
Optimal Integrated VLIW Code Generation with
Integer Linear Programming

Andrzej Bednarski and Christoph Kessler

PELAB, Department of Computer and Information Science,
Linköpings universitet, S-58183 Linköping, Sweden
andbe@ida.liu.se, chrke@ida.liu.se

Abstract. We give an Integer Linear Programming (ILP) solution that fully in-
tegrates all steps of code generation,i.e. instruction selection, register allocation
and instruction scheduling, on the basic block level for VLIW processors.
In earlier work, we contributed a dynamic programming (DP) based method for
optimal integrated code generation, implemented in our retargetable code gener-
ator OPTIMIST. In this paper we give first results to evaluate and compare our
ILP formulation with our DP method on a VLIW processor. We also demonstrate
how to precondition the ILP model by a heuristic relaxation of the DP method to
improve ILP optimization time.

1 Introduction

We consider the problem of optimal integrated code generation for instruction-level par-
allel architectures such as VLIW processors. Integrated code generation solves simul-
taneously, in a single optimization pass, the tasks of instruction selection, instruction
scheduling including resource allocation and code compaction, and register allocation.

In previous work [8], we developed a dynamic programming approach and imple-
mented it in our retargetable framework called OPTIMIST [9]. However, there may be
further general problem solving strategies that could likewise be applied to the inte-
grated code generation problem. In this paper, we consider the most promising of these,
integer linear programming(ILP).

ILP is a general-purpose optimization method that gained much popularity in the
past 15 years due to the arrival of efficient commercial solvers and effective modeling
tools. In the domain of compiler back ends, it has been used successfully for various
tasks in code generation, most notably for instruction scheduling.

Wilken et al. [12] use ILP for instruction scheduling of basic blocks which allows,
after preprocessing the basic block’s data flow graph, to derive optimal solutions for
basic blocks with up to 1000 instructions within reasonable time.

ILP formulations integrating instruction scheduling and resource allocation are ei-
thertime-basedor order-based. In time-based formulations the main decision variables
indicate the time slot when an operation is to be started. In order-based formulations
the decision variables represent the flow of the hardware resources among operations.

Gebotyset al. [5] give a time-based formulation that integrates instruction schedul-
ing and resource allocation and computes time optimal schedules. Leupers and Mar-
wedel [10] provide a time-based ILP formulation for code compaction of a given in-
struction sequence with alternative instruction encodings.

II

Zhang [16], Changet al. [2] and Kästner [7] provide order-based and/or time-based
ILP formulations for the combination of instruction scheduling with register allocation.
Winkel [15] formulates an ILP model for post-pass optimization that can be solved
efficiently for global instruction scheduling, including code motion and predication.

We know of only one ILP formulation in the literature that addressed all three tasks
simultaneously, which was proposed by Wilsonet al. [13,14]. However, their formula-
tion is for single-issue architectures only. Furthermore, their proposed model assumes
that the alternatives for pattern matching in instruction selection be exposed explicitly
for each node and edge of the basic block’s data flow graph (DFG), which would require
a preprocessing of the DFG before the ILP problem instance can be generated.

We provide an ILP formulation that fully integrates all three phases of code genera-
tion and extends the machine model used by Wilsonet al. by including VLIW architec-
tures with homogeneous register file. Moreover, our formulation does no longer need
preprocessing of the DFG.

The remainder of this paper is organized as follows: After introducing some nota-
tion, we provide in Section 3 the ILP formulation for fully integrated code generation
for VLIW processors. For a description of the DP approach of OPTIMIST, we refer to
a recent article [8]. Section 4 evaluates the DP approach against the ILP approach, and
draws some conclusions. Section 5 discusses further directions of ILP approach and
Section 6 concludes the article.

2 Notation

We use uppercase letters to denote model parameters and constants provided to the ILP
formulation. Lowercase letters denote solution variables and indexes.

Indexesi andj denote nodes of the DFG. We reserve indexesk andl for instances of
nodes composing a given pattern.t is used for time index. We use the common notation
|X| to denote the cardinality of a set (or pattern)X.

As usual, instruction selection is modeled as a general pattern matching problem,
covering the DFG with instances of patterns that correspond to instructions of the target
processor. The set of patternsB is subdivided into patterns that consist of a single node,
calledsingletons(B′′), and patterns consisting of more than one node, with or without
edges (B′). That is,B = B′ ∪B′′ such that∀p ∈ B′, |p| > 0 and∀p ∈ B′′, |p| = 1.

In the ILP formulation that follows, we provide several instances of each non-
singleton pattern. For example, if there are two locations in the DFG where a multiply-
accumulate pattern (MAC) is matched, these will be associated with two different in-
stances of the MAC pattern, one for each possible location. We require that each pattern
instance be matched at most once in the final solution. As a consequence, the model
requires to specify a sufficient number of pattern instances to cover the DFG. For sin-
gleton patterns, we only need a single instance. This will become clearer once we have
introduced the coverage equations where the edges of a pattern must correspond to
some DFG edges.

2.1 Solution variables

The ILP formulation uses the following solution variables:

III

– ci,p,k,t a binary variable that is equal to 1, if a DAG nodei is covered by instance
nodek of patternp at timet. Otherwise the variable is 0.

– wi,j,p,k,l a binary variable that is equal to 1 if DFG edge(i, j) is covered by a
pattern edge(k, l) of patternp ∈ B′ (see Figure 1).

– sp,t a binary variable that is set to 1 if a patternp ∈ B′ is selected and the corre-
sponding instruction issued at timet, and to 0 otherwise.

– ri,t a binary variable that is set to 1 if DFG nodei must reside in some register at
time t, and 0 otherwise.

– τ an integer variable that represents the execution time of the final schedule.

In the equations that follow, we use the abbreviationci,p,k for the following expression∑
∀t∈0..Tmax

ci,p,k,t, andsp for
∑

∀t∈0..Tmax
sp,t.

2.2 Parameters to the ILP model

The model we provide is sufficiently generic to be used for various instruction-level
parallel processor architectures. Our ILP model requires the following parameters:

Data flow graph:
– G index set of DFG nodes
– EG index set of DFG edges
– OPi operation identifier of nodei, representing a given DFG operation.
– OUTi indicates the out-degree of DFG nodei.

Patterns and instruction set:
– B′ index set of instances of non-singleton patterns
– B′′ index set of singletons (instances)
– Ep set of edges for patternp ∈ B′

– OPp,k operator for an instance nodek of pattern instancep. This relates to the
operation identifier of the DFG nodes.

– OUTp,k is the out-degree of a nodek of pattern instancep.
– Lp is an integer value representing the latency for a given patternp. In our notation,

each pattern is mapped to a unique target instruction, resulting in unique latency
value for that pattern.

Resources:
– F is an index set of functional unit types.
– Mf represents the amount of functional units of typef , wheref ∈ F .
– Up,f is a binary value representing the connection between the target instruction

corresponding to a pattern (instance)p and a functional unitf that this instruction
uses. It is 1 ifp requiresf , otherwise 0.

– W , is a positive integer representing the issue width of the target processor,i.e., the
maximum number of instructions that can be issued per clock cycle.

– R denotes the number of available registers.
– Tmax is a parameter that represents the maximum execution time budget for a basic

block. The value ofTmax is only required for limiting the search space, and has no
impact on the final result. Observe thatTmax must be greater (or equal) than the
time required for an optimal solution, otherwise the ILP problem instance has no
solution.

IV

mul
i

sub
h

j
add

k

SUB

MUL

SUB ADD

m
ADD

m
l

MUL
k

ADD
l

ADD

Patterns

MAC1 MAC2

...

Sub−DFG Solution variables

wi,j,MAC1,k,l = 1 wi,j,MAC2,k,l = 0
ci,MAC1,k,t1

= 1 cj,MAC1,l,t1
= 1

ch,SUB,m,t0
= 1 ch,ADD,m,t0

= 0
sMAC1,t0

= 0 sMAC1,t1
= 1

. . .

Fig. 1.Example of pattern matching.

3 ILP formulation

To provide the ILP model for fully integrated code generation for VLIW architectures,
we first give equations for covering the DFGG with a set of patterns,i.e. the instruc-
tion selection. Secondly, we specify the set of equations for register allocation. Here we
address regular architectures with general purpose registers, and thus only check that
the register need does not exceed the amount of physical registers at any time. Next,
we address scheduling issues. Since we are working on the basic block level, only flow
dependences are considered. We assure that the schedule never exceeds available re-
sources, and that instructions issued simultaneously fit into a long instruction word.

3.1 Instruction selection

Our instruction selection model is suitable for tree-based and directed acyclic graph
(DAG) data flow graphs. Also, it handles patterns in the form of tree, forest, and DAG
patterns. The goal of instruction selection is to cover all nodes of DFGG with a set of
patterns. For each DFG nodei there must be exactly one matching nodek in a pattern
instancep. Equation (1) enforces this full-coverage property. Solution variableci,p,k,t

records for each nodei which pattern instance node covers it, and at what time. Beside
full coverage, Equation (1) also assures a requirement for scheduling, namely that for
each DFG nodei, the instruction corresponding to the pattern instancep covering it is
scheduled (issued) at some time slott.

∀i ∈ G,
∑
p∈B

∑
k∈p

ci,p,k = 1 (1)

Equation (2) records the set of pattern instances being selected for DFG coverage. If
a pattern instancep is selected, all its nodes should be mapped to distinct nodes ofG.
Additionally, the solution variablesp,t carries the information at what timet a selected
pattern instancep is issued.

∀p ∈ B′,∀t ∈ 0..Tmax,
∑
i∈G

∑
k∈p

ci,p,k,t = |p|sp,t (2)

If a pattern instancep is selected, each pattern instance nodek maps to exactly one
DFG nodei. Equation (3) considers this unique mapping only for selected patterns, as
recorded by the solution variabless.

∀p ∈ B′,∀k ∈ p,
∑
i∈G

ci,p,k = sp (3)

V

Equation (4) implies that all edges composing a pattern must coincide with exactly the
same amount of edges inG. Thus, if a pattern instancep is selected, it should cover
exactly |Ep| edges ofG. Unselected pattern instances do not cover any edge ofG.
Remark that in our model each pattern instance is distinct, and that we further assume
that there are enough pattern instances available to fully cover a particular DFG.

∀p ∈ B′,
∑

(i,j)∈EG

∑
(k,l)∈Ep

wi,j,p,k,l = |Ep|sp (4)

Equation (5) assures that a pair of nodes constituting a DFG edge covered by a pat-
tern instancep corresponds to a pair of pattern instance nodes. If we have a match
(wi,j,p,k,l = 1) then we must map DFG nodei to pattern instance nodek and nodej to
pattern instance nodel of pattern instancep.

∀(i, j) ∈ EG,∀p ∈ B′,∀(k, l) ∈ Ep, 2wi,j,p,k,l ≤ ci,p,k + cj,p,l (5)

Equation (6) imposes that instructions corresponding to a non-singleton pattern (in-
stance)p are issued at most once at some timet (namely, ifp was selected), or not at
all (if p was not selected).

∀p ∈ B′, sp ≤ 1 (6)

Equation (7) checks that the IR operators of DFG (OPi) corresponds to the operator
OPp,k of nodek in the matched pattern instancep.

∀i ∈ G,∀p ∈ B,∀k ∈ p,∀t ∈ 0..Tmax, ci,p,k,t(OPi −OPp,k) = 0 (7)

Equation (8) simply checks if the out-degreeOUTp,k of nodek of a pattern instancep
equals the out-degreeOUTi of the covered DFG nodei. As nodes in singleton patterns
are always pattern root nodes, we only need to consider non-singleton patterns,i.e. the
setB′.

∀p ∈ B′,∀(i, j) ∈ EG,∀(k, l) ∈ p, wi,j,p,k,l(OUTi −OUTp,k) = 0 (8)

3.2 Register allocation

Currently we address (regular) architectures with general-purpose register set. We leave
modeling of clustered architectures for future work. Thus, a value carried by an edge
not entirely covered by a pattern (active edge), requires a register to store that value.
Equation (9) forces a nodei to be in a register if at least one of its outgoing edge is
active, whereN is a large number considered to be infinity.

∀t ∈ 0..Tmax,∀i ∈ G,
t∑

tt=0

∑
(i,j)∈EG

∑
p∈B

∑
k∈p

ci,p,k,tt
−

∑
l∈p

cj,p,l,tt

 ≤ Nri,t (9)

If all outgoing edges from a nodei are covered by a pattern instancep, there is no need
to store the value represented byi in a register. Equation (10) requires solution variable
ri,t to be set to 0 if all outgoing edges fromi are inactive at timet.

∀t ∈ 0..Tmax,∀i ∈ G,

t∑
tt=0

∑
(i,j)∈EG

∑
p∈B

∑
k∈p

ci,p,k,tt −
∑
l∈p

cj,p,l,tt

 ≥ ri,t (10)

VI

Finally, Equation (11) checks that register pressure does not exceed the numberR of
available registers at any time.

∀t ∈ 0..Tmax,
∑
i∈G

ri,t ≤ R (11)

3.3 Instruction scheduling

The scheduling is complete when each node has been allocated to a time slot in the
schedule such that there is no violation of precedence constraints and resources are not
oversubscribed. Since we are working on the basic block level, we only need to model
the true data dependences, represented by DFG edges. Data dependences can only be
verified once pattern instances have been selected, covering the whole DFG. The knowl-
edge of the covered nodes with their respective covering pattern (i.e., the corresponding
target instruction) provides the necessary latency information for scheduling.

Besides full coverage, Equation (1) constrains each node to be scheduled at some
timet in the final solution. We need additionally to check that all precedence constraints
(data flow dependences) are satisfied. There are two cases: First, if an edge is entirely
covered by a patternp (inactive edge), the latency of that edge must be 0, which means
that for all inactive edges(i, j), DFG nodesi andj are “issued” at the same time. Sec-
ondly, edges(i, j) between DFG nodes matched by different pattern instances (active
edges) should carry the latencyLp of the instruction whose pattern instancep covers
i. Equations (12) and (13) guarantee the flow data dependences of the final schedule.
We distinguish between edges leaving nodes matched by a multi-node pattern, Equa-
tion (12), and the case of edges outgoing from singletons, Equation (13). Active edges
leaving a node covered by a singleton patternp carry always the latencyLp of p.

∀p ∈ B′, ∀(i, j) ∈ EG, ∀t ∈ 0..Tmax − Lp + 1,∑
k∈p

ci,p,k,t +
∑
q∈P
q 6=p

t+Lp−1∑
tt=0

∑
k∈q

cj,q,k,tt ≤ 1 (12)

∀p ∈ B′′, ∀(i, j) ∈ EG, ∀t ∈ 0..Tmax − Lp + 1,∑
k∈p

ci,p,k,t +
∑
q∈B

t+Lp−1∑
tt=0

∑
k∈q

cj,q,k,tt
≤ 1 (13)

3.4 Resource allocation

A schedule is valid if it respects data dependences and its resource usage does not
exceed the available resources (functional units, registers) at any time. Equation (14)
verifies that there are no more resources required by the final solution than available on
the target architecture. In this paper we assume fully pipelined functional units with an
occupation time of one for each unit,i.e. a new instruction can be issued to a unit every
new clock cycle. The first summation counts the number of resources of typef required
by instructions corresponding to selected multi-node pattern instancesp at timet. The

VII

second part records resource instances of typef required for singletons (scheduled at
time t).

∀t ∈ 0..Tmax, ∀f ∈ F,
∑
p∈B′

Up,f =1

sp,t +
∑

p∈B′′

Up,f =1

∑
i∈G

∑
k∈p

ci,p,k,t ≤ Mf (14)

Finally Equation (15) assures that the issue widthW is not exceeded. For each issue
time slott, the first summation of the equation counts for multi-node pattern instances
the number of instructions composing the long instruction word issued att, and the sec-
ond summation for the singletons. The total amount of instructions should not exceed
the issue widthW , i.e., the number of available slots in a VLIW instruction word.

∀t ∈ 0..Tmax,
∑
p∈B′

sp,t +
∑

p∈B′′

∑
i∈G

∑
k∈p

ci,p,k,t ≤ W (15)

3.5 Optimization goal

In this paper we are looking for a time-optimal schedule for a given basic block. The
formulation however allows us not only to optimize for time but can be easily adapted
for other objective functions. For instance, we might look for the minimum register
usage or code length.

In the case of time optimization goal, the total execution time of a valid schedule is
derived from the solution variablesc as illustrated in Equation (16).

∀i ∈ G, ∀p ∈ P, ∀k ∈ p, ∀t ∈ 0..Tmax, ci,p,k,t ∗ (t + Lp) ≤ τ (16)

The total execution time is less or equal to the solution variableτ . Looking for a time
optimal schedule, our objective function is to minimizeτ .

4 Evaluation

First, we provide two theoretical VLIW architectures for which we generate target code.
Secondly we describe the experimental setup that we used to evaluate our ILP formula-
tion against our previous DP approach and summarize the results.

4.1 Target Architectures

In order to compare OPTIMIST’s DP technique to the ILP formulation of Section 3,
we use two theoretical VLIW target platforms (Case I and Case II) with the following
characteristics.
Case I:The issue width is a maximum of two instructions per clock cycle. The architec-
ture has an arithmetic-logical unit (ALU). Most ALU operations require a single clock
cycle to compute (occupation time and latency are one). Multiplication and division
operations have a latency of two clock cycles. Besides the ALU, the architecture has a
multiply-and-accumulate unit (MAC) that takes two clock cycles to perform a multiply-
and-accumulate operation. There are eight general purpose registers accessible from

VIII

OPTIMISTLCC−FE

CPLEX

.c .asmLCC−IR

.xml

SRC

HW spec.

ILP model

.dat

ILP solution.mod

Fig. 2.Experimental setup.

any unit. We assume a single memory bank with unlimited size. A load/store unit (LS)
stores and loads data in four clock cycles.
Case II: The issue width is of maximum four instructions per clock cycle. The archi-
tecture has twice as many resources as in Case I,i.e. two arithmetic-logical units, two
multiply-and-accumulate units, and two load/store units with the same characteristics.

4.2 Experimental Setup

We implemented the ILP data generation module within the OPTIMIST framework.
Currently our ILP model addresses VLIW architectures with regular pipeline,i.e. func-
tional units are pipelined, but no pipeline stall occurs. We adapted hardware specifica-
tions in xADML [1, Chap. 8] such that they fit current limitations of the ILP model.
In fact, the OPTIMIST framework accepts more complex resource usage patterns and
pipeline descriptions expressible in xADML, which uses the general mechanism of
reservation tables [3]. As assumed in Section 3, we use for the ILP formulation the sim-
pler model with unit occupation time and a latency for each instruction. An extension
of the ILP formulation to use general reservation tables is left to future work.

Figure 2 shows our experimental platform. We provide a plain C code sequence as
input to OPTIMIST. We use LCC [4] (within OPTIMIST) as C front-end. Besides the
source code we provide the description of the target architecture in xADML language
For each basic block, OPTIMIST outputs the assembly code as result. If specified, the
framework also outputs the data file for the ILP model of Section 3. The data file con-
tains architecture specifications, such as the issue width of the processor, the set of
functional units, patterns,etc. that are extracted from the architecture description docu-
ment. It generates all parameters introduced in Section 2.2. Finally we use the CPLEX
solver [6] to solve the set of equations.

Observe that for the ILP data we need to provide the upper bound for the maximum
execution time (Tmax). For that, we first run a heuristic variant of DP that still considers
full integration of code generation phases, and provide its execution time (computed in
a fraction of a second) as theTmax parameter to the ILP data.

4.3 Results

We generated code for basic blocks taken from various digital signal processing bench-
mark programs. We run the evaluation of the DP approach on a Linux (kernel 2.6.13)

IX

PC with Athlon 1.6GHz CPU and 1.5GB RAM. The ILP solver runs on a Linux (kernel
2.6.12) PC with Athlon 2.4GHz CPU, 512MB RAM using CPLEX 9.

We should mention a factor that contributes in favor of the ILP formulation. In the
OPTIMIST framework we use LCC [4] as C front-end. Within our framework we en-
hanced the intermediate representation with extended basic blocks [11] (which is not
standard in LCC). As consequence, we introduced data dependence edges for resolving
memory write/read precedence constraints. In the current ILP formulation we consider
only data flow dependences. Thus, we instrumented OPTIMIST to remove edges intro-
duced by building extended basic blocks. Removing dependence edges results in DAGs
with larger base,i.e. with larger number of leaves, and in general a lower height. We are
aware that the DP approach suffers from DAGs with a large number of leaves, as OPTI-
MIST early generates a large number of partial solutions. Further, removing those edges
builds DFGs that may no longer be equivalent to the original C source code. However,
it is still valid to compare the ILP and DP techniques, since both formulations operate
on the same intermediate representation.

Table 1 reports our results for the Case I architecture. The first column indicates
the name of the basic block. The second column reports the number of nodes in the
DAG for that basic block. The third and fourth columns give the height of the DAG and
the number of edges, respectively. Observe that the height corresponds to the longest
path of the DAG in terms of number of DAG nodes, and not to its critical path length,

Table 1. Evaluation of ILP and DP fully integrated code generation approaches for the Case I
architecture.

DP ILP
Basic block |G| Height |EG| τ (cc) t (sec) τ (cc) t (sec)

1) iir filter bb9 10 4 10 10 0.3 10 0.9
2) vecmax bb8 12 4 12 11 0.6 11 1.3
3) dijkstra bb19 16 7 15 14 6.6 14 5.6
4) fir filter bb9 16 3 14 15 61.3 15 7.8
5) cubic bb16 17 6 16 14 15.0 14 5.7
6) fir vselp bb10 17 9 17 16 3.4 16 8.2
7) matrix sum loop bb4 17 8 17 16 4.0 16 8.8
8) scalarprod bb2 17 8 18 17 1.2 17 15.8
9) vecsum bb3 17 8 18 16 1.4 16 11.8

10) matrix copy bb4 18 7 19 16 4.3 16 12.5
11) cubic bb4 21 8 23 17 69.8 17 277.7
12) iir filter bb4 21 6 17 20 3696.4 20 46.5
13) fir filter bb11 22 6 27 19 89.7 CPLEX
14) codebksrch bb20 23 7 22 17 548.8 17 63.1
15) fir vselp bb6 23 9 25 19 40.6 CPLEX
16) summatrixun1 bb4 24 10 28 20 25.4 CPLEX
17) scalarprodun1 bb2 25 10 30 19 14.9 CPLEX
18) matrixmult bb6 30 9 35 23 2037.7 AMPL
19) vecsum unrolled bb2 32 10 40 24 810.9 AMPL
20) scalarprodun2 bb2 33 12 42 23 703.1 AMPL

X

whose calculation is unfeasible since the instruction selection is not yet known. The
fifth column reports the amount of clock cycles required for the basic block, and in the
sixth column we display the computation time (in seconds) for finding a DP solution.
Columns seven and eight report the results for ILP. The computation time for the ILP
formulation does not include the time for CPLEX-presolve that optimizes the equations.

In the tables we use three additional notations: CPLEX indicates that the ILP solver
ran out of memory and did not compute a result. AMPL means that CPLEX-presolve
failed to generate an equation system, because it ran out of memory. Where the DP ran
out of memory we indicate the entry as MEM.

For all cases that we could check both techniques report the same execution time
(τ). It was unexpected to see that the ILP formulation performs quite well and in several
cases with an order of magnitude faster than DP. For cases 4), 12) and 14) in Table 1
the DP takes almost eight times, eighty times and nine times respectively longer than
the ILP solver to compute an optimal solution. Since we removed the memory data
dependence edges (as mentioned earlier) the resulting test cases present two, four and
two unrelated DAGs for case 4), 12) and 14) respectively. We know that DP suffers
from DAGs with a large number of leaves because a large number of selection nodes
is generated already at the first step. For the rest of the test cases, DP outperforms the
ILP formulation or has similar computation times. Observe that we reported for cases
3) and 5) that ILP takes shorter time to compute an optimal solution. But if we include
the time of CPLEX-presolve, which runs for 7.1s in case 3) and 8.3s in case 5), the ILP
times are worse or equivalent. For problems larger than 22 nodes, the ILP formulation
fails to compute a solution. For problem instances over 30 nodes, the CPLEX-presolve
does not generate equations because it runs out of memory.

Table 2. Evaluation of ILP and DP fully integrated code generation approaches for the Case II
architecture.

DP ILP
Basic block |G| Height |EG| τ (cc) t (sec) τ (cc) t (sec) t′ (sec)

1) iir filter bb9 10 4 10 9 0.6 9 1.5 0.4
2) vecmax bb8 12 4 12 10 2.4 10 1.6 0.7
3) dijkstra bb19 16 7 15 14 73.5 14 10.7 4.2
4) fir filter bb9 16 3 14 9 2738.9 9 9.1 2.5
5) cubic bb16 17 6 16 12 1143.3 12 CPLEX 3.8
6) fir vselp bb10 17 9 17 14 62.1 14 CPLEX 4.9
7) matrix sum loop bb4 17 8 17 15 90.2 15 CPLEX 10.2
8) scalarprod bb2 17 8 18 15 10.0 — CPLEX CPLEX
9) vecsum bb3 17 8 18 13 11.4 13 CPLEX 4.6

10) matrix copy bb4 18 7 19 14 89.4 14 AMPL 4.1
11) cubic bb4 21 8 23 16 8568.7 — AMPL CPLEX
12) iir filter bb4 21 6 17 — MEM 12 AMPL 7.4
13) fir filter bb11 22 6 27 — MEM — AMPL CPLEX
14) codebksrch bb20 23 7 22 — MEM — AMPL CPLEX
15) fir vselp bb6 23 9 25 16 7193.9 — AMPL AMPL

XI

Table 2 shows the results for the Case II architecture. The notations are the same as
for Case I. We added an additional column in the ILP part, denoted t′, that reports the
ILP computation time when the upper boundTmax is derived from a run of a heuristi-
cally pruned DP algorithm [1, Chap. 4] (this decreases the number of generated equa-
tions by providing a value ofTmax closer to an optimal solution). The time for this DP
run for preconditioning the ILP (within a fraction of a second) is not included in t′.

For the cases 4) and 12) in Table 2, DP performs worse than ILP. For the case 12)
DP runs out of memory, whereas the ILP could compute a solution within 7.4s ifTmax

is close enough to the optimum. The case II results show that it is beneficial to spend
time on minimizingTmax. We could gain four additional nodes in ILP problem size.
For Case II, if the ILP computes a solution it outperforms the DP.

5 Future work

The current ILP formulation lacks several features of the OPTIMIST framework. In this
paper we considered target architectures that suit the ILP model. We plan to extend the
formulation to handle clustered VLIW architectures, such as Veloci-TI DSP variants.
For that, we will need to model operand residences (i.e., in which cluster or register set
a value is located). This will certainly increase the amount of generated variables and
equations and affect ILP performance.

Also, we need to formulate the insertion of spill code. The current ILP formulation
assumes a sufficient number of registers, which is not generally the case.

We also mentioned that the current ILP formulation is based on a simpler resource
usage model that is limited to unit occupation times per functional unit and a variable
latency per target instruction. It would be of interest to have a more general model
using reservation tables for specifying arbitrary resource usage patterns and complex
pipelines, which is already implemented in OPTIMIST’s DP framework.

Finally, we will extend the scope of the optimization beyond the basic block level,
in particular to integrated software pipelining of loops.

6 Conclusions

In this paper we provided an integer linear programming formulation for fully integrated
code generation for VLIW architectures that includes instruction selection, instruction
scheduling and register allocation. We extended the formulation by Wilsonet al. [14] for
VLIW architectures. In contrast to their formulation, we do no longer need to preprocess
the DFG to expose instruction selection alternatives. Moreover, we have a working
implementation where ILP instances are generated automatically from the OPTIMIST
intermediate representation and a formal architecture description in xADML.

We compared the ILP formulation with our research framework for integrated code
generation, OPTIMIST, which uses dynamic programming. We evaluated both methods
on theoretical architectures that fit the ILP model restrictions. Where the ILP solver
terminates successfully, the ILP-based optimizer mostly works faster than the dynamic
programming approach; on the other hand, it fails for several larger examples where

XII

dynamic programming still provides a solution. Hence, the two approaches complement
each other. Moreover, the ILP approach profits from preconditioning by a heuristic
variant of DP.

Currently, our ILP formulation lacks support for memory dependences and for ir-
regular architecture characteristics, such as clustered register files, complex pipelines,
etc. We intend to complete the formulation as part of future work. Further we need to
address insertion of spill code.

Acknowledgments We thank Petru Eles and Alexandru Andrei from ESLAB of Linköpings
universitet for letting us using their CPLEX installation. This research was partially funded by
the Ceniit program of Link̈opings universitet and by SSF RISE.

References

1. A. Bednarski. Integrated Optimal Code Generation for Digital Signal Processors. PhD
thesis, Link̈opings universitet, Link̈oping, Sweden, June 2006.

2. C.-M. Chang, C.-M. Chen, and C.-T. King. Using integer linear programming for instruction
scheduling and register allocation in multi-issue processors.Computers Mathematics and
Applications, 34(9):1–14, 1997.

3. E. S. Davidson, L. E. Shar, A. T. Thomas, and J. H. Patel. Effective control for pipelined
computers. InProc. Spring COMPCON75 Digest of Papers, pages 181–184. IEEE Computer
Society Press, Feb. 1975.

4. C. W. Fraser and D. R. Hanson.A Retargetable C Compiler: Design and Implementation.
Addison-Welsey Publishing Company, 1995.

5. C. H. Gebotys and M. I. Elmasry. Simultaneous scheduling and allocation for cost con-
strained optimal architectural synthesis. InDAC ’91: Proceedings of the 28th conference on
ACM/IEEE design automation, pages 2–7, New York, NY, USA, 1991. ACM Press.

6. I. Inc. CPLEX homepage. http://www.ilog.com/products/cplex/, 2005.
7. D. Kästner. Retargetable Postpass Optimisations by Integer Linear Programming. PhD

thesis, Universiẗat des Saarlandes, Saarbrücken, Germany, 2000.
8. C. Kessler and A. Bednarski. Optimal integrated code generation for VLIW architectures.

To appear inConcurrency and Computation: Practice and Experience, 2006.
9. C. Kessler and A. Bednarski. OPTIMIST. www.ida.liu.se/∼chrke/optimist, 2005.

10. R. Leupers and P. Marwedel. Time-constrained code compaction for DSPs.IEEE Transac-
tions on VLSI Systems, 5(1):112–122, 1997.

11. S. S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers, 1997.

12. K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using integer program-
ming. InProc. ACM SIGPLAN Conf. Programming Language Design and Implementation,
pages 121–133, 2000.

13. T. Wilson, G. Grewal, B. Halley, and D. Banerji. An integrated approach to retargetable code
generation. InProc. 7th international symposium on High-level synthesis (ISSS’94), pages
70–75. IEEE Computer Society Press, 1994.

14. T. C. Wilson, N. Mukherjee, M. Garg, and D. K. Banerji. An integrated and accelerated ILP
solution for scheduling, module allocation, and binding in datapath synthesis. InThe Sixth
Int. Conference on VLSI Design, pages 192–197, Jan. 1993.

15. S. Winkel.Optimal Global Instruction Scheduling for the ItaniumR© Processor Architecture.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, Sept. 2004.

16. L. Zhang.SILP. Scheduling and Allocating with Integer Linear Programming. PhD thesis,
Technische Fakultät der Universiẗat des Saarlandes, Saarbrücken (Germany), 1996.

