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Abstract. We discuss a parallel algorithm for the solution of large-scale
generalized algebraic Riccati equations with dimension up to O(105). We
survey the numerical algorithms underlying the implementation of the
method, in particular, a Newton-type iterative solver for the generalized
Riccati equation and an LR-ADI solver for the generalized Lyapunov
equation. Experimental results on a cluster of Intel Xeon processors il-
lustrate the benefits of our approach.
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1 Introduction

Consider the (generalized) algebraic Riccati equation (ARE)

0 = AT XE + ET XA − ET XBR−1BT XE + CT QC =: R(X), (1)

where A, E ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, R ∈ R

m×m is symmetric posi-
tive definite, and Q ∈ R

p×p is symmetric positive semidefinite. Under certain
conditions, the ARE (1) has a unique symmetric positive semidefinite solution
X ∈ R

n×n [17, 19]. This particular solution is usually required in applications.
Solving the ARE (1) is the key step in many computational methods for

model reduction, filtering, and controller design of dynamical linear systems (see,
among many, [10, 13–15,19, 20, 24] and the references therein). In general, numer-
ical methods for solving AREs have a computational cost of O(n3) floating-point
arithmetic operations (flops) and require storage for O(n2) numbers [17, 19, 24].
While current desktop computers provide enough computational power to solve
problems with state-space dimension n in the hundreds using libraries such as
SLICOT (http://www.slicot.org) or the Matlab control-related toolboxes,
large-scale applications clearly require the use of advanced computing techniques.

Over the last few years we have developed a library of parallel algorithms for
the solution of (dense) AREs on parallel architectures [6]. The library, PLiCOC,
employs the kernels in LAPACK, BLAS, and ScaLAPACK [3, 8], enabling the
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solution of equations with n in the order of a few thousands. However, this
approach is still insufficient for very large-scale AREs arising in weather forecast,
circuit simulation, VLSI chip design, and air quality simulation, among others
(see, e.g., [4, 9, 11, 12]). Dynamical systems leading to AREs with dimension n
as high as O(104)−O(105) and sparse matrix pairs (A, E) are common in these
applications.

In this paper we consider a different method that exploits the sparse structure
of the matrix pair (A, E) in (1), and thus allows the solution of much larger
AREs. (Throughout the paper the term “sparse” will refer to both unstructured
sparse matrices and structured ones, such as banded matrices.) The codes employ
the parallel kernels in ScaLAPACK [8]. Depending on the specific structure of
A and E, the (unstructured) sparse linear system solvers in MUMPS [2] or the
banded linear system solver in ScaLAPACK are also employed.

The rest of the paper is structured as follows. In Section 2 we review a spe-
cialized formulation of Newton’s iterative method for the solution of large-scale
sparse AREs. The major computational task in this method is the solution of
a large-scale sparse (generalized) Lyapunov equation. A variant of the iterative
Lyapunov solver introduced in [18, 22], based on a low-rank alternating direc-
tion implicit (LR-ADI) method, is then summarized in Section 3. Following the
description of the numerical methods, in Section 4 we offer some details on the
parallelization of the corresponding algorithms. In Section 5, experiments on a
cluster of Intel Xeon processors report the potential of the ARE solver. Finally,
we give some concluding remarks in Section 6.

2 Newton’s method for the ARE

In this section we review a variant of Newton’s method, described in [23], which
delivers a full-rank approximation of the solution of large-scale sparse AREs.
Here we focus on the implementation details relevant to an efficient (parallel)
implementation.

Starting from an initial solution X0, Newton’s method for the ARE [16]
proceeds as follows:

Newton’s method

1) Compute the Cholesky factorization Q = Q̄Q̄T

2) Compute the Cholesky factorization R = R̄R̄T

3) C̄ := Q̄T C
4) B̄ := E−1BR−1 = ((E−1B)R̄−T )R̄−1

repeat with j := 0, 1, 2, . . .
5) Kj := ET XjBR−1 = ET XjEB̄

6) Ĉj :=

[

C̄
R̄T KT

j

]

7) Solve for Xj+1:

0 = (A − BKT
j )T Xj+1E + ET Xj+1(A − BKT

j ) + ĈT
j Ĉj

until ‖Xj − Xj−1‖ < τ‖Xj‖



Parallel Solution of Large and Sparse generalized Riccati Equations 3

Provided (A − BR−1BT X0, E) is a stable matrix pair (i.e., all its eigenval-
ues lie on the open left half plane), this iteration converges quadratically to
the desired symmetric positive semidefinite solution of the ARE [16], X∞ =
limj→∞ Xj. In practice, (A, E) is often a stable matrix pair, so that setting
X0 := 0 is enough to guarantee the convergence of the iteration. Thus, no glob-
alization strategy is required to guarantee convergence. Note that a line search
procedure in [7] can be used to accelerate initial convergence, though.

In real large-scale applications, m, p ≪ n, and both A and E are sparse, but
the solution matrix X is in general dense and, therefore, impossible to construct
explicitly. However, X is often of low-numerical rank and thus can be approxi-
mated by a full-rank factor R̂ ∈ R

n×r, with r ≪ n, such that R̂R̂T ≈ X . The
method described next aims at computing this “narrow” factor R̂ instead of the
explicit solution.

2.1 Exploiting the rank-deficiency of the solution

Let us review how to modify Newton’s method in order to avoid explicit refer-
ences to Xj. Note that all but one of the computations in Steps 1–4 of Newton’s
method involve matrices of small dimensions and therefore can be performed
employing dense linear algebra kernels even if the matrices are sparse. In partic-
ular, the cost of the two Cholesky factorizations in Steps 1 and 2 is m3/3+ p3/3
flops, and obtaining C̄ ∈ R

p×n from there in Step 3 requires n2p additional flops.
On the other hand, computing B̄ ∈ R

n×m in Step 4 requires 2m2n flops plus
the cost of solving the system E−1B. The cost of this latter operation (via, e.g.,
a direct method) strongly depends on the sparsity degree and pattern of the
coefficient matrix E, and the solver that is employed. For unstructured sparse
matrices, this cost is difficult to determine a priori.

Assume for the moment that, at the beginning of the iteration, we maintain
R̂j ∈ R

n×rj such that E−T R̂jR̂
T
j E−1 = Xj . Then, in the first step of the

iteration, we can compute Kj as

Kj := ET XjEB̄ = R̂j(R̂
T
j B̄),

which initially requires a (dense) matrix product, M := R̂T
j B̄, at a cost of 2rjmn

flops, and then a (dense) matrix product, R̂jM , with the same cost. Even for
large-scale problems, as m is usually a small order constant, this represents at
most a quadratic cost. In practice, rj usually remains a small value during the
iteration so that this cost becomes as low as linear.

The matrix product R̄T KT
j needed in the second step of the iteration for the

construction of Ĉj presents only a moderate cost, 2m2n flops, and therefore does
not require any special action.

The key of this approach lies in solving the Lyapunov equation in the third
step for a full-rank factor R̂j+1, such that E−T R̂j+1R̂

T
j+1E

−1 = Xj+1. We de-
scribe how to do so in the next section.
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3 Low Rank Solution of Lyapunov Equations

In this section we introduce a generalization of the Lyapunov solver proposed
in [18, 22], based on the cyclic low-rank alternating direction implicit (LR-ADI)
iteration.

Consider the Lyapunov equation to be solved at each iteration of Newton’s
method

0 = (A − BKT )T Y E + ET Y (A − BKT ) + ĈT Ĉ, (2)

where, for simplicity, we drop all subindices in the expression. Here, A, E ∈
R

n×n, B, K ∈ R
n×m, and Ĉ ∈ R

(p+m)×n. Recall that we are interested in
finding a full-rank factor S ∈ R

n×s, with s ≪ n, such that SST ≈ Y . Then, in
the jth iteration of Newton’s method, R̂j := S and rj := s.

A generalization of the LR-ADI iteration, tailored for equation (2), can be
formulated as follows:

LR-ADI iteration

1) V0 := ((A − BKT )T + σ1E
T )−1ĈT

2) S0 :=
√−2 α1 V0

repeat with l := 0, 1, 2, . . .
3) Vl+1 := Vl − δl((A − BKT )T + σl+1E

T )−1Vl

4) Sl+1 := [Sl , γlVl+1]
until ‖γlVl‖1 < τ‖Sl‖1

In the iteration, {σ1, σ2, . . .}, σl = αl + βl , is a cyclic set of (possibly com-
plex) shift parameters (that is, σl = σl+t for a given period t), γl =

√

αl+1/αl,
and δl = σl+1 + σl, with σl the conjugate of σl. The convergence rate of the
LR-ADI iteration strongly depends on the selection of the shift parameters and
is super-linear at best [18, 22, 26].

At each iteration the column dimension of Sl+1 is increased by (p + m)
columns with respect to that of Sl so that, after l̄ iterations, Sl̄ ∈ R

n×l̄(p+m).
For details on a practical criterion to stop the iteration, see [5, 22]. Note that the
LR-ADI iteration does not guarantee full colum rank of the Sl. This could be
achieved using a column compression based on a rank-revealing LQ factorization.
As the full-rank property is irrelevant for the approximation quality, we will not
discuss this any further. Possible positive effects on the efficiency of the algorithm
will be reported elsewhere.

From the computational view point, the iteration only requires the solution
of linear systems of the form

((A − BKT )T + σET )V = W ⇔ ((A + σE) − BKT )T V = W, (3)

for V . Now, even if A and E are sparse (and therefore, so is Ā := A + σE), the
coefficient matrix of this linear system is not necessarily sparse. Nevertheless,
we can still exploit the sparsity of A, E by relying on the Sherman-Morrison-
Woodbury (SMW) formula

(Ā − BKT )−1 = Ā−1 + Ā−1B(Im − KT Ā−1B)−1KT Ā−1.

Specifically, the solution V of (3) can be obtained following the next five steps:



Parallel Solution of Large and Sparse generalized Riccati Equations 5

SMW formula

1) V := Ā−T W
2) T := Ā−T K
3) F := Im − BT T
4) T := TF−1

5) V := V + T (BT V )

Steps 1 and 2 require the solution of two linear systems with sparse coefficient
matrix Ā. The use of direct solvers is recommended here as iterations l and
l + t of the LR-ADI method share the same coefficient matrices for the linear
system. The remaining three steps operate with dense matrices of small-order;
specifically, F ∈ R

m×m, T ∈ R
n×m so that Steps 3, 4, and 5 only require 2m2n,

2m3/3 + m2n, and 4mn(m + p) flops, respectively.

4 Parallel Implementation

The numerical algorithms described in the previous two sections for Newton’s
method and the LR-ADI iteration are composed of a few dense linear algebra
operations (Cholesky factorizations, matrix products, and linear systems) in-
volving dense matrices of relatively small order, and the solution of sparse linear
systems (via direct methods) with large-scale coefficient matrices.

Our approach for dealing with these matrix operations is based on the use
of existing parallel linear algebra and communication libraries. In Fig. 1 we
illustrate the multilayered architecture of libraries employed by our ARE solver
included in SpaRed (a parallel library for model reduction of large-scale sparse
linear systems; http://www.pscom.uji.es/modred/SpaRedW3/SpaRed.html).

The solver employs the parallel kernels in ScaLAPACK. Depending on the
structure of the state matrix pair (A, E) the banded linear system solver in
ScaLAPACK or the sparse linear system solvers in MUMPS are also invoked.
Table 1 lists the specific routines employed for each one of the major operations in
the algorithm. In the table we do not include the operations required to compute
the shift parameters for the LR-ADI iteration as that part of the algorithm was
not described. The shifts are currently obtained using an Arnoldi-type iteration.
The implementation employs PARPACK, and requires the solution of sparse
linear systems and the sparse matrix-vector product. For the first operation,
depending on the structure of the coefficient matrix we again use ScaLAPACK
or MUMPS. The sparse matrix-vector product is parallelized as a sequence of
dot products with the matrix cyclically distributed by rows.

5 Experimental Results

All the experiments presented in this section were performed on a cluster of np =
16 nodes using ieee double-precision floating-point arithmetic (ε ≈ 2.2204 ×
10−16). Each node consists of an Intel Xeon processor@2.4 GHz with 1 GByte of
RAM. We employ a BLAS library specially tuned for this processor that achieves
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Newton’s method

Step Operation Structure of Parallel Routine
matrices library

1 Factorize Q All dense ScaLAPACK p potrf

2 Factorize R All dense ScaLAPACK p potrf

3 Compute Q̄T C All dense PBLAS p gemm

4.1 Solve E−1B Sparse E/ MUMPS or mumps c or
dense (BR−1) ScaLAPACK p gbsv

4.2 Solve ((E−1B)R̄−T )R̄−1 All dense PBLAS p trsm×2

5 Compute R̂j(R̂
T
j B̄) All dense PBLAS p gemm×2

6 Compute R̄T KT
j All dense PBLAS p gemm

7 Solve Lyapunov eq. Sparse E, A/ SpaRed LR-ADI iter.
dense B, Kj

LR-ADI iteration

Step Operation Structure of Parallel Routine
matrices library

1 Compute V0 Sparse E, A/ SpaRed SMW formula

dense B, K, Ĉ

3 Compute Vl+1 Sparse E, A/ SpaRed SMW formula
dense B, K, Vl

SMW formula

Step Operation Structure of Parallel Routine
matrices library

1 Solve Ā−T W Sparse Ā/ MUMPS or mumps c

dense W ScaLAPACK p gbsv

2 Solve Ā−T K Sparse Ā/ MUMPS or mumps c

dense K ScaLAPACK p gbsv

3 Compute Im − BT T All dense PBLAS p gemm

4 Solve TF−1 All dense ScaLAPACK p gesv

5 Compute V + T (BT V ) All dense PBLAS p gemm×2

Table 1. Parallelization of the major matrix operations that appear in the ARE solver.
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MUMPS

ScaLAPACK
PBLAS

Parallel model reduction

linear algebra libraries

library

linear algebra libraries
Parallel dense/banded

MPI LAPACK
BLAS

Communication and dense/banded

SpaRed

PARPACK Sparse linear algebra

Fig. 1. Multilayered architecture of the ARE solver.

around 3800 MFLOPs (millions of flops per second) for the matrix product
(routine DGEMM from Goto BLAS, http://www.tacc.utexas.edu/resources/
software/). The nodes are connected via a Myrinet multistage network and the
MPI communication library is specially developed and tuned for this network.
The performance of the interconnection network was measured by a simple loop-
back message transfer resulting in a latency of 18 µsec. and a bandwidth of 1.4
Gbit/s.

In order to evaluate the performance of our ARE solvers we employ two
different examples:

Example 1. This standard system is obtained from a finite difference dis-
cretization (with equidistant grid) of a 2-D heat equation. The dimension
of the system is given by the number of grid points, n0, in one direction,
so that n = n2

0. The system is single-input, single-output (SISO); that is,
m = p = 1.

Example 2. This model arises in a manufacturing method for steel profiles [21,
25]. The goal is to design a control that achieves moderate temperature gra-
dients when the rail is cooled down. The mathematical model corresponds
to the boundary control for a 2-D heat equation. A finite element discretiza-
tion, followed by adaptive refinement via bisection results in a generalized
systems of order n=79841 with 7 inputs and 6 outputs.

In both examples we employ weight matrices Q = Ip and R = Im.
We next report the execution times of the sparse ARE solver in Table 2 using

np = 16 processing nodes. For ScaLAPACK a logical 4×4 grid was selected with
the distribution block size equal 32. Other logical topologies/block sizes did not
offer significative differences. A modest number of shifts is used for the LR-ADI
iteration due to the need of storing the LU factors in the current implementa-
tion of the algorithm. We could overcome this restriction by recomputing the
factorization at each iteration. However, doing so would produce a notable raise
in the execution time. A different approach would be that of maintaining the
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factors stored on disk. The LR-ADI iteration was stopped after 100 iterations
for Example 2. Although more iterations were strictly necessary according to
the convergence criterion employed for the LR-ADI iteration, stopping the iter-
ation at this point for this particular example guaranteed Newton’s method to
converge to the desired stabilizing solution of the equation.

n #iter. #shifts Avg. #iter. r Ex. time
Newton LR-ADI LR-ADI

Example 1 160000 11 10 80 160 1h 25m 5s

Example 2 79841 5 20 100 1300 1h 4m 30s

Table 2. Execution times of the ARE solver on np=16 nodes.

The parallel performance of the ARE solver is highly dependent on the ef-
ficacy of the underlying parallel sparse linear system solver and the sparsity
pattern of the matrix pair (A, E). Due to the problem dimensions and structure,
the number of shifts selected for each example, the numerical tools that were
employed (MUMPS for the solution of the sparse linear systems in both cases),
and the specifications of the hardware resources (1 Gbyte of RAM per node),
virtual memory was required to solve the problems using less than np=16 nodes;
in those cases where the problem could still be solved using storage on disk, I/O
resulted in much larger execution times.

6 Concluding Remarks

We have presented a solver for large-scale generalized algebraic Riccati equations
with sparse matrix pair (A, E). The method involves the solution of large-scale
linear systems, with sparse coefficient matrix, and well-known dense linear alge-
bra operations on small-scale matrices. These operations are available in parallel
linear algebra libraries such as ScaLAPACK, PLAPACK, MUMPS, SuperLU,
etc. The experimental results on a cluster of moderate dimensions illustrates
a parallel efficacy that enables the solution of equations with dimension up to
O(105) in a relatively short time. Using these parallel algorithms, the solution of
large-scale optimal control problems and model reduction of large-scale systems
via relative error methods become thus feasible.
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