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Abstract. Interactive 3D environments have been studied for years and
represent an important application area of computer graphics. However,
high quality virtual environment interaction requires powerful computers
equipped with expensive graphics accelerator cards. The high 3D data
volume and the dynamic nature of bandwidth pose significant challenges
when providing a smooth virtual navigation on thin mobile devices over
wireless ad hoc networks. In this paper, we show that it is possible to
provide a virtual environment walkthrough on mobile devices through
a client-server approach. Although mobile devices have low processing
power and memory, they can still render images with relative ease. Based
on this fact, instead of using traditional geometry-rendering techniques
and locally rendering complex scenes, we employ an image-based mech-
anism on the client that uses images, which are provided by a remote
server through an interactive streaming transport protocol. In this pa-
per, we propose a bandwidth feedback algorithm together with a rate
control and virtual user path prediction to better adapt the system to
the changing bandwidth. We also discuss our ideas and show an extensive
set of simulations in order to evaluate the performance of our solutions.

1 Introduction

The fast developments of computer graphics technologies such as fast geome-
try rendering algorithms and hardware implementation of graphics primitives,
and the advances in communication networks and protocols have enabled the
creation of a vast number of interesting applications related to navigating in a
remote virtual environment, e.g. games, virtual tours, training, virtual shopping,
etc. However, complex 3D models have been created for powerful computers, not
for thin mobile devices such as cell phones and PDAs. In addition, downloading
complex virtual environments requires both high bandwidth and storage capa-
bility. The high volume of 3D data and the dynamic nature of bandwidth pose
significant challenges in terms of providing smooth virtual navigation on thin
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mobile devices over wireless ad hoc networks: a mobile device can only hold a
fraction of the entire virtual environment; the 3D rendering engine is not able
to process complex scenes in real-time, the bandwidth is always changing and
because the wireless communication channel is highly susceptible to error. A
possible approach to these problems is rendering the complex 3D geometry on a
graphics workstation server and transmitting only images to the remote client,
depending on the user’s position within the virtual environment. Instead of em-
ploying the traditional 3D geometry rendering mechanism on the client side, the
approach can make use of an inexpensive image-based rendering (IBR) tech-
nique. IBR uses images as input and the rendering cost does not depend on the
scene complexity, but on the final image resolution. As mobile devices usually
provide small displays, IBR methods perfectly fit on these types of devices as
the image size and therefore the bandwidth required to transmit the images will
be small. Lately, there has been a great deal of interest in IBR, algorithms lately.
For instance, the view morphing [1] technique, which requires low processing as
it renders novel views based on a collection of sample images. IBR algorithms
are based on the plenoptic function [2]. View morphing is the simplest IBR, algo-
rithm as it relies on a certain amount of geometric information about the scene,
whereas lumigraph [3] and lightfield [4] use implicit geometry or no geometry at
all; this requires more processing. Basically, as the user walks through the 3D
environment, the client device sends its position and orientation to the server,
which will update the virtual camera position, render a reference image, and
send this image back to the client. The client can use certain reference images to
render novel views through the IBR while it is waiting to receive new reference
images from the server.

Providing a less expensive rendering technique to the client device is not
sufficient to solve all of the problems related to remote interaction on mobile
devices. In order to cope with the dynamic bandwidth, efficient transport proto-
cols, which take into consideration the user’s behavior in a virtual environment,
must be developed. In this paper, we propose a client/server architecture to
enhance the user experience in a remote virtual environment through a hybrid
rendering system, which uses traditional 3D geometry rendering on the server
and an IBR method, such as view morphing [1], on the client. In order to im-
prove the frame rate, or the number of images that the device can display per
second, a virtual user path prediction algorithm is proposed, allowing the server
to pre-fetch certain images to the client when enough bandwidth is available.
The bandwidth feedback mechanism and rate control are designed to optimize
the pre-fetching scheme, as its goal is to avoid starvation of images at the client
side. The interactive streaming protocol is designed over the Real-Time Proto-
col (RTP) [5] and the Real-Time Streaming Protocol (RTSP) [6], which provide
end-to-end delivery services for data with real-time constraints. For instance,
audio and video.

This paper is organized as follows: Section 2 gives an overview of related
work. Section 3 presents the proposed system architecture. The algorithms are
described in Section 4. Simulation experiment results are shown and discussed



in Section 5. Finally, in Section 6 the reader can find our conclusions and future
work.

2 Related Work

In this Section we discuss some of the existing 3D rendering mechanisms on
mobile devices. We also give the reader a brief review of image-based rendering
and provide a discussion about interesting similar solutions to remote virtual
environments.

OpenGL ES API [7] is used by several 3D applications on mobile and em-
bedded devices. However, the rendering quality is still poor, or has a very low
level of detail. The Mobile 3D Graphics API (M3G), defined in Java Specifi-
cation Request (JSR 184) [8], is another industry effort to create a standard
3D API for Java-enabled thin devices. A solution to visualize more complex
3D scenes on mobile devices is made possible through Image-Based Rendering
(IBR). IBR methods are categorized based on the geometry information they
require to render novel views. Some image-based rendering techniques do not
require geometric information. For instance, Lightfield [4] renders a new view
by interpolating a set of samples without any geometric information such as a
depth map. The problem with IBR methods that do not rely on geometric in-
formation is the huge storage capacity required to hold all of the pre-acquired
image samples.

Our remote interactive system is based on View Morphing [1], which is able
to render any novel image by morphing two or more reference images. The basic
principle is depicted in Figure 1. Morphing parallel views is the simplest image
morphing algorithm. As depicted in Figure 1, images Iy and I; are acquired at
points Cy and C respectively, with focal lengths fy and f;. Novel image I,,, with
focal length f,, at point C,,, is rendered by the interpolation of images Iy and I;.
There is also an image cache on the client in order to reuse a previously received
image, significantly improving system performance and reducing network traffic.

Fig. 1. View morphing with parallel views

QuickTime VR [9] is the most popular image-based rendering system. How-
ever, it is limited to panoramic scenarios, and the client device must download



the entire environment in order to start the navigation. Our solution offers a
higher level of freedom, as a user can walk through the environment and there
is no need to download the entire environment as it is being rendered while the
user moves through different areas.

A client-server approach to image-based rendering on mobile terminals is
presented in [10]. The objective of this solution is to make it possible to render
complex scenes on mobile devices through an IBR method and a client/server
architecture. However, its main contribution concerns how to place the cameras
in order to avoid problems such as exposure and occlusion when using IBR. Thus,
the camera placement solution works only for urban scenes, thereby limiting the
applications of this solution.

The work presented in [11] aims at the protection of copyrighted 3D models
when manipulated by remote users. The server owns the entire 3D environment
and sends certain images to the client on demand. The client renders a low-
polygon model of the scene as the user manipulates it. When the user stops,
the client sends a request to the server, which will send back a high-resolution
image of the scene. This approach is different from ours as the client is capable
of 3D geometry rendering. This feature is not well suited to low-capacity devices
such as PDAs. The reader can refer to [12-14] for detailed information on other
solutions to remote virtual environments using IBR methods.

Unlike the presented solutions, we propose a system that can make better
use of the available bandwidth, which is crucial to applications involving wire-
less communication and thin devices. To the best of our knowledge, the solutions
found in the literature do not address the problem of dynamic bandwidth. Our
approach uses a virtual user’s path prediction together with bandwidth moni-
toring and rate control algorithms to adapt the protocol and pre-fetch images
to the client when bandwidth permits.

3 The Proposed Streaming System

Our proposed system is organized in the following modules: a modified JPEG
codestream, new RTP payload format for view morphing, streaming protocol,
bandwidth feedback mechanism, rate control scheme, and path prediction and
pre-fetching algorithms.

3.1 The Packetization and Streaming Schemes

We specified a new JPEG codestream to cope with wireless channel errors. Figure
2 shows this new JPEG codestream. A packetization scheme was developed to
avoid the errors that a corrupted packet propagate to other packets; it keeps the
packetization items independent from one another. A packetization item is an
atomic component such as the main header, the layer header, or a pixel block.
The image codestream is split into packetization items and is encapsulated in
RTP packets, and is then sent to the client.
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Fig. 2. Structure of the new JPEG codestream

Streaming multimedia compressed data over wired or wireless networks over
RTP requires new payload formats such as H.26x over RTP [15,16] and G.7xx
over RTP [17,18]. We introduced a new payload format for view morphing over
RTP, as well as a new packet header for view morphing, which are depicted in
Figures 3(a) and 3(b) respectively.

0 1 2 3
01234567890123456789012345678901
X|TNo NoS X coordinate
0 1 2 3 Y coordinate View direction
01234567890123456789012345678901
RTP Fixed Header P-id D-id Header-id Priority
Morphing-JPEG Payload Header Fragment offset Reserved
Meorphing~JPEG Codestream CRC
(a) (b)

Fig. 3. (a) Structure of a RTP packet for View Morphing. (b) View Morphing payload
header.

The modified RTP fields are shown below.

Payload Type: according to the RTP standard, this field specifies the for-
mat of the RTP payload and determines its interpretation by the application
[17]. Because our payload type is not specified by the RTP profile, the payload
type for the View Morphing codestream is not assigned through RTP means;
the upper layer defines the payload code;

Number of Video Unit (NVU): If the current packet is the first fragment of
a video unit or if it is the whole video unit, then check if this is the first packet



for that session. If it is the first packet, the field NVU and timestamp in the
RTP header receive a random value; this will be the first value of a sequence
number.

Timestamp: The View Morphing stream has no strict sampling instance.
Unlike other media types, the timestamp for View Morphing does not indicate
the sampling instance. Nevertheless, it is significant for calculating synchroniza-
tion and jitter when other media streams are associated with View Morphing.
All RTP packets for the same video unit will set the same timestamp. The packet
header fields for view morphing over RTP are described below:

The payload header extension (X) is a bit flag that is activated when sup-
plementary information follos the payload header. The twin images (T) bit field
is set to inform the renderer to process two images; otherwise the rendering al-
gorithm can render the image directly. The number of images in a video unit
(NoV) field informs the renderer whether the packet contains zero, one, or
two images. The number of an image in the streaming (NoS) field works as a
sequence number to make sure that all image fragments were received by the
client. The (X,Y) fields are the viewpoint coordinates and (VD) is the view
direction angle. Viewpoint and view direction identification (P-id and D-id)
help identify the viewpoint and view direction when data is corrupted or lost.
The (header-id) field helps recover the main header when data is corrupted.
The field (Priority) indicates the layer priority when sending different quality
layers. The fragment offset field is used to reassemble the codestream. We also
have the reserved field for future use. Finally, the CRC field detects whether or
not the payload header is corrupted, which part is corrupted and tries to correct
certain bits. Basically, the assembly of an RTP packet begins with the assign-
ment of the payload type field for the Morphing-JPEG. If the current packet is
the first fragment of a video unit or if it is the entire video unit, then check if
this is the first packet for that session. If it is the first packet, the field NVU
and timestamp in the RTP header receive a random value; this will be the first
value of a sequence number. If it is not the first packet, NVU is incremented by
one. All other fields are set according to the specification. For instance, field X
is set to 1 if an optional payload follos the payload header; the field NoV is set
according to the images the client will have to process; for instance, it will be
set to 00 so as to instruct the client to process the first image on that video unit,
10 for the second, and 11 for the final one.

On the client side, the algorithm is a simple parser for the server codestream.
First it checks if the payload type field is set to Morphing-JPEG, then checks the
NVU field to see if it is different from the last one. If it is different, it instructs
the application layer to render the image at that moment. The algorithm then
gets the timestamp to calculate the synchronization and jitter. If field X is set to
1, the algorithm will locate the optional payload header, parse the codestream,
and send it to the application. For the CRC scheme, the algorithm verifies if the
viewpoint and direction are correct. If they are correct, the algorithm proceeds
by checking the priority and the remaining fields. If the viewpoint and direction
are not correct, algorithm approximate values from P-id and D-id, and runs the



CRC on them. The final step is to check the offset field. If the offset is equal to
the last offset plus the length of the packetization data, then it merely appends
the packetization data to the previous one. If this is not the case, the algorithm
waits for a short timeout period. If the delayed packet does not arrive during
this period, the algorithm informs the server that an RTP packet was lost. This
will adjust the parameters according to the bandwidth feedback mechanism.

3.2 The Pre-fetching Mechanism

Based on the path prediction mechanism, the server will pre-fetch certain images
to the client. The pre-fetching algorithm takes advantage of available bandwidth
to send images in advance to the client, saving some requests and network traf-
fic, and improving the image quality and perhaps the frame rate on the client
because the reference images will be available in the client’s local cache. The pe-
riodic transmission of control packets conducted by RTCP is enough to control
the adaptive encodings and the speed of data distribution in wireless network
scenarios. Our proposed bandwidth feedback mechanism involves sending ACKs
for every received RTP packet. The server can establish the network status by
keeping track of these ACKs. An ACK packet is composed of its type, a sequence
number for ordering, and a timestamp. We use the timestamp to calculate the
round trip time (RTT) of RTP packets. Missing acknowledgments are inter-
preted as dropped RTP packets. When the server receives an ACK, it will parse
the RTP packet and extract the sequence number and timestamp. Then, the
server adds the sequence number to a list of successfully transmitted packets.
The server then calculates the RTT and adds it to the list of recently transmit-
ted packets. For each recently transmitted packet, if the sequence number does
not exist in the list of successfully transmitted packets, and if the RTT of the
previous packet minus the RTT of the next packet is greater than the acceptable
variation value, the number of packets lost is incremented by one. If the number
of packets lost is greater than 0, the network status is set to congested. Other-
wise, if the RT'T of the last received packet minus the RTT of the first received
packet is greater than the threshold, the status is congested. If the RTT of the
first received packet minus the RTT of the last received packet is greater than a
threshold, the status is unloaded. Otherwise network status is constant.

The path prediction mechanism is based on the virtual user’s previous and
recent movement within the environment. There are two navigation modes: linear
and rotational. For instance, if the user is moving along a straight line, the path
prediction can determine that based on his/her previous movements, the user
will continue along the same path. In the case of rotation within the virtual
environment, the path prediction will obtain the nearby positions based on a
threshold angle.

Our rate control mechanism is based on the reports from the bandwidth
feedback mechanism. If the network status is congested, the rate is decreased.
If the status is unloaded, the rate is increased; and if the status is constant,
the rate is left unchanged. The increment value is crucial for the performance
of our protocol. Upon receiving a request, the server will determine the network



status. If the network is unloaded or congested, the rate is increased or decreased
respectively by an amount corresponding to one image.

4 Simulation Experiment Results

We have implemented and simulated our approach on the NS-2 [19] network
simulator. We performed a set of simulations in different ad hoc network sce-
narios. They consist of one server and 15 to 60 mobile nodes moving at 5m/s
to 20m/s in an area of 500x500 m?. An 802.11b MAC layer was utilized during
the simulations. We used the following metrics to evaluate our proposed inter-
active streaming system: system throughput, end-to-end delay, burst length and
burst duration. The average number of images in the cache versus the number
of requests was used to evaluate the performance of the pre-fetching algorithm.

As depicted in Figure 4, when only one client is connected to the server,
the amount of images in the clients cache is 315 for only 150 requests. The
rate control was aware of the bandwidth status, and the server could utilize
the available bandwidth to pre-fetch additional reference images. With the pre-
fetching feature turned off, the number of images in the clients cache would not
exceed 150 (1 image per request). As we increased the number of clients, the
bandwidth dropped. The rate control mechanism was able to adjust to the new
scenario and reduce the streaming rate. For instance, the server sent 181 images
for 150 requests.
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Fig. 4. Pre-fetching mechanism performance

The number of successfully sent packets per second is represented by the
system throughput. As depicted in Figure 5(a), the system shows a reasonable
scalability. Increasing the number of nodes leads the number of packets per
second to increase from 25 to 45.

End-to-end delay is critical to our interactive system, because the system
relies on quick response times. As can be seen in Figure 5(b), delay is less than
10ms when 35 nodes are employed and increases along with node density because
the number of nodes in a path will most likely be higher.

Burst is a temporary connection lost that occurs when packets cannot reach
the destination due to broken paths. Burst length is the number of packets
that are dropped during a burst duration. As can be seen in Figures 5(c) and



5(d), burst length and duration depend on node density. With higher densities,
routing paths are quickly restored. When a burst occurs, the bandwidth feedback
mechanism is aware of the network status and immediately decreases the packet
rate. Thus, the client renders novel views based on reference images stored on
its cache, with a significant image quality depreciation, until it receives new
reference images.
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Fig. 5. (a) System throughput. (b) End-to-end delay. (c) Burst length. (d) Burst du-
ration.
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5 Conclusions and Future Work

In this paper, we proposed a client/server approach, which consists of a new
payload format for RTP, an interactive streaming algorithm, the packetization
scheme, and the pre-fetching mechanism, for remote interaction in virtual 3D
environments for mobile devices over ad hoc networks. We addressed some issues
of remote interactive virtual environments on mobile devices and focused on
optimizing bandwidth usage and maximizing user experience. To the best of
our knowledge, the related work did not tackle the dynamic bandwidth issue of
mobile ad hoc networks. Pre-fetching images when there is available bandwidth
has proven to be beneficial to the rendering system because the client does
not need to request and wait for the images, which implies long delays. The
simulation experiments demonstrated satisfactory performance results. As future
work, the virtual user path prediction will be improved using a probabilistic
virtual path prediction so as to optimize the tradeoff between sending reference
images and the real use of them at the client side. We are also working on system
prototype in order to evaluate the proposed algorithm.
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