Master-Slave Tasking on Asymmetric Networks

Cyril Banino-Rokkone' Olivier Beaumort, and Lasse Natvig

! Norwegian University of Science and Technology, NO-74%driiheim, Norway,
{Cyril.Banino, Lasse.Natvig}@di.ntnu.no
2 LaBRI, UMR CNRS 5800, Domaine Universitaire, 33405 TaleGeglex, France
A ivier.Beaunont @abri.fr

Abstract. This paper presents new techniques for master-slave taskirree-
shaped networks with fully heterogeneous communicatiah @ocessing re-
sources. A large number of independent, equal-sized taskdistributed from
the master node to the slave nodes for processing and reftuesudt files. The
network links present bandwidth asymmetry, i.e. the send-aceive bandwidths
of a link may be different. The nodes can overlap computatidh at most one
send and one receive operation. A centralized algorithimntilaximizes the plat-
form throughput under static conditions is presented. &féer, we propose sev-
eral distributed heuristics making scheduling decisicasell on information es-
timated locally. Extensive simulations demonstrate thgtributed heuristics are
better suited to cope with dynamic environments, but alsopmie well with
centralized heuristics in static environments.

1 Introduction

In this paper, we consider the allocation of a large numbénagpendent equal-sized
tasks onto a tree platform. We concentrate on tree-shap#diphs since they represent
a natural framework for master slave tasking. More impdlyaadministrative organi-
zations often rely on tree-shaped networks to interconoectputing resources [1].
Initially, the root of the tree (master node) holds a largadbuof tasks. Those tasks
will be either processed by the master node or transmittéd thild nodes (also called
slave nodes). Then, in turn, the child nodes face the saroeaditbn problem (either
processing the tasks locally or forwarding them to theitcchbdes). We consider the
case where slave processors need to send back a file of raffaltgrocessing each
task. Even if this is the most natural situation, it is wortiting that most of the papers
on independent tasks scheduling or Divisible Load Theotyi{(@lo not consider those
return communications. Targeted platforms are fully fedeneous, i.e. both the pro-
cessing resources and the communication resources h&&eedtfcapacities in terms
of processing power and bandwidth. Moreover, the netwarkslipresent bandwidth
asymmetry in the sense that the bandwidth for sending tasks dhe tree may be
different from the bandwidth for returning results up thesetr

We concentrate on the influence of dynamic resource chaistiats on the allo-
cation scheme. In shared and unstable environments suchidasagd peer to peer
systems, the performance of the resources may well chamyegdihe execution of
the whole process. In this context, it is not realistic touass that one of the nodes

knows at any time step the exact performance of all resowandsis able to make
optimal scheduling decisions [1]. Therefore, the main tjaesconsists in determin-
ing whether the allocation scheme can make use of some ktatigledge about the
platform (for instance, the optimal solution computed framinitial snapshot of the
platform), or whether we need to rely on fully dynamic schedyuschemes. In order
to answer this question, we first derive optimal scheduliggrithms (with respect to
throughput maximization). Then we present several hacsissiome of them make their
scheduling decisions using the optimal scheduling potioynputed using a snapshot of
resource performance characteristics. Those heuristgs@ad to optimal scheduling
decisions in static environments. On the other hand, wega®p set of fully dynamic
allocation heuristics that make their scheduling decsmmy according to information
measurable locally. Those heuristics may give poor reguks$atic environments, but
their performances are expected to be more robust in dynamriconments. We com-
pare all those heuristics through extensive simulatiomsguthe SimGrid toolkit [2].
We rely on simulations rather than direct experiments ireotd make a fair compar-
ison between proposed heuristics. Indeed, simulationlesabnning of the different
tests on computing platforms having exactly the same dyodm@havior. Moreover,
SimGrid enables to define the trace of performance data owerfor each processing
or communication resource. Therefore, it is possible tomate (off-line) the optimal
solution at any given time step and it is therefore possibmpare the performances
of the different heuristics between them and against thiengppideal solution.

The rest of the paper is organized as follows. Section 2 istéevto a survey of
related work, both DLT studies, independent tasks schieglaind on dynamic schedul-
ing. Then, we present our platform model in Section 3 and hofind the optimal
solution, in presence of return messages, in Section 4diddeeistates the main Theo-
rem of this paper, which provides a mean to optimize the nbdesiwidth utilization.
Section 6 presents a task-flow control mechanism that regguthe amount of tasks
and results buffered by the nodes throughout the execufiom set of centralized and
distributed heuristics are described in Section 7. The owglogy and results of the
simulations are discussed in Section 8. Finally, we giveesocamarks and conclusions
in Section 9. Due to space limitation, many of the technieahis have been omitted,
but can be found in the extended version of this paper [3].

2 Redated Work

The problem of master-slave tasking on heterogeneousdenms has already been
widely studied, both in the context of Divisible Load ThedBLT) and independent
tasks scheduling. A divisible load is a perfect parallektdmt can be arbitrarily split
and allocated to slave processors, without processindieael The overall load is first
split at the master node in order to minimize the total exeouime. Tasks are dis-
tributed in one round to the slaves, so that the master no#tesrthe decisions about
the set of slaves to be used, the amount of data to be sentitsleae, and the commu-
nication ordering [4—6]. When return messages are takeractount, two permutations
must then be determined (one for tasks distribution and @nebults collection) [7, 8].
Although the complexity of this problem is still open, Roberg et al. [9] proved that

in the case of a homogeneous single-level tree, the optichaldule for both outgoing
and incoming messages can be determined, and the optimal &l FIFO orderings
are given in [10] for heterogeneous single-level trees.

On the other hand, when considering independent tasks slingdhe master node
faces the allocation problem for each task and the commtimitsawith its child nodes
may well be split into several rounds [11-13]. Recently aesk studies have focused
on steady-state scheduling, i.e. throughput maximizdfidn14, 15]. The steady-state
scheduling approach has been pioneered by Bertsimas andrGi&rfiL6] who con-
sidered packet routing and proposed to concentrate firstsmurce occupation rather
than scheduling. The optimal solution for resource ocdopagiven link capacities,
is obtained via a linear program. Then, an algorithm basesuper-steps is proposed
for building the actual schedule of packets. This idea ha&n la@lapted in [14] to the
distribution of independent tasks on static platforms.uRs<ollection was not consid-
ered in [14], but the linear program presented in Sectionaddsect adaptation of the
solution proposed in [14].

Dynamic scheduling of independent tasks has not been witetlied. Recently,
Hong et al. [1, 15, 17] proposed a very nice algorithm, basedexentralized versions
of flow algorithms. It is worth noting that this algorithm asses a strongly different
communication model than the one presented in this papgc@msequently cannot be
easily adapted to our model. Here again, the results callebgs not been considered.

3 Platform model

The model considered in this paper is based on the model pedpia [14] that we
augment by introducing communication weights for retugriomputation results back
to the master. Processing nodes are assumed to be conniecatbde-weighted edge-
weighted tred” = (V, E, w, ¢, ¢') as depicted in Figure 1.

Each nodeP; € V represents a com- Py
puting resource of weight;, meaning that
node P; requiresw; units of time to pro-
cess one task. Each edge correspondstoa ‘
communicating resource and is weighted
by two valuesc; which representsthetime 4
needed by a parent node to send one task i/
to its child P;, and ¢, which represents
the time needed by the chil®; to send
one result back to its parent. All the;’s
are assumed to be positive rational num- Fig. 1.
bers since they represent node processing
times. We disalloww; = 0 since it would permit nod®; to perform an infinite number
of tasks. Similarly, we assume that ajls andc;’s are positive rational numbers since
they correspond to the communication times between twogssmrs. A node can per-
form three kinds of activity simultaneously: (i) it can pess a task, (ii) it can receive
a task file from its parent or a result file from one of its cteldrand (iii) it can send a
result file to its parent or a task file to one of its childrenisTimodel is known under

\

the namdull overlap, bidirectional-single-pomnodel [11, 14]. At any given time-step,
a node may overlap computation with only two connections,fonincoming commu-
nications and one for outgoing communications. Computadiod communication are
assumed to be atomic operations, i.e. once initiated theyatedbe preempted. Finally
the communication model works in a store-and-forward fashi

4 Maximizing the Throughput

Given the resources of a weighted tfeeperating under thull overlap, bidirectional-
single-portmodel, we aim at maximizing the number of tasks processetperunit.
Let C; denote the set oF;’s children. During one time unit, let; be the fractional
number of tasks processed By, andg; be the fractional number of tasks receivediy
from its parent. Equivalentlyy; and; correspond respectively to the fractional number
of results produced by, and to the fractional number of results sent Byto its
parent. The optimal throughputis obtained by solving thie¥ang linear programming
problem (LPP), whose objective function is to maximize thenber of tasks processed
per time unit.
Maximize nion (T) = Y, o
subject to
Vi, 0<a <o
Vi 5& m, B = o; + Zjeci ﬁj
Vi, ZjECT: Cjﬂj + C;ﬂz S 1
Vi, ZjECT: C}ﬂj + Ciﬂi <1

The first set of constraints states that computation ressuae limited. The second
set of constraints confines the variablgswithin non-negative values. Note that the
masterP,,, does not have a parent, so that wedgt = 0. The third set of constraints
deals withconservation laws-or each nod@; (except the master), the number of tasks
received byP;, should be equal to the number of tasks tRaprocesses locally, plus
the number of tasks forwarded to the childremfEquivalently, the number of results
sent byP; to its parent, should be equal to the number of results prdiiacally by
P;, plus the number of results received from its children. Tds tonstraints account
for the single-port model. The send and receive operatienf®pned by the nodes are
assumed to be sequential.

Since we are looking for a solution of the LPP into rationainers, optimal ratio-
nal values for all variables can be obtained in polynomiakti However, the solution
of the above LPP is in general not unique and some solutiogltrhe more interesting
than others in our context. In particulagmpactsolutions, i.e. that utilize nodes close
to the root in priority, are more preferable thstretchedsolutions (that utilize nodes far
away from the root). Indeed, start-up time (required to ethte steady-state) and wind-
down time (required to gather the last results to the rooflf)ve longer for stretched
solutions than for compact ones. In order to obtain compaatisns, we first need to
solve the initial LPP to derive the optimal throughputs (7) of the tree. The objec-
tive function of the second LPP becomes the minimizationldha communications,

\Y,

under the aforementioned constraints plus an additionaltbat states the conserva-
tion of the optimal throughput obtained by the former LPPnidiizing the amount of
communications while maintaining the optimal number ok$aprocessed implicitly
enforces compact solutions. We hence add the followingtcaing > «; = ngqsik (7).
And the objective function of the second LPP becomémimize ", 5;. Once a so-
lution has been obtained, one needs to construct a schdwiléi)t ensures that the
optimal throughput is achieved and (ii) exhibits a correchestration of communica-
tion events, i.e. where simultaneous communications wavdisjoint pairs of senders
and receivers. We can obtain a time perlody taking the least common multiple (Icm)
of all the denominators of the variables. Then, the integer number of tasksthat
must be communicated 8 during each time period is obtained byy; = 5,1

Proposition 1. Sending and receiving files by bunchesgypfn a round robin fashion
generates an optimal steady-state schedule where siragteepnstraints are satisfied.

Proof. The proof is done by induction ovér, the height of the tree T [3].

Initially, nodes do not dispose of tasks nor results butfdoeally to comply with
Proposition 1. Therefore an initialization phase must talkee before entering steady-
state. During start-up, nodes will act as if they were indyestate, at the difference that
fake results will be sent to the parents if not enough resukisavailable. Thus, tasks
will be propagated down the tree, while fake results will begagated up the tree. The
fake results received by parents nodes are simply discafdecke the first bunch of
results processed by all the deepest nodes used in the sehesta been transmitted to
the root node, then steady-state has been reached.

5 Bandwidth Optimization

A simple scheduling principle is presented in [14] when mneitog results is neglected.
This scheduling algorithm was termbdndwidth-centridoecause priorities do not de-
pend on the children processing capabilities, but only @ir tbommunication capa-
bilities. The bandwidth-centric principle is extended tar problem as follows. First,
observe that for each task that a nddedelegates to a child;, P; must first receive
the task from its parent, then forward it 1, receive the associated result back, and
finally send the result to its parent. Consequeywill spendz; = ¢; + ¢ time units
sending data, ang;, = cfj + ¢; time units receiving data. Since the masigy does
not have a parent, we let,, = ¢,, andy,, = ¢,,,. The bandwidth utilization of a node
P; can be sketched within the Cartesian plane, where the X anxe¥ @epresent the
time spent in emission and reception respectively. Herllmgading a task to childP;
corresponds to a displacement in the Cartesian plane akectgrw; of components

(xj’ yj)-
Theorem 1. In steady-state, the bandwidth utilization of a parent n&leptimized
when using at most 2 children (if processing capabilities ot taken into account).

Proof. The proofis done by induction over the number of children that are utilized by
a parent in addition to the two nodes mentioned in Theorenofisider the case where

Vi

n = 1, i.e. when a parent delegates, a» andas tasks per time unit to three children
Py, P, and P; respectively (see Figure 2). Displacementd;, A; A, and A; A3 stand
for delegatingv;, as andag tasks to the childre®;, P, and P; respectively.

Consider the trianglel; A; P where the dis- y
placementsA; P and PA; amount to allocate
j1 andjs tasks toP; and Ps respectively. Con-

sider now both quantitie§j; + j3) and aq. If p, gy Ay % /Q =
(j147j3) > o, it means that it is more profitable a a

to spend the bandwidth time assignedRpby i/ a

allocating more tasks t&; and Ps. As a conse- .

qguenceP; should not be used. But(fj; +j3) < A /__~k3—/7‘/R

ag, then consider the triangle RA;, where the
displacement® R and A; R amount to allocate
ko andks tasks toP, and P; respectively. Since
both trianglesd; A, P andORA; are equal (since
. : _ 0
their internal angles are equal)(jfi + j3) < as X
then(a; + k3) < ko. In that case, it becomes Fig 2
more profitable to assigh, tasks toP, instead 9.2
of a; tasks toP; and j3 tasks toPs, and P; should not be used. Assume now that
Theorem 1 is true for rank, and let us prove that it holds also for rankt+ 1. Con-
sider a parent utilizings + 3 children. ExtracB of then + 3 children and apply the
aforementioned geometric transformation. One then aslanlyn + 2 children without
degrading the initial throughput. a

(€51

Theorem 1 assumes that nodes can provide as much computieg as necessary
which contravenes the fact that computing resources artetimNonetheless, it allows
identifying the way to optimize the bandwidth of any noBlein using at most two
children. Furthermore, we show in [3] that if such a pair ofidien exists, then the
emission and reception bandwidth Bfare equally utilized.

6 Task-Flow Control

In order to regulate the number of tasks and results thatswaaeallowed to buffer lo-
cally throughout the execution, a threshold vatyés introduced for each nod@ , i #

m. On the one hand, if the number of tasks buffered locally’pis beneath the thresh-
old, thenP; will request more tasks in order to prevent starvation. Gndther hand,

if the number of results buffered locally by is larger than the threshold, thé will

not request additional tasks in order to hinder a monotartamulation of results. Ini-
tially, ; = 1,Vi # m. Since we search for compact solutions, parent nodes will tr
to process as many tasks as possible. If additional taske avhile a node is busy
processing, then the task will be forwarded down the treeiriguthe execution, nodes
are allowed to increase their local thresholdonly when (i) they are starving and
(ii) if they recently succeeded to accumulétdasks locally (to ensure that the current
threshold is not sufficient) and (iii) if the number of resutiuffered locally is strictly
lower thard;. This mechanism allows nodes to collect enough tasks otrafeed their

Vil

sub-trees, while ensuring that results do not accumulateotoaically locally. On the
other hand, nodes must decrease their local thresholdsewbethe number of results
buffered locally exceeds the threshold. This thresholdvgftanechanism provides a
mean to adapt to the platform dynamics.

7 Scheduling Heuristics

Round Robin (RR). This heuristic implements Proposition 1. Once all dheare
known, the period is estimated as follows. Let us set= |log;,(max; a;)]. If 2 <0
thenI” = 10/*I+1, I" = 10® otherwise. The aim is to obtain a compromise between a
short time period, and an approximation close to the optsukltion. Then we get the
number of tasks computed by each ndgléoy roundingl"«; to the nearest integer.

On theFly (OTF). This heuristic makes use of the centralized knowde@nce all
thes;’s are known, each node maintains a tahle:s_given[j], which records the num-
ber of tasks delegated to chilgj so far. The child node that has the Iow@éf%“”m
ratio is served in priority.

FIFO. Tasks are delegated in a first-come first-served basis.

Bandwidth-Centric (BC). Letr; = min{zij, ylj} denote the maximum amount of
tasks that”; can delegate to chilé; per time unit. The child which has the highegt
is served in priority.

Geometric (Geo). This heuristic makes use of Theorem 1, but starts plyeyy the
bandwidth-centric heuristic, in order to determine whittid obtains the highest;.
Then, itinspects if a pair of children can improve that réteuch a pair of children ex-
ists, one must decide which child should be served. In oarake the right decision,
we use a variable\ which works much like a pair of scales. At statt,= 0. Each time
a child nodeP; is served, we put; in one scale, ang; in the other, which amounts
to A = A+ x; — y;. When a pair of children nodes is elected, then the child lvhic
brings A closest td) is serve. The aim is to utilize equally the emission and récep
bandwidths of the parent nodes. Such strategy will optirtiizebandwidth utilization
of the nodes, while naturally adapting to the platform dyitam

8 Simulations Results

To evaluate our heuristics, we simulate the execution ofgfieation on different ran-
dom trees. Since a sub-tree can be reduced to a single sogewrhequivalent process-
ing power [14], it is not necessary to employ thousands ofsdd simulate large-scale
systems [15]. We arbitrarily limited the number of nodes itmese to100. Each node
was arbitrarily restricted to have at mdskchild nodes. A random tree is generated as
follows. Each node is numbered with an ID number betw@&and99. Then, each node
P;,i € [1,99] is connected randomly to a nod®, j € [0, — 1]. The links have static
performance values comprised betwegp, andc,,., and the nodes between,,;,,
andwy,q.. All random distributions are uniform. The dynamic envineents used in
our simulations were generated as follows. Each resally¢aode or link) has a cyclic
behavior, i.e. its performance changestimes per cycle. The number of changes

VI

per cycle is randomly taken within the interval 15]. Resource performance changes
will occur every25 treated tasks in average. We do not claim that these anpesi-
sions correspond to realistic network conditions. Our artoicompare our heuristics
on a set of different tree configurations. Inspired by Krels al. [11], we determine
the throughput rate by using a growing window. The exectutiog is divided intol 00
equal-sized time slots. Then, the window increases in siztdp of one time slot, and
the throughput rate delivered within the window time-fraismieomputed. The through-
put rates delivered by the trees have been normalized to témmm steady-state
rates obtained with the LPP in static environments. Howekiesughput rates obtained
in dynamic environments have been scaled up 8yreamic factothat accounts for the
performance loss incurred by the platform dynamics. Theadyin factors have been
obtained by successively solving LPPs of static platform@mparing them to their
homologous LPPs where some dynamism have been introdueedith the same plat-
form topologies but with scaling down resource performahddore details about our
methodology as well as a broader set of simulation can bedfouf3].

In this paper, we report the simulation of an independesk-gpplication 022500
tasks on50 trees where,in, = 1, ¢rae = 10, Wiin = 20 andw,,q. = 200. Two
scenarios for the data volume associated to the tasks anltsresre considered: (i)
task data ara000 times larger than result one$ (= 1000), and (ii) task and result
data have the same sizré € 1). Figure 3 plots an average of the throughput rates
(associated to the 50 trees) over time. Figure 3 (a) and (b¢spond to static environ-
ments, while Figure 3 (c) and (d) correspond to fully dynaerigironments, i.e. where
resource performances can degrade dowitoof the static value. The RR heuristic
has been simulated with more thas00 tasks in order to overcome the long start-up
time required to enter steady-state. Still, RR does noteryfipm the other heuristics
in static environments, certainly due to the truncating nohding operations that oc-
curred when computing’ and they;’s. Not only the integer number of tasks intended
to each node may be sub-optimal, but also the schedule of cmsations gets dis-
turbed. The centralized heuristics (RR and OTF) are thedsigherformers in static
environments, but the lowest ones in dynamic environméntieed, the information
on which they rely throughout the execution becomes mighegid dynamic settings.
As expected, the BC heuristic works very well when resuladat small, while Geo
only departs from BC when result data become significant.

Interestingly, when result data become significant, théoperance of the best heuris-
tics decrease, whereas the performance of FIFO increasgbe@ne hand, the decline
of the best heuristics can be explained by the schedulinggmbecoming more com-
plicated. Returning results up the tree taking as long adisgrtasks down the tree,
parent nodes may sometimes have to stall a long time, wéiting child to become
available in reception. On the other hand, the performancesase of FIFO is a di-
rect consequence of the task-flow control mechanism. Whiginniag results takes a
long time, local accumulations of results will arise, hiridg the ineffective nodes to
request for additional tasks. In contrast, when return@sylits is quick, no local results
accumulations take place, increasing the margin to makagvwoheduling decisions.

Finally, it is worth noticing that BC and Geo compete well lwihe centralized
heuristics even in static environments. See [3] for furttegails and interpretations.

100 T T T T T T T T T
95 1
or D N o e
5 g2l pecastpuiBerERu iy
£ 2w e G G
=) S 5l
3 3
< S
£ £
= S esp
T g L
£ £ u
= g ®p
o o 50 p
S T s
Q Q
=} o 40 /
g g /
= 1 £ ‘
3 ROUNDROBIN - O |} § 5 // ROUND-ROBIN O |
[ONTHEFLY (7 [o 5 ‘ ONTHEFLY (7 [
o H o 20 H
GEOMETRIC [1] / GEOMETRIC [1]
H 15| H
BW.CENTRC A | 10 ;/ BW-CENTRIC A ||
FFO O H E FFo &
. ! T T 0 ! T T
20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 70 80 90 100
Time slots Time slots
st int
(a) static,z = 1000 (b) static,- =1
100 T T T T T T T T T 100 T T T T T T T T T
9% B L= RN q 95 | 1
%0F 3 TEL 1 %0 1
= g A . 1 = el]
5 A -~ 5
2 et A 21 2 wf e g B
S 5| 1 B sl O - A A e
3 3 O A £ -
_g. 0 _g. 70 P sl
=S et = esp Gy O O
T T gl e -
£ _o—6—6—6——"F6—0 £ -
=1 —O- PN R 60— —8—06o)
o e RN = = O 50 oo Y N RS A
° A - PES
5] O = S a5l = 4
Q Q H
S S wp
8 1 s
§ ROUND-ROBIN O | § S‘EQ/ ROUNDROBIN (|
[ONTHEFLY 7 [g 5 /‘ ONTHEFLY ()
o oo H
GEOMETRIC [1] I GEOMETRIC [1]
H 15 H
BW-CENTRC A || 105 BW-CENTRIC A ||
FFO O 5 FIFO &
. ! T T 0

30 40 50 60 70 80 % 100 50

Time slots

Ti!'ne slots :
(c) dynamict = 1000 (d) dynamict
Fig. 3. Average of thes0 throughput rates (associated to the 50 trees) over timé, thét com-
putation to communication rati§* = 20. In the dynamic environments, resource performances
can degrade arbitrarily without failing, i.e. down 1t of the static performance value.

9 Conclusion and Future Work

The problem of distributing a large number of independeskgaonto heterogeneous
tree-shaped platforms with bandwidth asymmetry was censdl In contrast with most
previous studies, the cost of returning results to the mamside was represented in
the problem formulation. We provided theoretical resuitst were embedded into au-
tonomous heuristics. Simulations results showed that tiienamous heuristics put
together with the task-flow control mechanism not only beldavery well in dynamic
environments, but also compete well with centralized htigs in static environments.
The scope of this paper was restricted to tree-shaped netwkiowever, at the
back-bone level, various geographically organizatiomsamnected via the Internet
resulting in a graph topology. Adapting the theoreticaliisspresented in this paper
to graph-shape platforms is a natural continuation of thoskwalbeit graph topology
introduces routing problems. Another direction is to cdesimaster-slave tasking in the
presence of multiple masters. This situation arises niijukéen several applications
share the same platform, or when multiple masters collaboraa single application.

X

References

10.

11.

12.

13.

14.

15.

16.

17.

. Hong, B., Prasanna, V.K.: Performance Optimization ofeac®ntralized Task Allocation

protocol via bandwidth and buffer management. In: CLADB(02) 108

. Casanova, H.: SimGrid: A Toolkit for the Simulation of Ajgation Scheduling. In: Pro-

ceedings of the 1st International Symposium on Cluster Goimg and the Grid, IEEE Com-
puter Society (2001) 430

. Banino-Rokkones, C., Beaumont, O., Natvig, L.. Mastew& Tasking on Asym-

metric Tree-Shaped Networks. Technical Report 02/06, NTN&D06) URL:
http://www.idi.ntnu.no~banino/research/research.html.

. Robertazzi, T.: Processor Equivalence for a Linear D@lsgin of Load Sharing Processors.

IEEE Trans. Aerospace and Electronic Syst@M§1993) 1216-1221

. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: ScHigg Divisible Loads in Parallel

and Distributed Systems. |IEEE Computer Society Press §1996

. Drozdowski, M., Wolniewicz, P.: Experiments with schidy divisible tasks in clusters of

workstations. In: Proceedings of Euro-Par 2000: Paratiet®sing. LNCS 1900, Springer
(2000) 311-319

. Barlas, G.D.: Collection-Aware Optimum Sequencing oe@pions and Closed-Form So-

lutions for the Distribution of a Divisible Load on ArbitnatProcessor Trees. IEEE Trans.
Parallel Distrib. Syst9(5) (1998) 429-441

. Blazewicz, J., Drozdowski, M., Guinand, F., Trystram; Bcheduling a Divisible Task in

a Two-dimensional Toroidal Mesh. In: Proceedings of thedthiternational conference on
Graphs and optimization, Amsterdam, The Netherlands viEis&cience Publishers B. V.
(1999) 35-50

. Adler, M., Gong, Y., Rosenberg, A.L.: Optimal Sharing @fd3 of Tasks in Heterogeneous

Clusters. In: 15th ACM Symp. on Parallelism in Algorithmsdafrchitectures (SPAA03),
ACM Press (2003) 1-10

Beaumont, O., Marchal, L., Robert, Y.: Scheduling Dbliss Loads with Return Messages
on Heterogeneous Master-Worker Platforms. In: Intermatii@€onference on High Perfor-
mance Computing HiPC'2005. LNCS, Springer Verlag (200511232

Kreaseck, B., Carter, L., Casanova, H., Ferrante, Jtorfmous Protocols for Bandwidth-
Centric Scheduling of Independent-Task Applications. IRDPS '03: Proceedings of the
17th International Symposium on Parallel and DistributedcBssing, Washington, DC,
USA, IEEE Computer Society (2003) 26.1

Dutot, P.F.: Complexity of Master-slave Tasking on egeneous Trees. European Journal
on Operationnal Researd64(3) (2005) 690-695

Rosenberg, A.L.: Sharing Partitionable Workloads iteftyeneous NOWs: Greedier is not
Better. In: Cluster Computing 2001, IEEE Computer SociegsP (2001) 124-131

Banino, C., Beaumont, O., Carter, L., Ferrante, J.,amgjrA., Robert, Y.: Scheduling Strate-
gies for Master-Slave Tasking on Heterogeneous Procetastforiths. IEEE Transactions on
Parallel and Distributed SysterS(4) (2004) 319-330

Hong, B., Prasanna, V.K.: Distributed Adaptive TaskoAdition in Heterogeneous Com-
puting Environments to Maximize Throughput. In: Interoatl Parallel and Distributed
Processing Symposium IPDPS’2004, IEEE Computer SocietysR2004) 52b

Bertsimas, D., Gamarnik, D.: Asymptotically optimaj@dlithm for job shop scheduling and
packet routing. Journal of Algorithn83(2) (1999) 296-318

Hong, B., Prasanna, V.K.: Bandwidth-Aware Resourceddtion for Heterogeneous Com-
puting Systems to Maximize Throughput. In: ICPP. (2003)-538

