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Abstract. The memory usage of sparse direct solvers can be the bottleneck to solve
large-scale problems. This paper describes a first implementation of anout-of-core
extension to a parallel multifrontal solver (MUMPS). We show that larger problems
can be solved on limited-memory machines with reasonable performance, and we
illustrate the behaviour of our parallelout-of-corefactorization. Then we use simula-
tions to discuss how our algorithms can be modified to solve much larger problems.

1 Introduction

The solution of sparse systems of linear equations is a central kernel in many simulation
applications. Because of their robustness and performance, direct methods can be preferred
to iterative methods. In direct methods, the solution of a system of equationsAx = b is
generally decomposed into three steps: (i) an analysis step, that considers only the pattern
of the matrix, and builds the necessary data structures for numerical computations; (ii) a
numerical factorization step, building the sparse factors(e.g.,L andU if we consider an
unsymmetricLU factorization); and (iii) a solution step, consisting of a forward elimina-
tion (solveLy = b for y) and a backward substitution (solveUx = y for x). For large
sparse problems, direct approaches often require a large amount of memory, that can be
larger than the memory available on the target platform (cluster, high performance com-
puter, . . . ). In order to solve increasingly large problems,out-of-coreapproaches are then
necessary, where disk is used to store data that cannot fit in physical main memory.
Although several authors have worked on sequential or shared-memoryout-of-coresol-
vers [1, 9, 17], sparseout-of-coredirect solvers for distributed-memory machines are less
common. In this work, we aim at extending a parallel multifrontal solver (MUMPS, for MUl-
tifrontal Massively Parallel Solver, see [3]), in order to enable the solution of larger prob-
lems, thanks toout-of-coreapproaches. Recent contributions by [13] and [14] for unipro-
cessor approaches pointed out that multifrontal methods may not fit well anout-of-core
context because large dense matrices have to be processed, that can represent a bottle-
neck for memory; therefore, they prefer left-looking approaches (or switching left-looking
approaches). However, in a parallel context, increasing the number of processors can help
keeping such large frontal matrices in-core. Note also thatanother type of approach is based
on virtual memory and system paging, that can be controlled by low level mechanisms [8]
in relation with the application and provide better performance than defaultLRU mecha-
nisms. However, such approaches are very closely related tothe operating system and are
not adapted when designing portable codes.? This work was done during an INRIA post-doctoral position at ENSEEIHT-IRIT, Toulouse, France



This paper is organized as follows. After a quick description of the memory management
in multifrontal methods (Section 2), we present in Section 3an approach to store the sparse
factorsL andU to disk. We will observe that this approach allows us to treatlarger prob-
lems with a given memory, or the same problem with less memory. In Section 3.4, both a
synchronous approach (writing factors to disk as soon as they are computed) and an asyn-
chronous approach (where factors are copied to a buffer and written to disk only when the
buffer is full) are analyzed, and compared to the in-core approach on a platform with a
large amount of memory. Finally, in order to process much larger problems, we present in
Section 4 simulation results where we suppose that the active memory of the solver is also
stored on the disk and study how the overall memory can further be reduced. This study
is the basis to identify the bottlenecks of our approach whenconfronted to arbitrarily large
problems.

2 Memory management in a parallel multifrontal method

In multifrontal methods, the task dependencies are represented by a so-called assembly tree
[6, 10], that is processed from bottom to top during the factorization. At each node of the
tree is associated a so-calledfrontal matrix, or front, and a task consisting in the partial
factorization of the frontal matrix. The partial factorization produces a Schur complement,
or contribution block, which will be used to update the frontal matrix of the parentnode
(see [2], for example, for more details). This leads to threeareas of storage, one for the fac-
tors, one for the contribution blocks, and another one for the current frontal matrix [2]. The
active memory (as opposed to the memory for the factors) thencorresponds to the sum of
the contribution blocks memory (or stack memory) and the memory for the current active
matrix. During the factorization process, the memory required for the factors always grows
while the stack memory that contains the contribution blocks varies: when the partial fac-
torization of a frontal matrix is performed, a contributionblock is stacked which increases
the size of the stack; on the other hand, when the frontal matrix of a parent is formed and
assembled, the contribution blocks of the children nodes can be discarded and the size of
the stack decreases4.
From the parallel point of view, the parallel multifrontal method as implemented inMUMPS
uses a combination of static and dynamic scheduling approaches. Indeed, a first partial
mapping is done statically (see [4]) to map some of the tasks to the processors. Then,
for parallel tasks corresponding to large frontal matricesof the assembly tree, a master
task is in charge of the elimination of the so-called fully summed rows, while dynamic
scheduling decisions are used to select the processors in charge of updating the rest of
the frontal matrix (see Figure 1). Those decisions are takento balance workload, possibly
under memory constraints (see [5]).

3 Out-of-core multifrontal approach

3.1 Preliminary study

In the multifrontal method, the factors produced during thefactorization step are not re-
used before the solution step. It then seems natural to first focus on writingthemto disk.

4 In parallel, the contribution blocks management may differ from a pure stack mechanism.



Thus, we present a preliminary study which aims at evaluating by how much the in-core
memory can be reduced by writing the factors to disk during the factorization. To do so,
we simulated anout-of-coretreatment of the factors: we free the corresponding memory
as soon as each factor is computed. Of course the solution step cannot be performed as
factors are definitively lost, but freeing them allowed to analyze real-life problems on a
wider range of processors (in this initial study).
We measure the size of the new peak of memory (which actually corresponds to theac-
tive memorypeak) and compare it to the one we would have with anin-core factorization
(i.e. the total memory peak). In a distributed memory environment, we are interested in
the maximum peak obtained over all the processors as this value represents the memory
bottleneck.
For a small number of processors, we observe that the active memory is much smaller
than the total memory. In other words, if factors are writtento disk as soon as they are
computed, only the active memory remainsin-coreand the memory requirements decrease
significantly (up to 80 % in the sequential case).
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Fig. 1. Example of the distribution of an as-
sembly tree over four processors.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  10  20  30  40  50  60  70

A
ct

iv
e 

m
em

or
y 

pe
ak

 / 
T

ot
al

 m
em

or
y 

pe
ak

 (
ra

tio
)

Number of processors

AUDIKW_1
CONESHL_MOD

CONV3D
ULTRASOUND80

Fig. 2.Ratio of active and total memory peak
on different number of processors for sev-
eral large problems (METIS is used as the re-
ordering technique).

On the other hand, when the number of processors increases, the peak of the active memory
decreases more slowly than the total memory as shown in Figure 2. For example, on 64
processors, the active memory peak reaches between 50 and 70percent of the peak of
total memory. In conclusion, on platforms with small numbers of processors, anout-of-
core treatment of the factors will allow us to process significantly bigger problems; the
implementation of such a mechanism is the object of Section 3.2. Nevertheless, either in
order to further reduce memory requirements on platforms with only a few processors or to
have significant memory savings on many processors, we may have to treat both the factors
and the active memory with anout-of-corescheme. This will be studied in Section 4.

3.2 Out-of-core management of the factors

The performance of I/O mechanisms are essential and impact directly the performance of
the whole application. Neither MPI-IO [16] (because files are not shared by processors



in our case) nor FG [7] (our I/O threads do not interfere with each other) match our pur-
pose. BothAIO, an asynchronous I/O mechanism optimized at the kernel level, and the
recent Fortran 2003 asynchronous I/O layer were not available on our target platform (see
Section 3.3). We finally used the standard C I/O routinesfread/fwriteand read/write (or
pread/pwritewhen available) which are known to be efficient low-level kernels.

In the synchronous I/O scheme, the factors are directly written with a synchronous scheme
using the standard I/O subroutines (eitherfread/fwriteor read/write). In the asynchronous
I/O scheme, we associate with each MPI process of our application an I/O thread in charge
of all the I/O operations. This allows us to overlap the time needed by I/O operations
with computations. The I/O thread is designed over the standard POSIX thread library
(pthread library). The communication and the synchronization between the computational
thread and the I/O thread are designed using semaphore mechanisms. The communication
scheme between the two threads is described in Figure 3. Eachtime an I/O operation has

Computational
 thread

I/O thread

Queue of 
waiting requests 

Queue of 
finished requests

Disk

Semaphore

I/O
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Fig. 3.Thread communication scheme.

to be performed, the computational thread posts an I/O request and inserts it into thequeue
of waiting requests. Concerning the I/O thread, it treats the I/O requests in thequeue of
waiting requestsusing a FIFO strategy. Once an I/O request is finished, it is inserted in the
queue of finished requestsby the I/O thread. The computation thread can then remove it
from this queue when checking for the completion of the request.

Together with the two I/O mechanisms described above, we designed a buffered I/O scheme
(that can be either synchronous or asynchronous). This approach relies on the fact that we
want to free the memory occupied by the factors as soon as possible without necessarily
waiting for the completion of the corresponding I/O. Thus, and in order to avoid a com-
plex memory management in a first approach, we added a buffer where factors are copied
before they are written to disk. The buffer is divided into two parts so that while an asyn-
chronous I/O operation is occurring on one part, factors that are being computed can be
stored in the other part (double buffer mechanism allowing the overlap of I/O operations
with computation).



3.3 Experimental environment

In order to study the impact of the proposed mechanisms, we now experiment with them
on several problems (see Table 1) extracted from either the PARASOL collection5 or com-
ing from other sources. The tests have been performed on the IBM SP system of IDRIS6

composed of several nodes of either 4 processors at 1.7 GHz or32 processors at 1.3 GHz.
On this machine, we have used from 1 to 128 processors with thefollowing memory con-
straints: we can access 1.3 GB per processor when asking for more than 128 processors,
3.5 GB per processor for 17-64 processors, 4 GB for 2-16 processors, and 16 GB on 1
processor.

Matrix Order NZ Type nnz(LjU) � 106 Description
AUDIKW 1 943695 39297771 SYM 1368.6 Automotive crankshaft model (PARASOL)
CONESHLmod 1262212 43007782 SYM 790.8 provided by SAMTECH; cone with shell and solid el-

ement connected by linear constraints with Lagrange
multiplier technique

CONV3D64 836550 12548250 UNS 2693.9 provided by CEA-CESTA; generated using AQUILON
(http://www.enscpb.fr/master/aquilon)

ULTRASOUND80 531441 330761161UNS 981.4 Propagation of 3D ultrasound waves, provided by M.
Sosonkina, larger than ULTRASOUND3

Table 1.Test problems.

By default, we used the METIS package [12] to reorder the matrices and thus limit the
number of operations and fill-in arising in the subsequent sparse factorization. The results
presented in the following sections have been obtained using the dynamic scheduling strat-
egy proposed in [5].
The I/O system used is theIBM GPFS [15] filesystem. With this filesystem it was not
possible to write files on disks local to the processors and some performance degradation
was observed when several processors write/read an amount of data simultaneously to/from
the filesystem: we observed a speed-down between 5 and 50 from2 to 64 processors when
each processor writes a block of 800 MBytes. Finally, it is important to note that we chose
to run on this platform because it allows us to run large problemsin-coreand thus compare
out-of-coreandin-coreapproaches (even if the behaviour of the filesystem is not optimal
for performance).

3.4 Experiments

First, we have been able to observe that for a small number of processors we use signif-
icantly less memory with theout-of-coreapproach: the total memory peak is replaced by
the active memory peak, with the improvement ratios of Figure 2. Thus the factorization
can be achieved on limited-memory machines.
We now focus on performance issues and report in Figure 4 a comparative study of the
in-corecase, the synchronousout-of-corescheme and the asynchronous buffered scheme,
when varying the number of processors.
Note that for the buffered case, the size of the I/O buffer is set to twice the size of the
largest factor block (to have a double buffer mechanism). Aswe can see, the performance

5 http://www.parallab.uib.no/parasol
6 Institut du D́eveloppement et des Ressources en Informatique Scientifique
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(a) AUDIKW 1.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  20  40  60  80  100  120  140

R
at

io
 O

O
C

 / 
IC

 fo
r 

fa
ct

or
iz

at
io

n 
st

ep

Number of processors

Asynchronous OOC / IC
Synchronous OOC / IC

(b) CONESHLMOD.
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(c) CONV3D64.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0  20  40  60  80  100  120  140

R
at

io
 O

O
C

 / 
IC

 fo
r 

fa
ct

or
iz

at
io

n 
st

ep

Number of processors

Asynchronous OOC / IC
Synchronous OOC / IC

(d) ULTRASOUND80.

Fig. 4. Execution times (normalized with respect to thein-core case) of the synchronous and asyn-
chronous I/O schemes.

of the out-of-coreschemes is indeed close to thein-core performance for the sequential
case (note that we were not successful in running the CONV3D64 matrix on 1 processor
even with theout-of-corescheme because the active memory requires more than 16 GB).
Theout-of-coreschemes are at most20% slower than thein-corecase while they need an
amount of memory that can be 80 percent smaller as shown in Figure 2 for one processor.
Concerning the parallel case, we observe that with the increase of the number of processors,
the gap between thein-core and theout-of-corecases increases. The main reason is the
performance degradation of the I/O with the number of processors that we mentioned at
the end of Section 3.3. In order to avoid this problem, we haveexperimented with the
smallest of our large test problems on a machine with local disks. In this case, we do not
have such a performance degradation, as shown in Figure 5; onthe contrary, theout-of-
coreschemes perform as well or even better than thein-coreone (cache effects resulting
from freeing the factors from main memory and using always the same memory area for
active frontal matrices). Finally, concerning the comparison of theout-of-coreschemes,
we can see that the asynchronous buffered approach performsbetter than the synchronous
one. However, it has to be noted that even in the synchronous scheme, the system allocates



data in memory that also allows to performI/O asynchronously, in a way that is hidden to
the application. Otherwise, the performance of the synchronous approach would be much
worse.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2  4  6  8  10  12  14  16

R
at

io
 O

O
C

 / 
IC

 fo
r 

fa
ct

or
iz

at
io

n 
st

ep

Number of processors

Asynchronous OOC / IC
Synchronous OOC / IC

Fig. 5. Performance of theout-of-core fac-
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We artificially decreased the size of the I/O buffer on the matrix CONESHL MOD on 32
processors (default size was 9.5 million reals for this matrix). We can see from Figure 6
that the factorization time decreases when the size of the buffer increases. Indeed, in our
strategy, the nodes that cannot fit into the buffer are written synchronously to disk, slowing
down the factorization. (Note that in all cases the size of the buffers ensures a sufficient
granularity for the performance of I/O.)
Concerning the solution phase, the size of the memory will generally not be large enough
to hold all the factors. Thus, factors have to be read from disk, and the I/O involved increase
significantly the time for solution. Note that we use a basic demand-driven scheme, relying
on the synchronous low-level I/O mechanisms from Section 3.2. We have observed that the
performance of theout-of-coresolution step is often more than 10 times slower than the
in-corecase. Although disk contention might be an issue on our main target platform in the
parallel case, the performance of the solution phase shouldnot be neglected; it becomes
critical in anout-of-corecontext and prefetching techniques in close relation with schedul-
ing issues have to be studied. This is the the object of current work by the MUMPS group
in the context of the PhD of Mila Slavova.

4 Simulation of an out-of-core stack memory management

In Section 3, we presented a firstout-of-coreapproach for the parallel multifrontal fac-
torization, consisting in writing factors to disk as soon aspossible. The results obtained
have shown the potential of the approach and how larger problems can be treated. However
this approach also has certain limitations and the stack memory now becomes the limit-
ing factor. Therefore, the next step is to manage the stack ofcontribution blocks with an



out-of-corescheme, where a contribution block may be written to disk as soon as it is pro-
duced, and read from disk when needed (either with a prefetching mechanism or with a
demand-driven scheme).
With the objective to assess the potential of such an approach, we perform in this section
simulations with various scenarios for the stack management:

– All-CB out-of-core stack memory. In this scheme, we suppose that during the as-
sembly step of an active frontal matrix, all the contribution blocks corresponding to its
children have been prefetched in memory. Thus, the assemblystep is processed as in
the in-corecase.

– One-CB out-of-core stack memory. In this scheme, we suppose that during the as-
sembly step of an active frontal matrix, only one contribution block corresponding to
one of its children is loaded in memory, while the others stayon disk. Thus we inter-
leave the assembly steps with I/O operations.

– Only-Parent out-of-core stack memory. In this scheme, we suppose that during
the assembly step of an active frontal matrix, no contribution block is loaded in mem-
ory. Thus, the assembly step is done in anout-of-coreway. Note that the implementa-
tion of such a strategy will not be efficient at all since the assembly steps are not very
costly and there is no way to overlap I/O operations with computations. This strategy
corresponds to an ideal scenario concerning the size of the in-core memory.

Note that for the three scenarios, we suppose that a contribution block is written to disk as
soon as it is computed. In addition, we assume that all the active frontal matrices remain in
memory until the end of their factorization.
Results and discussion.Although we experimented with several matrices, we only illus-
trate in Figure 7 the memory behaviour using the differentout-of-corememory manage-
ment strategies andin-corecase for two test problems on different numbers of processors.
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Fig. 7. Memory behaviour with different memory management strategies on different numbers of
processors for two large problems (METIS is used as reordering technique).

As expected, we see that the strategies for managing the stack out-of-coreprovide a re-
duced memory requirement. We also observe that theOnly-Parent out-of-corestack



memory management is the one that best decreases the memory needed by the factoriza-
tion. Although this strategy might not be good for performance, it is here to provide some
insight on the best we can do with our assumptions and with thecurrent version of the
code. One interesting phenomenon we observed is that theout-of-corestack memory man-
agement strategies give better results with symmetric matrices (see Figure 7(a)) than with
unsymmetric ones (see Figure 7(b)). For unsymmetric matrices and on large numbers of
processors, the bottleneck is very often due to the treatment of master tasks (holding the
variables that need to be factored when the frontal matrix isparallelized) that are bigger
for unsymmetric matrices (see [3]). Since we prefer to keep these tasks in core, a variant
of the splitting algorithm of [3] could be applied in a parallel context, to limit the size of
those tasks. In addition, we have observed that with our assumption that an active frontal
matrix (or part of it if it is distributed over several processors) has to stay in memory while
being factored, it would be beneficial to reduce as much as possible the number of simulta-
neous active tasks on a processor. This can be done by modifying the scheduling strategies
currently existing in the parallel multifrontal method.
These results illustrate that theOne-CB approach could be a good way to design anout-of-
corestack memory management strategy with reasonable performance. With the modifica-
tions discussed above to further decrease the memory peaks,it seems that the intrinsic limits
of the sequential multifrontal method become much less critical thanks to parallelism.

5 Future work

We presented in this paper a first implementation of anout-of-coreextension of the parallel
multifrontal solverMUMPS. The selected approach was to drop factors from memory as
soon as they are computed and to overlap the I/O operations asmuch as possible with
computations. We illustrated the good behaviour of this approach on a small number of
processors and its limitations on larger ones, while first experiments on machines with local
I/O showed no significant I/O overhead during the factorization. Nevertheless we noticed
that low-levelI/O mechanisms have to be designed with care as the system is not tuned to
I/O-intensive and large memory applications.
One key point that must be studied is the design of efficientout-of-corestack memory man-
agement schemes based on the results presented in Section 4.In this context, the contribu-
tion blocks can be considered as read-once/write-once dataaccessed with a near-to-stack
mechanism (for the parallel case the accesses are more irregular). With asynchronous I/O,
prefetching algorithms have to be designed. In addition, the number of contribution blocks
(for the parallel case) that a processor has in memory is closely related to the scheduling
decisions made; both the static and dynamic aspects of scheduling could limit the I/O vol-
ume that each processor has to perform and drive some dynamicdecisions with the data
that are available in memory (for example, give a priority totasks that depend on/consume
contribution blocks already in memory).
In order to treat larger problems where both the factors and the stack memory areout-of-
core, we have to determine more accurately which type of tasks areresponsible for the peak
of memory and then to limit their size and/or the number of such tasks that are active at the
same time. We have already identified some critical cases in Section 4 and should now mod-
ify our algorithms when memory usage becomes a strong priority. Furthermore, adapting
the techniques described in [11] could further reduce the stack memory requirements.



We believe that in a parallel context, this study shows that there is still room before reaching
intrinsic memory limits of multifrontal methods. Althoughit is true that large frontal matri-
ces can be problematic in sequential (need for an out-of-core assembly and factorization),
this is less the case in a parallel environment.
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