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Abstract. This paper presents new techniques for master-slave tasking on tree-
shaped networks with fully heterogeneous communication and processing re-
sources. A large number of independent, equal-sized tasks are distributed from
the master node to the slave nodes for processing and return of result files. The
network links present bandwidth asymmetry, i.e. the send and receive bandwidths
of a link may be different. The nodes can overlap computationwith at most one
send and one receive operation. A centralized algorithm that maximizes the plat-
form throughput under static conditions is presented. Thereafter, we propose sev-
eral distributed heuristics making scheduling decisions based on information es-
timated locally. Extensive simulations demonstrate that distributed heuristics are
better suited to cope with dynamic environments, but also compete well with
centralized heuristics in static environments.

1 Introduction

In this paper, we consider the allocation of a large number ofindependent equal-sized
tasks onto a tree platform. We concentrate on tree-shaped platforms since they represent
a natural framework for master slave tasking. More importantly, administrative organi-
zations often rely on tree-shaped networks to interconnectcomputing resources [1].
Initially, the root of the tree (master node) holds a large bunch of tasks. Those tasks
will be either processed by the master node or transmitted toits child nodes (also called
slave nodes). Then, in turn, the child nodes face the same allocation problem (either
processing the tasks locally or forwarding them to their child nodes). We consider the
case where slave processors need to send back a file of resultsafter processing each
task. Even if this is the most natural situation, it is worth noting that most of the papers
on independent tasks scheduling or Divisible Load Theory (DLT) do not consider those
return communications. Targeted platforms are fully heterogeneous, i.e. both the pro-
cessing resources and the communication resources have different capacities in terms
of processing power and bandwidth. Moreover, the network links present bandwidth
asymmetry in the sense that the bandwidth for sending tasks down the tree may be
different from the bandwidth for returning results up the tree.

We concentrate on the influence of dynamic resource characteristics on the allo-
cation scheme. In shared and unstable environments such as grids and peer to peer
systems, the performance of the resources may well change during the execution of
the whole process. In this context, it is not realistic to assume that one of the nodes
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knows at any time step the exact performance of all resourcesand is able to make
optimal scheduling decisions [1]. Therefore, the main question consists in determin-
ing whether the allocation scheme can make use of some staticknowledge about the
platform (for instance, the optimal solution computed froman initial snapshot of the
platform), or whether we need to rely on fully dynamic scheduling schemes. In order
to answer this question, we first derive optimal scheduling algorithms (with respect to
throughput maximization). Then we present several heuristics. Some of them make their
scheduling decisions using the optimal scheduling policy,computed using a snapshot of
resource performance characteristics. Those heuristics may lead to optimal scheduling
decisions in static environments. On the other hand, we propose a set of fully dynamic
allocation heuristics that make their scheduling decisions only according to information
measurable locally. Those heuristics may give poor resultsin static environments, but
their performances are expected to be more robust in dynamicenvironments. We com-
pare all those heuristics through extensive simulations using the SimGrid toolkit [2].
We rely on simulations rather than direct experiments in order to make a fair compar-
ison between proposed heuristics. Indeed, simulation enables running of the different
tests on computing platforms having exactly the same dynamic behavior. Moreover,
SimGrid enables to define the trace of performance data over time for each processing
or communication resource. Therefore, it is possible to compute (off-line) the optimal
solution at any given time step and it is therefore possible to compare the performances
of the different heuristics between them and against the optimal ideal solution.

The rest of the paper is organized as follows. Section 2 is devoted to a survey of
related work, both DLT studies, independent tasks scheduling and on dynamic schedul-
ing. Then, we present our platform model in Section 3 and how to find the optimal
solution, in presence of return messages, in Section 4. Section 5 states the main Theo-
rem of this paper, which provides a mean to optimize the nodesbandwidth utilization.
Section 6 presents a task-flow control mechanism that regulates the amount of tasks
and results buffered by the nodes throughout the execution.The set of centralized and
distributed heuristics are described in Section 7. The methodology and results of the
simulations are discussed in Section 8. Finally, we give some remarks and conclusions
in Section 9. Due to space limitation, many of the technical details have been omitted,
but can be found in the extended version of this paper [3].

2 Related Work

The problem of master-slave tasking on heterogeneous tree platforms has already been
widely studied, both in the context of Divisible Load Theory(DLT) and independent
tasks scheduling. A divisible load is a perfect parallel task that can be arbitrarily split
and allocated to slave processors, without processing overhead. The overall load is first
split at the master node in order to minimize the total execution time. Tasks are dis-
tributed in one round to the slaves, so that the master node makes the decisions about
the set of slaves to be used, the amount of data to be sent to each slave, and the commu-
nication ordering [4–6]. When return messages are taken into account, two permutations
must then be determined (one for tasks distribution and one for results collection) [7,8].
Although the complexity of this problem is still open, Rosenberg et al. [9] proved that
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in the case of a homogeneous single-level tree, the optimal schedule for both outgoing
and incoming messages can be determined, and the optimal LIFO and FIFO orderings
are given in [10] for heterogeneous single-level trees.

On the other hand, when considering independent tasks scheduling, the master node
faces the allocation problem for each task and the communications with its child nodes
may well be split into several rounds [11–13]. Recently research studies have focused
on steady-state scheduling, i.e. throughput maximization[11, 14, 15]. The steady-state
scheduling approach has been pioneered by Bertsimas and Gamarnik [16] who con-
sidered packet routing and proposed to concentrate first on resource occupation rather
than scheduling. The optimal solution for resource occupation, given link capacities,
is obtained via a linear program. Then, an algorithm based onsuper-steps is proposed
for building the actual schedule of packets. This idea has been adapted in [14] to the
distribution of independent tasks on static platforms. Results collection was not consid-
ered in [14], but the linear program presented in Section 4 isa direct adaptation of the
solution proposed in [14].

Dynamic scheduling of independent tasks has not been widelystudied. Recently,
Hong et al. [1, 15, 17] proposed a very nice algorithm, based on decentralized versions
of flow algorithms. It is worth noting that this algorithm assumes a strongly different
communication model than the one presented in this paper, and consequently cannot be
easily adapted to our model. Here again, the results collection has not been considered.

3 Platform model

The model considered in this paper is based on the model proposed in [14] that we
augment by introducing communication weights for returning computation results back
to the master. Processing nodes are assumed to be connected via a node-weighted edge-
weighted treeT = (V, E, w, c, c′) as depicted in Figure 1.

Each nodePi ∈ V represents a com-
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puting resource of weightwi, meaning that
nodePi requireswi units of time to pro-
cess one task. Each edge corresponds to a
communicating resource and is weighted
by two values:ci which represents the time
needed by a parent node to send one task
to its child Pi, and c′i which represents
the time needed by the childPi to send
one result back to its parent. All thewi’s
are assumed to be positive rational num-
bers since they represent node processing
times. We disallowwi = 0 since it would permit nodePi to perform an infinite number
of tasks. Similarly, we assume that allci’s andc′i’s are positive rational numbers since
they correspond to the communication times between two processors. A node can per-
form three kinds of activity simultaneously: (i) it can process a task, (ii) it can receive
a task file from its parent or a result file from one of its children, and (iii) it can send a
result file to its parent or a task file to one of its children. This model is known under
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the namefull overlap, bidirectional-single-portmodel [11,14]. At any given time-step,
a node may overlap computation with only two connections, one for incoming commu-
nications and one for outgoing communications. Computation and communication are
assumed to be atomic operations, i.e. once initiated they cannot be preempted. Finally
the communication model works in a store-and-forward fashion.

4 Maximizing the Throughput

Given the resources of a weighted treeT operating under thefull overlap, bidirectional-
single-portmodel, we aim at maximizing the number of tasks processed pertime unit.
Let Ci denote the set ofPi’s children. During one time unit, letαi be the fractional
number of tasks processed byPi, andβi be the fractional number of tasks received byPi

from its parent. Equivalently,αi andβi correspond respectively to the fractional number
of results produced byPi, and to the fractional number of results sent byPi to its
parent. The optimal throughput is obtained by solving the following linear programming
problem (LPP), whose objective function is to maximize the number of tasks processed
per time unit.

Maximize ntask(T ) =
∑

i αi

subject to






















∀i, 0 ≤ αi ≤
1

wi

∀i 6= m, 0 ≤ βi

∀i 6= m, βi = αi +
∑

j∈Ci
βj

∀i,
∑

j∈Ci
cjβj + c′iβi ≤ 1

∀i,
∑

j∈Ci
c′jβj + ciβi ≤ 1

The first set of constraints states that computation resources are limited. The second
set of constraints confines the variablesβi within non-negative values. Note that the
masterPm does not have a parent, so that we letβm = 0. The third set of constraints
deals withconservation laws. For each nodePi (except the master), the number of tasks
received byPi, should be equal to the number of tasks thatPi processes locally, plus
the number of tasks forwarded to the children ofPi. Equivalently, the number of results
sent byPi to its parent, should be equal to the number of results produced locally by
Pi, plus the number of results received from its children. The last constraints account
for the single-port model. The send and receive operations performed by the nodes are
assumed to be sequential.

Since we are looking for a solution of the LPP into rational numbers, optimal ratio-
nal values for all variables can be obtained in polynomial time. However, the solution
of the above LPP is in general not unique and some solutions might be more interesting
than others in our context. In particular,compactsolutions, i.e. that utilize nodes close
to the root in priority, are more preferable thanstretchedsolutions (that utilize nodes far
away from the root). Indeed, start-up time (required to enter the steady-state) and wind-
down time (required to gather the last results to the root) will be longer for stretched
solutions than for compact ones. In order to obtain compact solutions, we first need to
solve the initial LPP to derive the optimal throughputntask(T ) of the tree. The objec-
tive function of the second LPP becomes the minimization of all the communications,
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under the aforementioned constraints plus an additional one that states the conserva-
tion of the optimal throughput obtained by the former LPP. Minimizing the amount of
communications while maintaining the optimal number of tasks processed implicitly
enforces compact solutions. We hence add the following constraint:

∑

αi = ntask(T ).
And the objective function of the second LPP becomes:Minimize

∑

i βi. Once a so-
lution has been obtained, one needs to construct a schedule that (i) ensures that the
optimal throughput is achieved and (ii) exhibits a correct orchestration of communica-
tion events, i.e. where simultaneous communications involve disjoint pairs of senders
and receivers. We can obtain a time periodΓ by taking the least common multiple (lcm)
of all the denominators of the variablesαi. Then, the integer number of tasksγi that
must be communicated toPi during each time periodΓ is obtained byγi = βiΓ .

Proposition 1. Sending and receiving files by bunches ofγi in a round robin fashion
generates an optimal steady-state schedule where single-port constraints are satisfied.

Proof. The proof is done by induction overh, the height of the tree T [3].

Initially, nodes do not dispose of tasks nor results buffered locally to comply with
Proposition 1. Therefore an initialization phase must takeplace before entering steady-
state. During start-up, nodes will act as if they were in steady-state, at the difference that
fake results will be sent to the parents if not enough resultsare available. Thus, tasks
will be propagated down the tree, while fake results will be propagated up the tree. The
fake results received by parents nodes are simply discarded. Once the first bunch of
results processed by all the deepest nodes used in the schedule have been transmitted to
the root node, then steady-state has been reached.

5 Bandwidth Optimization

A simple scheduling principle is presented in [14] when returning results is neglected.
This scheduling algorithm was termedbandwidth-centricbecause priorities do not de-
pend on the children processing capabilities, but only on their communication capa-
bilities. The bandwidth-centric principle is extended to our problem as follows. First,
observe that for each task that a nodePi delegates to a childPj , Pi must first receive
the task from its parent, then forward it toPj , receive the associated result back, and
finally send the result to its parent. Consequently,Pi will spendxj = cj + c′i time units
sending data, andyj = c′j + ci time units receiving data. Since the masterPm does
not have a parent, we letxm = cm andym = c′m. The bandwidth utilization of a node
Pi can be sketched within the Cartesian plane, where the X and Y axes represent the
time spent in emission and reception respectively. Hence, allocating a task to childPj

corresponds to a displacement in the Cartesian plane along vectorvj of components
(xj , yj).

Theorem 1. In steady-state, the bandwidth utilization of a parent nodeis optimized
when using at most 2 children (if processing capabilities are not taken into account).

Proof. The proof is done by induction overn, the number of children that are utilized by
a parent in addition to the two nodes mentioned in Theorem 1. Consider the case where
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n = 1, i.e. when a parent delegatesα1, α2 andα3 tasks per time unit to three children
P1, P2 andP3 respectively (see Figure 2). DisplacementsOA1, A1A2 andA2A3 stand
for delegatingα1, α2 andα3 tasks to the childrenP1, P2 andP3 respectively.

Consider the triangleA1A2P where the dis-
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placementsA1P and PA2 amount to allocate
j1 andj3 tasks toP1 andP3 respectively. Con-
sider now both quantities(j1 + j3) andα2. If
(j1+j3) ≥ α2, it means that it is more profitable
to spend the bandwidth time assigned toP2 by
allocating more tasks toP1 andP3. As a conse-
quence,P2 should not be used. But if(j1+j3) <

α2, then consider the triangleORA1, where the
displacementsOR andA1R amount to allocate
k2 andk3 tasks toP2 andP3 respectively. Since
both trianglesA1A2P andORA1 are equal (since
their internal angles are equal), if(j1 + j3) < α2

then (α1 + k3) < k2. In that case, it becomes
more profitable to assignk2 tasks toP2 instead
of α1 tasks toP1 and j3 tasks toP3, andP1 should not be used. Assume now that
Theorem 1 is true for rankn, and let us prove that it holds also for rankn + 1. Con-
sider a parent utilizingn + 3 children. Extract3 of then + 3 children and apply the
aforementioned geometric transformation. One then utilizes onlyn+2 children without
degrading the initial throughput. ⊓⊔

Theorem 1 assumes that nodes can provide as much computing power as necessary
which contravenes the fact that computing resources are limited. Nonetheless, it allows
identifying the way to optimize the bandwidth of any nodePi in using at most two
children. Furthermore, we show in [3] that if such a pair of children exists, then the
emission and reception bandwidth ofPi are equally utilized.

6 Task-Flow Control

In order to regulate the number of tasks and results that nodes are allowed to buffer lo-
cally throughout the execution, a threshold valueθi is introduced for each nodePi, i 6=
m. On the one hand, if the number of tasks buffered locally byPi is beneath the thresh-
old, thenPi will request more tasks in order to prevent starvation. On the other hand,
if the number of results buffered locally byPi is larger than the threshold, thenPi will
not request additional tasks in order to hinder a monotonic accumulation of results. Ini-
tially, θi = 1, ∀i 6= m. Since we search for compact solutions, parent nodes will try
to process as many tasks as possible. If additional tasks arrive while a node is busy
processing, then the task will be forwarded down the tree. During the execution, nodes
are allowed to increase their local thresholdsθi only when (i) they are starving and
(ii) if they recently succeeded to accumulateθi tasks locally (to ensure that the current
threshold is not sufficient) and (iii) if the number of results buffered locally is strictly
lower thanθi. This mechanism allows nodes to collect enough tasks locally to feed their
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sub-trees, while ensuring that results do not accumulate monotonically locally. On the
other hand, nodes must decrease their local thresholds whenever the number of results
buffered locally exceeds the threshold. This threshold growth mechanism provides a
mean to adapt to the platform dynamics.

7 Scheduling Heuristics

Round Robin (RR). This heuristic implements Proposition 1. Once all theαi are
known, the periodΓ is estimated as follows. Let us setx = ⌊log10(maxi αi)⌋. If x ≤ 0
thenΓ = 10|x|+1, Γ = 10x otherwise. The aim is to obtain a compromise between a
short time period, and an approximation close to the optimalsolution. Then we get the
number of tasks computed by each nodePi by roundingΓαi to the nearest integer.

On the Fly (OTF). This heuristic makes use of the centralized knowledge. Once all
theβi’s are known, each node maintains a tabletasks given[j], which records the num-
ber of tasks delegated to childPj so far. The child node that has the lowesttasks given[j]

βj

ratio is served in priority.
FIFO. Tasks are delegated in a first-come first-served basis.
Bandwidth-Centric (BC). Letrj = min{ 1

xj
, 1

yj
} denote the maximum amount of

tasks thatPi can delegate to childPj per time unit. The child which has the highestrj

is served in priority.
Geometric (Geo). This heuristic makes use of Theorem 1, but starts by applying the

bandwidth-centric heuristic, in order to determine which child obtains the highestrj .
Then, it inspects if a pair of children can improve that rate.If such a pair of children ex-
ists, one must decide which child should be served. In order to make the right decision,
we use a variable∆ which works much like a pair of scales. At start,∆ = 0. Each time
a child nodePj is served, we putxj in one scale, andyj in the other, which amounts
to ∆ = ∆ + xj − yj . When a pair of children nodes is elected, then the child which
brings∆ closest to0 is serve. The aim is to utilize equally the emission and reception
bandwidths of the parent nodes. Such strategy will optimizethe bandwidth utilization
of the nodes, while naturally adapting to the platform dynamics.

8 Simulations Results

To evaluate our heuristics, we simulate the execution of an application on different ran-
dom trees. Since a sub-tree can be reduced to a single super-node of equivalent process-
ing power [14], it is not necessary to employ thousands of nodes to simulate large-scale
systems [15]. We arbitrarily limited the number of nodes in atree to100. Each node
was arbitrarily restricted to have at most10 child nodes. A random tree is generated as
follows. Each node is numbered with an ID number between0 and99. Then, each node
Pi, i ∈ [1, 99] is connected randomly to a nodePj , j ∈ [0, i − 1]. The links have static
performance values comprised betweencmin andcmax and the nodes betweenwmin

andwmax. All random distributions are uniform. The dynamic environments used in
our simulations were generated as follows. Each resourceRi (node or link) has a cyclic
behavior, i.e. its performance changesni times per cycle. The number of changesni
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per cycle is randomly taken within the interval[5, 15]. Resource performance changes
will occur every25 treated tasks in average. We do not claim that these arbitrary deci-
sions correspond to realistic network conditions. Our aim is to compare our heuristics
on a set of different tree configurations. Inspired by Kreaseck et al. [11], we determine
the throughput rate by using a growing window. The executiontime is divided into100
equal-sized time slots. Then, the window increases in size by step of one time slot, and
the throughput rate delivered within the window time-frameis computed. The through-
put rates delivered by the trees have been normalized to the maximum steady-state
rates obtained with the LPP in static environments. However, throughput rates obtained
in dynamic environments have been scaled up by adynamic factorthat accounts for the
performance loss incurred by the platform dynamics. The dynamic factors have been
obtained by successively solving LPPs of static platforms and comparing them to their
homologous LPPs where some dynamism have been introduced (i.e. with the same plat-
form topologies but with scaling down resource performances). More details about our
methodology as well as a broader set of simulation can be found in [3].

In this paper, we report the simulation of an independent-task application of2500
tasks on50 trees wherecmin = 1, cmax = 10, wmin = 20 andwmax = 200. Two
scenarios for the data volume associated to the tasks and results were considered: (i)
task data are1000 times larger than result ones (t

r
= 1000), and (ii) task and result

data have the same size (t
r

= 1). Figure 3 plots an average of the50 throughput rates
(associated to the 50 trees) over time. Figure 3 (a) and (b) correspond to static environ-
ments, while Figure 3 (c) and (d) correspond to fully dynamicenvironments, i.e. where
resource performances can degrade down to1% of the static value. The RR heuristic
has been simulated with more than2500 tasks in order to overcome the long start-up
time required to enter steady-state. Still, RR does not outperform the other heuristics
in static environments, certainly due to the truncating androunding operations that oc-
curred when computingΓ and theγi’s. Not only the integer number of tasks intended
to each node may be sub-optimal, but also the schedule of communications gets dis-
turbed. The centralized heuristics (RR and OTF) are the highest performers in static
environments, but the lowest ones in dynamic environments.Indeed, the information
on which they rely throughout the execution becomes misleading in dynamic settings.
As expected, the BC heuristic works very well when result data are small, while Geo
only departs from BC when result data become significant.

Interestingly, when result data become significant, the performance of the best heuris-
tics decrease, whereas the performance of FIFO increases. On the one hand, the decline
of the best heuristics can be explained by the scheduling problem becoming more com-
plicated. Returning results up the tree taking as long as sending tasks down the tree,
parent nodes may sometimes have to stall a long time, waitingfor a child to become
available in reception. On the other hand, the performance increase of FIFO is a di-
rect consequence of the task-flow control mechanism. When returning results takes a
long time, local accumulations of results will arise, hindering the ineffective nodes to
request for additional tasks. In contrast, when returning results is quick, no local results
accumulations take place, increasing the margin to make wrong scheduling decisions.

Finally, it is worth noticing that BC and Geo compete well with the centralized
heuristics even in static environments. See [3] for furtherdetails and interpretations.
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Fig. 3. Average of the50 throughput rates (associated to the 50 trees) over time, with the com-
putation to communication ratiowi

ci
= 20. In the dynamic environments, resource performances

can degrade arbitrarily without failing, i.e. down to1% of the static performance value.

9 Conclusion and Future Work

The problem of distributing a large number of independent tasks onto heterogeneous
tree-shaped platforms with bandwidth asymmetry was considered. In contrast with most
previous studies, the cost of returning results to the master node was represented in
the problem formulation. We provided theoretical results that were embedded into au-
tonomous heuristics. Simulations results showed that the autonomous heuristics put
together with the task-flow control mechanism not only behaved very well in dynamic
environments, but also compete well with centralized heuristics in static environments.

The scope of this paper was restricted to tree-shaped networks. However, at the
back-bone level, various geographically organizations are connected via the Internet
resulting in a graph topology. Adapting the theoretical results presented in this paper
to graph-shape platforms is a natural continuation of this work, albeit graph topology
introduces routing problems. Another direction is to consider master-slave tasking in the
presence of multiple masters. This situation arises naturally when several applications
share the same platform, or when multiple masters collaborate on a single application.
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