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Abstract. The memory usage of sparse direct solvers can be the bottleneck ¢o solv
large-scale problems. This paper describes a first implementation aifteof-core
extension to a parallel multifrontal solveMMPS). We show that larger problems
can be solved on limited-memory machines with reasonable performandewe
illustrate the behaviour of our parallelt-of-corefactorization. Then we use simula-
tions to discuss how our algorithms can be modified to solve much largelepns.

1 Introduction

The solution of sparse systems of linear equations is aadtgrnel in many simulation
applications. Because of their robustness and performaireet methods can be preferred
to iterative methods. In direct methods, the solution of stesy of equationsiz = b is
generally decomposed into three steps: (i) an analysis ttapconsiders only the pattern
of the matrix, and builds the necessary data structuresuorenical computations; (ii) a
numerical factorization step, building the sparse facterg., L andU if we consider an
unsymmetricLU factorization); and (iii) a solution step, consisting ofamfard elimina-
tion (solve Ly = b for y) and a backward substitution (solt&r = y for z). For large
sparse problems, direct approaches often require a largergmf memory, that can be
larger than the memory available on the target platformsely high performance com-
puter, ...). In order to solve increasingly large problems;of-coreapproaches are then
necessary, where disk is used to store data that cannot fiysigal main memory.
Although several authors have worked on sequential or dhaemoryout-of-coresol-
vers [1,9, 17], sparseut-of-coredirect solvers for distributed-memory machines are less
common. In this work, we aim at extending a parallel multitiad solver MUMPS, for MUI-
tifrontal Massively Parallel Solver, see [3]), in order twable the solution of larger prob-
lems, thanks tmut-of-coreapproaches. Recent contributions by [13] and [14] for wnipr
cessor approaches pointed out that multifrontal methods moa fit well an out-of-core
context because large dense matrices have to be procesatdanh represent a bottle-
neck for memory; therefore, they prefer left-looking aparioes (or switching left-looking
approaches). However, in a parallel context, increasiegittmber of processors can help
keeping such large frontal matrices in-core. Note alsoahather type of approach is based
on virtual memory and system paging, that can be controeldw level mechanisms [8]
in relation with the application and provide better perfanoe than defaultRU mecha-
nisms. However, such approaches are very closely relatégbtoperating system and are
not adapted when designing portable codes.
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This paper is organized as follows. After a quick descriptid the memory management
in multifrontal methods (Section 2), we present in Secti@m&pproach to store the sparse
factorsL andU to disk. We will observe that this approach allows us to ttaager prob-
lems with a given memory, or the same problem with less mentr§ection 3.4, both a
synchronous approach (writing factors to disk as soon asateecomputed) and an asyn-
chronous approach (where factors are copied to a buffer aitigmvto disk only when the
buffer is full) are analyzed, and compared to the in-corer@ggh on a platform with a
large amount of memory. Finally, in order to process mucgidaproblems, we present in
Section 4 simulation results where we suppose that thesact@mory of the solver is also
stored on the disk and study how the overall memory can fulibaeduced. This study
is the basis to identify the bottlenecks of our approach wdwrironted to arbitrarily large
problems.

2 Memory management in a parallel multifrontal method

In multifrontal methods, the task dependencies are repteddy a so-called assembly tree
[6,10], that is processed from bottom to top during the faz&tion. At each node of the
tree is associated a so-call&dntal matrix, or front, and a task consisting in the partial
factorization of the frontal matrix. The partial factoria produces a Schur complement,
or contribution block which will be used to update the frontal matrix of the paneotle
(see [2], for example, for more details). This leads to tlaeas of storage, one for the fac-
tors, one for the contribution blocks, and another one ferctirrent frontal matrix [2]. The
active memory (as opposed to the memory for the factors) ¢beresponds to the sum of
the contribution blocks memory (or stack memory) and the orgrfor the current active
matrix. During the factorization process, the memory regplifor the factors always grows
while the stack memory that contains the contribution béogkries: when the partial fac-
torization of a frontal matrix is performed, a contributiblock is stacked which increases
the size of the stack; on the other hand, when the frontalixnatia parent is formed and
assembled, the contribution blocks of the children nodesbeadiscarded and the size of
the stack decreaskes

From the parallel point of view, the parallel multifrontaéthod as implemented MUMPS
uses a combination of static and dynamic scheduling appesadndeed, a first partial
mapping is done statically (see [4]) to map some of the tagkbhéd processors. Then,
for parallel tasks corresponding to large frontal matriokshe assembly tree, a master
task is in charge of the elimination of the so-called fullyrsued rows, while dynamic
scheduling decisions are used to select the processorsaamechof updating the rest of
the frontal matrix (see Figure 1). Those decisions are taddralance workload, possibly
under memory constraints (see [5]).

3 Out-of-core multifrontal approach

3.1 Preliminary study

In the multifrontal method, the factors produced during ftetorization step are not re-
used before the solution step. It then seems natural to dicstsfon writingthemto disk.

4 In parallel, the contribution blocks management may differ from a piareksnechanism.



Thus, we present a preliminary study which aims at evalgatiynhow much the in-core
memory can be reduced by writing the factors to disk durireggftfctorization. To do so,
we simulated amut-of-coretreatment of the factors: we free the corresponding memory
as soon as each factor is computed. Of course the solutiprcatenot be performed as
factors are definitively lost, but freeing them allowed t@lgme real-life problems on a
wider range of processors (in this initial study).

We measure the size of the new peak of memory (which actualiesponds to thac-

tive memorypeak) and compare it to the one we would have witlinacore factorization
(i.e. the total memory peak In a distributed memory environment, we are interested in
the maximum peak obtained over all the processors as thie vapresents the memory
bottleneck.

For a small number of processors, we observe that the actiraany is much smaller
than the total memory. In other words, if factors are writterdisk as soon as they are
computed, only the active memory remainscoreand the memory requirements decrease
significantly (up to 80 % in the sequential case).
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Fig. 1. Example of the distribution of an as- Fig. 2. Ratio of active and total memory peak

sembly tree over four processors. on different number of processors for sev-
eral large problemdVETI Sis used as the re-
ordering technique).

On the other hand, when the number of processors increasgmak of the active memory
decreases more slowly than the total memory as shown in &@uFor example, on 64
processors, the active memory peak reaches between 50 aperdént of the peak of
total memory. In conclusion, on platforms with small nunsbef processors, aout-of-
core treatment of the factors will allow us to process signifibatigger problems; the
implementation of such a mechanism is the object of SectidnNevertheless, either in
order to further reduce memaory requirements on platforntis @nly a few processors or to
have significant memory savings on many processors, we maytbareat both the factors
and the active memory with asut-of-corescheme. This will be studied in Section 4.

3.2 Out-of-core management of the factors

The performance of I/O mechanisms are essential and impactlg the performance of
the whole application. Neither MPI-IO [16] (because filee aot shared by processors



in our case) nor FG [7] (our I/O threads do not interfere witicke other) match our pur-
pose. BothAl O, an asynchronous I/O mechanism optimized at the kernel, land the
recent Fortran 2003 asynchronous I/O layer were not avaitad our target platform (see
Section 3.3). We finally used the standard C I/O routifiead/fwrite and read/write (or
pread/pwritewhen available) which are known to be efficient low-levelreds.

In the synchronous I/0O scheme, the factors are directlytewritvith a synchronous scheme
using the standard 1/O subroutines (eitfread/fwriteor read/writd. In the asynchronous
I/0 scheme, we associate with each MPI process of our afiplican I/O thread in charge
of all the 1/0 operations. This allows us to overlap the timeeded by 1/O operations
with computations. The I/O thread is designed over the stahdOSI X thread library
(pthread library). The communication and the synchromzabetween the computational
thread and the 1/O thread are designed using semaphore nigtisa The communication
scheme between the two threads is described in Figure 3.tiaelan 1/0 operation has
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Fig. 3. Thread communication scheme.

to be performed, the computational thread posts an I/O st@unel inserts it into thgueue

of waiting requestsConcerning the 1/O thread, it treats the 1/O requests ingilreue of
waiting requestsising a FIFO strategy. Once an I/O request is finished, itsieried in the
queue of finished requedty the I/O thread. The computation thread can then remove it
from this queue when checking for the completion of the retjue

Together with the two I/O mechanisms described above, wignies a buffered 1/0 scheme
(that can be either synchronous or asynchronous). Thi®apbrrelies on the fact that we
want to free the memory occupied by the factors as soon asbpmsathout necessarily

waiting for the completion of the corresponding I/O. Thusd an order to avoid a com-

plex memory management in a first approach, we added a bufferasfactors are copied
before they are written to disk. The buffer is divided int@tparts so that while an asyn-
chronous I/O operation is occurring on one part, factors éina being computed can be
stored in the other part (double buffer mechanism allowhgdverlap of /O operations

with computation).



3.3 Experimental environment

In order to study the impact of the proposed mechanisms, weexperiment with them
on several problems (see Table 1) extracted from eitherARASBOL collectior? or com-
ing from other sources. The tests have been performed oBMeSP system of IDRIS
composed of several nodes of either 4 processors at 1.7 GB& ocessors at 1.3 GHz.
On this machine, we have used from 1 to 128 processors witfollog/ing memory con-
straints: we can access 1.3 GB per processor when askingdia tman 128 processors,
3.5 GB per processor for 17-64 processors, 4 GB for 2-16 psms, and 16 GB on 1
processor.

Matrix Order Nz Type[nnz(L|U) x 10°[Description
AUDIKW _1 943695| 39297771SYM 1368.6 Automotive crankshaft model (PARASOL)
CONESHLmod (1262212 43007782 SYM 790.8 provided by SAMTECH; cone with shell and solid el-

ement connected by linear constraints with Lagrange
multiplier technique
CONV3D64 836550| 12548250 UNS 2693.9 provided by CEA-CESTA; generated using AQUILON
(http://www.enscpb.fr/master/aquilon)
ULTRASOUNDS8(Q 531441|330761161UNS 981.4 Propagation of 3D ultrasound waves, provided by M.
Sosonkina, larger than ULTRASOUND3

Table 1. Test problems.

By default, we used the METIS package [12] to reorder the icegtrand thus limit the
number of operations and fill-in arising in the subsequeatspfactorization. The results
presented in the following sections have been obtainedjusandynamic scheduling strat-
egy proposed in [5].

The 1/0 system used is tHeBM GPFS [15] filesystem. With this filesystem it was not
possible to write files on disks local to the processors angesperformance degradation
was observed when several processors write/read an anfalatasimultaneously to/from
the filesystem: we observed a speed-down between 5 and 5@ftoi®4 processors when
each processor writes a block of 800 MBytes. Finally, it ipartant to note that we chose
to run on this platform because it allows us to run large mwtsin-coreand thus compare
out-of-coreandin-core approaches (even if the behaviour of the filesystem is natnabt
for performance).

3.4 Experiments

First, we have been able to observe that for a small numberoaepsors we use signif-
icantly less memory with theut-of-coreapproach: the total memory peak is replaced by
the active memory peak, with the improvement ratios of Fégir Thus the factorization
can be achieved on limited-memory machines.

We now focus on performance issues and report in Figure 4 gpative study of the
in-core case, the synchronowsit-of-corescheme and the asynchronous buffered scheme,
when varying the number of processors.

Note that for the buffered case, the size of the I/O buffereists twice the size of the
largest factor block (to have a double buffer mechanism)wAsan see, the performance

Shttp://ww. paral | ab. ui b. no/ par asol
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Fig. 4. Execution times (normalized with respect to thecore case) of the synchronous and asyn-
chronous I/O schemes.

of the out-of-coreschemes is indeed close to timecore performance for the sequential
case (note that we were not successful in running the CONM3Détrix on 1 processor
even with theout-of-corescheme because the active memory requires more than 16 GB).
Theout-of-coreschemes are at mo2®% slower than thén-core case while they need an
amount of memory that can be 80 percent smaller as shown urd-&jfor one processor.
Concerning the parallel case, we observe that with the &seref the number of processors,
the gap between thie-core and theout-of-corecases increases. The main reason is the
performance degradation of the 1/0 with the number of precesthat we mentioned at
the end of Section 3.3. In order to avoid this problem, we hexgerimented with the
smallest of our large test problems on a machine with locg{ddiln this case, we do not
have such a performance degradation, as shown in Figure thieocontrary, theut-of-
core schemes perform as well or even better thanitheore one (cache effects resulting
from freeing the factors from main memory and using alwagsshme memory area for
active frontal matrices). Finally, concerning the comgani of theout-of-coreschemes,
we can see that the asynchronous buffered approach perfiettes than the synchronous
one. However, it has to be noted that even in the synchrordhes s, the system allocates



data in memory that also allows to perfotf® asynchronously, in a way that is hidden to
the application. Otherwise, the performance of the syrmatue approach would be much
worse.
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We artificially decreased the size of the 1/O buffer on therm@ONESHL MOD on 32
processors (default size was 9.5 million reals for this mpatiVe can see from Figure 6
that the factorization time decreases when the size of tfferdacreases. Indeed, in our
strategy, the nodes that cannot fit into the buffer are wrisgchronously to disk, slowing
down the factorization. (Note that in all cases the size eflibffers ensures a sufficient
granularity for the performance of I/0.)

Concerning the solution phase, the size of the memory wilegaly not be large enough
to hold all the factors. Thus, factors have to be read frotk, disd the 1/0O involved increase
significantly the time for solution. Note that we use a bagimend-driven scheme, relying
on the synchronous low-level I/O mechanisms from Secti@n\®e have observed that the
performance of th@ut-of-coresolution step is often more than 10 times slower than the
in-corecase. Although disk contention might be an issue on our naagret platform in the
parallel case, the performance of the solution phase shmilthe neglected; it becomes
critical in anout-of-corecontext and prefetching techniques in close relation witteglul-
ing issues have to be studied. This is the the object of ctwerk by the MUMPS group
in the context of the PhD of Mila Slavova.

4  Simulation of an out-of-core stack memory management

In Section 3, we presented a fistit-of-coreapproach for the parallel multifrontal fac-
torization, consisting in writing factors to disk as soonpassible. The results obtained
have shown the potential of the approach and how larger @nubtan be treated. However
this approach also has certain limitations and the stackenemow becomes the limit-
ing factor. Therefore, the next step is to manage the stackmiribution blocks with an



out-of-corescheme, where a contribution block may be written to disloas ss it is pro-
duced, and read from disk when needed (either with a préfetanechanism or with a
demand-driven scheme).

With the objective to assess the potential of such an appraee perform in this section
simulations with various scenarios for the stack managémen

— Al | - CB out-of-core stack memory. In this scheme, we suppose that during the as-
sembly step of an active frontal matrix, all the contribatldocks corresponding to its
children have been prefetched in memory. Thus, the assestdyyis processed as in
thein-corecase.

— One- CB out-of-core stack memory. In this scheme, we suppose that during the as-
sembly step of an active frontal matrix, only one contribatblock corresponding to
one of its children is loaded in memory, while the others staylisk. Thus we inter-
leave the assembly steps with I/O operations.

— Onl y- Par ent out-of-core stack memory. In this scheme, we suppose that during
the assembly step of an active frontal matrix, no contrdsublock is loaded in mem-
ory. Thus, the assembly step is done incart-of-coreway. Note that the implementa-
tion of such a strategy will not be efficient at all since theeamsbly steps are not very
costly and there is no way to overlap I/O operations with cotations. This strategy
corresponds to an ideal scenario concerning the size ohtbere memory.

Note that for the three scenarios, we suppose that a cotiriboiock is written to disk as
soon as it is computed. In addition, we assume that all theeaftontal matrices remain in
memory until the end of their factorization.

Results and discussionAlthough we experimented with several matrices, we onlysil
trate in Figure 7 the memory behaviour using the differ@uitof-corememory manage-
ment strategies and-core case for two test problems on different numbers of processor
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Fig. 7. Memory behaviour with different memory management strategies derelift numbers of
processors for two large problemdHT| S is used as reordering technique).

As expected, we see that the strategies for managing thle atéwf-coreprovide a re-
duced memory requirement. We also observe thatCtiey- Par ent out-of-corestack



memory management is the one that best decreases the meesalgdnby the factoriza-
tion. Although this strategy might not be good for perforepit is here to provide some
insight on the best we can do with our assumptions and wittctineent version of the
code. One interesting phenomenon we observed is thatuihef-corestack memory man-
agement strategies give better results with symmetricicest(see Figure 7(a)) than with
unsymmetric ones (see Figure 7(b)). For unsymmetric negtrand on large numbers of
processors, the bottleneck is very often due to the treatofemaster tasks (holding the
variables that need to be factored when the frontal matrpaigllelized) that are bigger
for unsymmetric matrices (see [3]). Since we prefer to kéese tasks in core, a variant
of the splitting algorithm of [3] could be applied in a paehltontext, to limit the size of
those tasks. In addition, we have observed that with oumagsan that an active frontal
matrix (or part of it if it is distributed over several prosess) has to stay in memory while
being factored, it would be beneficial to reduce as much asilpleshe number of simulta-
neous active tasks on a processor. This can be done by nmagltfye scheduling strategies
currently existing in the parallel multifrontal method.

These results illustrate that tlae- CB approach could be a good way to desigroattof-
corestack memory management strategy with reasonable penficen¥Vith the modifica-
tions discussed above to further decrease the memory peséams that the intrinsic limits
of the sequential multifrontal method become much lesgatithanks to parallelism.

5 Future work

We presented in this paper a first implementation odatrof-coreextension of the parallel
multifrontal solverMUMPS. The selected approach was to drop factors from memory as
soon as they are computed and to overlap the 1/O operationsuak as possible with
computations. We illustrated the good behaviour of thisreagh on a small number of
processors and its limitations on larger ones, while firpeednents on machines with local
I/0 showed no significant I/O overhead during the factorimatNevertheless we noticed
that low-levell/O mechanisms have to be designed with care as the system isnect to
I/O-intensive and large memory applications.

One key point that must be studied is the design of effiaetof-corestack memory man-
agement schemes based on the results presented in Sedtichig.context, the contribu-
tion blocks can be considered as read-once/write-onceadassed with a near-to-stack
mechanism (for the parallel case the accesses are morelargg/Vith asynchronous 1/0O,
prefetching algorithms have to be designed. In additiomntiimber of contribution blocks
(for the parallel case) that a processor has in memory i®lsiagslated to the scheduling
decisions made; both the static and dynamic aspects of slihgdould limit the I/O vol-
ume that each processor has to perform and drive some dymttigions with the data
that are available in memory (for example, give a priorityasks that depend on/consume
contribution blocks already in memory).

In order to treat larger problems where both the factors hadstack memory areut-of-
core we have to determine more accurately which type of taskeaponsible for the peak
of memory and then to limit their size and/or the number ohdiasks that are active at the
same time. We have already identified some critical casesdtidh 4 and should now mod-
ify our algorithms when memory usage becomes a strong priétirthermore, adapting
the techniques described in [11] could further reduce thekstnemory requirements.



We believe that in a parallel context, this study shows thextet is still room before reaching
intrinsic memory limits of multifrontal methods. Althoudgtis true that large frontal matri-
ces can be problematic in sequential (need for an out-af-assembly and factorization),
this is less the case in a parallel environment.
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