scheme B: (2a + 3b) x n
— Scheme C: (a + 2b) x n
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From the estimation stated above, hardware integration of MAC and PHY
can dramatically reduce memory access time by almost 75%, thus improve sys-
tem throughput.

B.  Predict HW behavior with HW/SW Partition
The most exciting advantage of platform-based design is that we can develop
hardware and software part simultaneously after a proper interface is defined
by rough software and some hardware models. However, the interface can still
be defined without this platform-based simulation, so why do we need it? The
answer is that it provides us with more precise information of hardware be-
havior, including ports, cycle count, before actual hardware tape-out. But some
information, like the cycle-accurate hardware execution time, is still unavailable
until Verilog designs are completed. If a designer needs to know more about the
performance evaluation in the early stage, a systematic way should be developed.
We formulate this problem with the following factors:
For the system before HW/SW optimization, we have:

— Cg;: Software execution cycle count of the it* functional block, per instance.
— U;: How many times the ith functional block is referenced.

B. After HW/SW optimization, we have:

— Cpg: Target total cycle count of all hardware modules.
— Cpyy: Cycle count of the ith functional block, after it is implemented with
hardware.

The designer sets up a fixed goal for Cy according to the timing constraint,
and then allocates a target Cp; value for each functional block which will be
implemented with hardware. The goal is now to find out a combination of Cg;
values that minimizes the system cost, say hardware area, under a fixed con-
straint of total Cg.

Here we introduce another factor, 7;, which is a characterization factor of the
ith functional block. The factor indicates how easy the functional block could
be boosted with a compact sized hardware implementation. As an example,
functions such as FFT and IFFT can be accelerated with Butterfly structure,
which is relatively small in size. Therefore they have higher ~; values.

Then the cost function can be defined as:

Csi
7= Z 7iCHi (1)

J’ has the same trend with required hardware area, and therefore is a good
indicator of hardware area needed for the functional block.
Our goal is to minimize J’, subject to the constraint

Z CuiUi <Cy (2)
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where CH is a fixed target, we solve the optimization problem of minimizing
J” with Lagrange Multiplier Method, shown as follows:

J =7+ _ Cuili — CH) (3)

where A is the Lagrange Multiplier. We seek for the minimum value of cost
function by taking partial derivation with respect to CHi, and let it equal to
zero:

oJ Cs;

=— AU, =0 4
8CHi ’inIQ% + ! ( )
Solving equation 4, we have:
Cs;
2 7
e 5

from which we can allocate each functional block an adequate target cycle
count, and minimize the corresponding hardware area cost. This is a reasonable
allocation since:

— For a functional block which costs more software cycle originally, we allocate
more hardware cycle.

— For a functional block which is used more frequently, we allocate less hard-
ware cycle to reduce the overall hardware cycle, at the expense of increasing
area or power.

With similar procedures, designers are also able to compute the allocation of
hardware resource subjected to other criteria such as hardware power.

Here we consider a simplified implementation of WiMAX MAC and PHY
layers. The pure software version needs about 14.6 M cycles to complete a frame,
which equals to 146ms with a fully utilized processor running at 100 MHz. This
is the estimation result without any aid of application-specified hardware or DSP
modules, and is much higher than the standard-specified 5ms goal. Therefore,
designers have to consider optimizing some functional blocks with hardware.

According to the estimation method described in equation 1 to 4, Table 1
shows the profiling results of two heavy loaded modules, IFFT and FEC Encoder,
and their corresponding parameter settings. A simulation period of 20 frames is
applied.

Function Ui |Csi Vi
(1) IFFT 660(313511|5
(2) FEC Encoder|320[192995|1

Table 1. Profiling Result
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Setting Cy = 600,000 cycles allows the frames to be generated on time
(processor not fully-used). Using equation 2 and 5, we allocate Cy; = 400 cycles,
and Cgo = 1000 cycles.

6 Conclusion

In this paper, we presented a cross-layer design methodology of Mobile WiMAX
MAC layer, involving both hardware and software designs. By combining MAC
and PHY layer, designers are able to reduce excessive memory access and loop-
ing, thus improve system performance. Also, in a HW/SW co-design platform,
we can allocate target cycle counts for each HW component according to some
rules so that the cost is minimized.
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