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Abstract. Software pipelining is a classic compiler optimization that
improves the performances of inner loops on instruction-level parallel
processors. In the context of embedded computing, applications are com-
piled prior to manufacturing the system, so it is possible to invest large
amounts of time for compiler optimizations.

Traditionally, software pipelining is performed by heuristics such as iter-
ative modulo scheduling. Optimal software pipelining can be formulated
as integer linear programs, however these formulations can take expo-
nential time to solve. As a result, the size of loops that can be optimally
software pipelined is quite limited.

In this article, we present the SCAN heuristic, which enables to benefit
from the integer linear programming formulations of software pipelining
even on loops of significant size. The principle of the SCAN heuristic is
to iteratively constrain the software pipelining problem until the integer
linear programming formulation is solvable in reasonable time.

We applied the SCAN heuristic to a multimedia benchmark for the ST200
VLIW processor. We show that it almost always compute an optimal so-
lution for loops that are intractable by classic integer linear programming
approaches. This improves performances by up to 33.3% over the heuris-
tic modulo scheduling of the production ST200 compiler.

1 Introduction

In scientific and multimedia applications, most of the execution time is spent
in loops. In case of instruction-level parallel processors such as superscalar and
VLIW, instruction scheduling of inner loops can significantly increase perfor-
mances, in particular with software pipelining [AJLA95]. The mainstream soft-
ware pipelining technique is called modulo scheduling [RG81,Lam88,Rau94].

Modulo scheduling solves a 1-periodic cyclic scheduling problem with the
objective of minimizing the period or initiation interval (II). This is achieved
by computing first a lower bound MinII on the II. Then cyclic scheduling is
attempted for increasing II values starting at MinII, until a solution is found.
In general it is NP -hard to know what is the minimum II of a modulo scheduling
problem, but modulo schedules whose II equals MinII are clearly optimal.
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The modulo scheduling problem at a given II can be formulated as an inte-
ger programming problem [EDA95,dD05]. The formulation of Eichenberger et al.
uses a mix of {0, 1} and of integer variables, while the formulation of Dupont-de-
Dinechin only uses {0, 1} variables (but in a larger number). We implemented the
formulation of Dupont-de-Dinechin as it is adapted from the integer linear pro-
gramming formulation of resource-constrained project scheduling [ADdDA06].
Solving such formulations enables to modulo schedule at the minimum II, an
appealing possibility in cases the compilation time is not severely constrained.
However, the time required to solve these formulations grows exponentially with
the size of the modulo scheduling problem, making classic integer linear pro-
gramming approaches intractable beyond a few tenths of instructions.

In this article, we propose a new approach for modulo scheduling that enables
to benefit from integer linear programming formulations even on problems with
a significant number of instructions. The main idea is to restrict the solution
space to the areas where the formulation can be solved in reasonable time. Here
solved means either computing a solution or proving that no solution exists. For
the integer linear programming formulations discussed above, some constants
and the number of variables depend on a parameter called the time horizon of
the loop. Although a theoretical bound exists for the time horizon, it is usually
much higher than required by an optimal solution.

The principle of our approach is to heuristically reduce the time horizon in
order to solve the formulation. The issue with this reduction is that it might
transform a feasible modulo scheduling problem into an infeasible one. Thus,
we have to explore the solution space along two parameters: performance, rep-
resented by the II; the time horizon, that must be kept small enough so the
formulation can be solved. Our approach takes advantage of an empirical knowl-
edge on the general shape of the solution space, which we deduced from a large
set of experiments. We called this approach the SCAN heuristic.

Although reducing the time horizon may eliminate all optimal solutions, our
results show that SCAN reaches the optimal performance (II equals MinII) for
most of the loops of our benchmark, including those that appeared intractable
with the original integer linear programming formulations. For the remaining
loops, we have no way to know if modulo scheduling with II = MinII is feasible,
but the II results of the SCAN heuristic are consistently close to MinII and
better than those of the modulo scheduling heuristic of the ST200 production
compiler. Overall, our approach results in improvements of up to 33.3% for the
most difficult loops as demonstrated by our experiments.

This article is organized as follows. In section 2, we present the modulo
scheduling problem and we review the integer linear programming (ILP) formu-
lation currently used by the SCAN heuristic. In section 3, we develop our findings
about the time horizon and its relations with the ILP formulation. We character-
ize the search space of the initiation interval and the time horizon values. Then
we present how the SCAN heuristic searches for the best tractable initiation
interval by adjusting the time horizon accordingly. Finally, section 4 reports the
experimental results of the SCAN heuristic on a multimedia benchmark.
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2 The Cyclic Scheduling Problem

Cyclic scheduling, also known as software pipelining in the case of instruction
scheduling, is a widely studied problem [AJLA95]. Modulo scheduling [Rau94]
is a class of software pipelining techniques that build 1-periodic schedules. This
section introduces our notations for modulo scheduling and presents the integer
linear programming formulation of modulo scheduling we use.

2.1 Cyclic Scheduling Problem Formulation

Consider the problem of scheduling a loop with a possibly large number of it-
erations. The loop can be represented by a finite, directed multigraph G =
(I, Edep, θ, ω). The vertex set I contains the instructions of the loop body and
each instruction Ii ∈ I generates a set of instruction instances {Ik

i |k ∈ N}, one
for each iteration of the loop.

The directed edges Edep model the dependence constraints between instruc-
tions: each edge Ii−→Ij ∈ Edep is labeled with a pair (θj

i , ω
j
i ) ∈ N × N where

θj
i is the dependence latency and ωj

i the dependence distance. Such dependence
expresses the fact that the execution of Ik

i (instance of Ii at iteration k) must

start θj
i cycles before the execution of I

k+ωj
i

j (instance of Ij at iteration k + ωj
i ).

Each instruction Ii is also associated with a execution time pi and a resource
requirements vector

−→
bi of size r. The total availability of the processor resources

is also given by a vector
−→
B . Typical resources are issue width, functional units

and memory ports. Execution time of fully pipelined instructions is pi = 1.
The cyclic scheduling problem is to determine a schedule σ : I × N → N for

the instruction instances Ik
i that respects the dependence constraints:

∀Ii−→Ij ∈ Edep,∀k ≥ 0 : σk
i + θj

i ≤ σ
k+ωj

i
j (1)

and the resource constraints: at any clock cycle, the sum of resources used cannot
be greater than the available resources

−→
B .

Among all cyclic schedules, the 1-periodic schedules are especially interesting
in instruction scheduling as they enable simple code generation. Such schedules,
also known as modulo schedules, are defined by:

∃II ∈ N,∀Ii ∈ I,∀k ∈ N : σk
i = σ0

i + k × II (2)

The period of the schedule, usually called the initiation interval in the liter-
ature, is denoted II. This is the performance metric of modulo schedules: the
lower the initiation interval, the greater the execution throughput.

The initiation interval of any modulo schedule is limited by a lower bound
MinII defined as max(MIIRec,MIIRes) [Rau94], where MIIRec (recurrence
minimum initiation interval) is related to dependence circuits and MIIRes (re-
source minimum initiation interval) is related to resource uses:
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MIIRec
def
= max

C circuit in G


∑

θj
i

Ii→Ij∈C∑
ωj

i
Ii→Ij∈C

 (3)

MIIRes
def
= max

r


∑

pib
r
i

Ii∈I

Br

 (4)

The time horizon is defined as the maximum number of cycles between the
execution of two instruction instances of the same iteration:

H = max
Ii,Ij∈I

(σ(Ii, k)− σ(Ij , k))∀k ∈ N (5)

2.2 Modulo Scheduling by Integer Linear Programming

Integer linear programming (ILP) is a well known technique to formulate and
solve combinatorial problems such as scheduling and routing. Several ILP formu-
lations have been proposed for the modulo scheduling problem [EDA95,ED97].
Based on the efficient ILP formulations used in resource-constrained project
scheduling, B. Dupont-de-Dinechin recently introduced another formulation for
modulo scheduling [dD05], which we use for the SCAN heuristic. Compared to
the latest formulation of Eichenberger et al. [ED97], this new formulation only
uses {0, 1} variables and has stronger linear programming relaxations [ADdDA06].

This new ILP formulation can be summarized as follows. For the sake of
simplicity, we removed the objective function, the equations related to registers
pressure and we assume that instructions have unit execution time, which is the
case for our target processor. The complete formulation is available in [dD05].

H−1∑
t=0

xt
i = 1 ∀i ∈ [1, n] (6)

H−1∑
s=t

xs
i +

t+θj
i−IIωj

i−1∑
s=0

xs
j ≤ 1 ∀t ∈ [0,H − 1],∀(i, j) ∈ Edep (7)

n∑
i=1

bH−1
II c∑

k=0

xt+k×II
i

−→
bi ≤

−→
B ∀t ∈ [0, II − 1] (8)

xt
i ∈ {0, 1} ∀i ∈ [1, n],∀t ∈ [0,H − 1] (9)

Let n denote number of instructions. Each xt
i is a {0, 1} variable that is 1

if the instruction Ii is scheduled at time t, else it is 0. In this formulation, the
equations correspond to: unique scheduling dates (6), dependence constraints (7)
and resource constraints (8).
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Any solution of this ILP formulation yields a valid modulo schedule at initia-
tion interval II whose time horizon is at most H. By searching iteratively for the
minimum II and with a large enough H, we eventually find an optimal solution
of the modulo scheduling problem. Unfortunately, the resolution time of such
integer linear program grows exponentially with the number of instructions.

3 The SCAN Heuristic

The ILP formulation introduced in section 2.2 depends on two parameters: the
initiation interval II, which we want to minimize; the time horizon H, which
bounds the span of the schedule of a given loop iteration. In this section, we
describe how the SCAN heuristic drastically reduces the time to solve the the
integer linear programs, based on a characterization of the solution space on
the parameters H and II. It relies on the observation that, usually, a modulo
schedule exists at a given II with a small time horizon.

3.1 The Search for the Time Horizon

The time horizon H of a solution to a modulo scheduling problem instance at
a given II is not known in advance. A trivial lower bound is deduced from the
longest path in the dependence graph. An upper bound is given in [ES96], which
roughly equals the number of instructions times the sum of the initiation interval
and the maximal dependence distance: O(n× (II + max(ωj

i ))).

(1,0) (1,0)

A1 B1 A2

(a) Simple instructions graph

resources/cycle 1 2 3 4 5 6 7 8 9 10

A A1,1 A1,2 A2,1 A1,3 A2,2 A1,4 A2,3 A1,5 A2,4

B B1,1 B1,2 B1,3 B1,4 B1,5

(b) cyclic schedule of initiation interval of 2 and time horizon of 4

resources/cycle 1 2 3 4 5 6 7 8 9 10

A A1,1 A1,2 A1,3 A2,1 A1,4 A2,2 A1,5 A2,3

B B1,1 B1,2 B1,3 B1,4 B1,5

(c) cyclic schedule of initiation interval of 2 and time horizon of 6

Fig. 1. A simple instance of software pipelining. Graph of three instructions
(1(a)) and two cyclic schedules (1(b)) and (1(c)) with time horizon 4 and 6.

A main issue is that the number of variables of the ILP formulation of sec-
tion 2.2 directly depends on the value of the time horizon. Given that in most
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cases the time horizon of the optimal solution is close to its lower bound [ES96],
the idea of using the ILP formulation with a small time horizon is natural. The
difficult part is to determine which value of H is sufficient to keep the prob-
lem solvable at a given II. Unfortunately, this value is highly dependent on the
interference between dependence and resource constraints.

Possible candidate values are difficult to guess as illustrated in figure 1: in
this example, three instructions form a dependence chain and require two type of
resources (type A for instructions A1 and A2 and type B for instruction B). Each
resource type is limited to one instruction at a time. Because of this limitation
and of the dependences, an optimal initiation interval of 2 (the resources lower
bound) is achievable with a time horizon of 4 and 6 but not 5.

3.2 Characterization of the Search Space

An inappropriate choice for the value of H makes the integer linear program
either infeasible or intractable. As appropriate choices of H for a given II are
difficult to guess, we conducted experiments on all our benchmark loops to deter-
mine the shape of this search space. We tried all the possible (H, II) values with
II ranging from the lower bound of the problem to the II found by a modulo
scheduling heuristic and H ranging from the lower bound to the upper bound.
For each possible couple of values, we reported if the problem was infeasible,
feasible or reached a given timeout (in which case we consider it as intractable).

Infeasible
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Time Out

∆II

I
I I
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M
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I

HIS ∆H

(a) for the general case

+5

+5 +10 +15 +64
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Infeasible Time Out
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S
M
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I
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(b) for a loop of transfo

Fig. 2. Characterization of the search space and the SCAN heuristic

For all the loops, the observed search space has the same general shape: a
timeout area for large H values, an infeasible area for small values of both II and
H and a timeout area between the infeasible area and the rest which is feasible.
This characterization is depicted in figure 2. For some loops, the infeasibility
area reduces to an empty part (along with the timeout border) or the slope of
the separating line might change (at worst this is an horizontal line: at some
point we are not able to find a lower II whatever the H value). This leads to:

– infeasibility usually results from a too small value for H, in this case the
solution is simply to increase it.
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– intractability is more difficult to handle. It might result from a choice of H
which is either too small, in the timeout border on the side of the unfeasible
area, or too large, in the large timeout area.

Because of the non-predictable location of the timeout points, it is not possible
to use a dichotomy for a given II value to find the appropriate H value. As it
will be shown in the section 4, the value chosen for the timeout does not change
the shape of the solution space. By choosing a smaller timeout value, the feasible
area is just smaller and included in the area found with a larger value.

3.3 The SCAN Heuristic

The main idea of the SCAN heuristic is to change the values for II and H in order
to progress along the line that separates the unfeasible area from the feasible one.
This enables in most cases to reach the part with the lowest initiation interval
while remaining within the feasible area. The algorithm is illustrated by figure 2
and can be described as follows:

1. start from II and H found by a classical modulo scheduling heuristic
2. solve the linear program, there are two cases:

(a) if the program is unfeasible or stopped by the timeout, H = H + 1
(b) if the program is feasible, II = II − 1

3. repeat step 2 until a global timeout or reaches MinII
4. return the best solution (lowest H in the set of lowest II feasible solutions)

4 Experimental Results

We performed experiments using our implementation of the SCAN heuristic in-
tegrated in the production compiler developed by STMicroelectronics for the
ST200 processor. The ST200 is a VLIW processor that executes up to 4 in-
structions by cycle and has clean pipelines (instructions can be viewed as unit
execution time with a latency of either 1 or 3 towards dependent instructions).
The optimal scheduler used by the SCAN heuristic is linked with the cplex9.0
solver from ILOG for the ILP resolution. The compilation is performed on a
cross-compiler running on a Pentium 4 1.8 GHz system with 1 Gb of RAM.

4.1 Space Characterization

The test suite is the multimedia benchmark used internally by STMicroelectron-
ics for its compiler performance validation process. It contains 169 inner loops
taken from speech coding, audio and video applications. These loops vary at the
structural level (from sequential to highly parallel) as well as in the number of
instructions of their body (from 12 to 114 instructions).

We performed an exhaustive search on all the loops of our benchmark to
characterize the (H, II) space described in section 3.2. For this search, we used
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a timeout value of 3000 seconds for each point. Overall, the computation of these
results ran for almost two weeks but validated our characterization.

Figure 3 shows the solution space for a difficult loop dbuffer with three
different timeout values. We notice on this example that the slope of the timeout
area frontier is almost horizontal and that the two timeout areas are connected.
But it still conforms to our characterization whatever the timeout value.
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(a) Solution space with a timeout of 3000s
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(b) Solution space with a timeout of 100s
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(c) Solution space with a timeout of 50s
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(d) Behavior of Scan with a timeout of 50s

Fig. 3. Different solution spaces for a loop of dbuffer and behavior of SCAN

4.2 Performance of the SCAN Heuristic

The ST200 production compiler integrates a heuristic modulo scheduler that
schedules 65.4% of the loops at II equal to MinII. Precisely, among the 169 in-
ner loops of our benchmark, 108 are scheduled optimally by the heuristic modulo
scheduler (106 at the lower bound and 2 proved unfeasible at a lower initiation
interval using an exact resolution). Thus 61 loops could be possibly improved
after heuristic modulo scheduling. For this 61 loops, an exhaustive search on the
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initiation interval and horizon was done with a timeout of 3000s. A better solu-
tion was found for 47 loops, the other being unsolvable in 3000s. With a timeout
of 75s by point, the SCAN heuristic is able to find all these better solutions; thus
the SCAN heuristic finds the better known solutions of our benchmark.

The improvements of the SCAN heuristic over the heuristic modulo scheduler
can be significant: for 8 loops the gain is close to 20% and maximum is 33.3%.
Among the noticeable results, the main loop of the fft32x32s 32-bit fractional
radix-4 Fourier transform, which appeared intractable using the ILP formulation
because of its 83 instructions, has been improved by 21.4%.

timeout SCAN vs. HMS MinII vs. SCAN time for scan MinII vs. ILP time for ILP

5s 4.10% 1.39% 3.36s 2.86% 5.48s
10s 4.21% 1.28% 5.95s 2.78% 8.86s
25s 4.28% 1.20% 9.19s 2.66% 19.75s
75s 4.29% 1.19% 22.10s 2.21% 52.57s
500s 4.29% 1.19% 98.34s 1.59% 277.40s

Table 1. Improvements of the SCAN heuristic for different timeout values.

Table 1 illustrates how the SCAN heuristic improves on average the 169
loops of our benchmark for the different values of the timeout listed in the
first column. The second column contains the average II improvements of the
SCAN heuristic over the production heuristic modulo scheduler (HMS). The
third column contains the average II increase of the SCAN heuristic over MinII
and the average time spent per loop in the SCAN heuristic. The fourth column
contains the average II increase of the ILP modulo scheduler over MinII and
the average time spent per loop in the ILP modulo scheduler. From these figures,
the SCAN heuristic appears quite effective even at low timeout values.

5 Conclusions

We presented a heuristic that takes advantage of integer linear programming
formulations of modulo scheduling. Such formulations when solved yield optimal
software pipelines, but resolution times are worst case exponential. In practice,
only loops that comprise less than a few tenths of instructions can benefit from
integer linear programming formulations of modulo scheduling.

The SCAN heuristic we propose makes integer linear programming formu-
lations of modulo scheduling applicable to significantly larger loops, by walking
on the boundaries of the practically solvable solution space. The solution space
we consider is bi-dimensional, one dimension being the software pipeline period
II and the other a heuristic restriction on the schedule time horizon H. The
SCAN heuristic takes advantage of an empirical characterization of the search
space and evolves these parameters towards close to optimal solutions.

We implemented the SCAN heuristic and an integer linear programming for-
mulations of modulo scheduling in the STMicroelectronics production compiler
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for the ST200 VLIW processor. The experiments we conducted show that our
space characterization holds for all of the considered loops. Furthermore, the use
of the SCAN heuristic on the difficult loops of a multimedia benchmark produced
results up to 33.3% better than the heuristic modulo scheduler of the produc-
tion compiler. The performance and flexibility of the SCAN heuristic make it
perfectly suitable for production use in embedded code compilation.
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grès de la Société Francaise de Recherche Opérationnelle et d’Aide à la
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