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Abstract. This paper presents rVsMR rollback-recovery protocol for
distributed mobile systems, guarantying Monotonic Reads consistency
model, even in case of server’s failures. The proposed protocol employs
known rollback-recovery techniques, however, while applying them, the
semantics of session guarantees is taken into account. Consequently,
rVsMR protocol is optimized with respect to session guarantees require-
ments. The paper includes the proof of safety property of the presented
protocol.
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1 Introduction

Applications in mobile domain usually tend to be structured as client-
server interactions. In such applications, clients accessing the data are
not bound to particular servers, but they can switch from one server
to another. This switching adds a new dimension of complexity to the
problem of consistency and makes the management of data consistency
from client’s perspective very attractive. Therefore, in [TDP+94] a new
class of consistency models, called session guarantees (or client-centric
consistency models), has been proposed to define properties of the sys-
tem, observed from client’s point of view. Client-centric consistency mod-
els define four session guarantees: Read Your Writes (RYW), Monotonic
Writes (MW), Monotonic Reads (MR) and Writes Follow Reads (WFR).
RYW expresses the user expectation not to miss his own modifications
performed in the past, MW ensures that order of writes issued by a sin-
gle client is preserved, MR ensures that the client’s observations of the
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data storage are monotonic and finally, WFR keeps the track of causal
dependencies resulting from operations issued by a client.

In this paper we focus our attention on MR session guarantee. Below
we give a couple of examples that demonstrate the usefulness of MR.
First, let us imagine a mailbox of a traveling user, who opens the mailbox
at one location, reads emails, and afterwards opens the same mailbox at
different location. The user should see at least all the messages he has read
previously, which is impossible without MR. Further, imagine that user’s
appointment calendar is stored on-line in replicated database, and can be
updated by both: the user and automatic meeting scheduler. The calendar
program periodically refreshes its display by reading appointments from
the database. The recently added (or deleted) meetings can not appear
to come and go, which is ensured, when copies of the database held by
servers are consistent with respect to MR [TDP+94]. Finally, consider a
Web page replicated at two different stores S1 and S2. If a client first
reads the page from S1 and later again from S2, then the second copy
should be the same, or newer as the one read from S1.

MR session guarantee is provided by appropriate consistency proto-
cols [TDP+94,BSW05]. In order to construct effective solutions, adjusted
to real application requirements, these protocols should provide MR also
in situations, when servers holding replicated data brake down. Unfor-
tunately, as far as we know, none of the proposed consistency protocols
preserving session guarantees, considers such a possibility; they generally
assume non-faulty environments. Such assumption might be considered
not plausible and too strong for certain mobile distributed systems, where
in practice failures do happen. Therefore, this paper addresses a problem
of providing MR session guarantee in case of server’s failures.

We introduce the rollback-recovery protocol rVsMR for distributed
mobile systems, which combines fault–tolerant techniques: logging and
checkpointing with coherence operations of a formerly proposed VsSG
consistency protocol [BSW05]. As a result, the rVsMR protocol offers the
ability to overcome the servers’ failures, at the same time preserving MR
session guarantee. Because of client’s orientation, in rVsMR protocol run-
time faults are corrected with any intervention from the user. The main
contribution of this paper is a presentation of rollback-recovery protocol
rVsMR of MR session guarantee and formal proof of its safety.



2 Related work

Session guarantees have been introduced in the context of Bayou repli-
cated storage system [TDP+94] to allow mobile clients to implicitly de-
fine sets of writes that must be performed by servers. Since in Bayou
each server’s state is maintained in the database, adding a persistent
and crash resisting log is enough to provide fault–tolerance in case of
server’s failure. CASCADE — a caching service for distributed CORBA
objects [CDFV00], is another system using consistency conditions based
on session guarantees. In CASCADE it is assumed that processes do not
crash during the execution and all communication links are eventually
operational. The Globe system [KKvST98] follows the approach similar
to CASCADE, by providing a flexible framework for associating vari-
ous replication coherence models with distributed objects. Among the
coherence models supported by Globe are also client-based models, al-
though they are combined with object-based consistency models in a sin-
gle framework. Finally, Pastis — a highly scable, multi-user, peer-to-peer
file system [PBS05] implements a consistency model based on RYW ses-
sion guarantee. In Pastis it is assumed that at least one replica is not
faulty and all users allowed to write to a given file trust one another
regarding the update of that file.

3 System model, basic definitions and notations

Throughout this paper, a replicated distributed storage system is con-
sidered. The system consists of a number of unreliable servers holding a
full copy of a shared objects and clients running applications that access
these objects. Clients are mobile, i.e. they can switch from one server to
another during application execution. To access the shared object, clients
select a single server and send a direct request to this server. Operations
are issued by clients sequentially, i.e. a new operation may be issued af-
ter the results of the previous one have been obtained. In this paper we
focus on failures of servers, and assume the crash-recovery failure model,
i.e. servers may crash and recover after crashing a finite number of times
[GR04]. Servers can fail at arbitrary moments and we require any such
failure to be eventually detected, for example by failure detectors [SDS99].

The storage replicated by servers does not imply any particular data
model or organization. Operations performed on shared objects are ba-
sically divided into reads and writes. The server, which first obtains the
write from a client, is responsible for assigning it a globally unique identi-
fier. Clients can concurrently submit conflicting writes at different servers,



e.g. writes that modify the overlapping parts of data storage. Operations
on shared objects issued by client Ci are ordered by a relation Ci⇁ called
client issue order. A server Sj performs operations in an order represented

by a relation
Sj

�. Operations on objects are denoted by w, r or o, depend-
ing on the operation type (write, read or these whose type is irrelevant).
Every server maintains the set CRSj of indexes of clients from which it
has directly received write requests and table RWSj , where the number
of writes performed by Sj before read from Ci was obtained, is kept in
position i. Relevant writes RW (r) of a read operation r is a set of writes
that has influenced the current state of objects observed by the read r.
Formally, MW session guarantee is defined as follows [BSW05]:

Definition 1. Monotonic Reads (MR) session guarantee is a property
meaning that:

∀Ci ∀Sj

[
r1

Ci⇁ r2|Sj =⇒ ∀wk ∈ RW (r1) : wk

Sj

� r2

]
In the paper, it is assumed, that data consistency is managed by the VsSG
consistency protocol [BSW05]. The formerly proposed protocol VsSG [BSW05]
uses a concept of server-based version vectors for efficient representation
of sets of writes required by clients. Server-based version vectors have
the following form: Vsj =

[
v1 v2 ... vNS

]
, where NS is a total number

of servers in the system and single position vi is the number of writes
performed by server Sj . Every write w in the VsSG protocol is labeled
with a vector timestamp, denoted by T (w) (T : O 7→ V ) and set to the
current value of the vector clock VSj of server Sj performing w for the
first time. During writes, performed by server Sj , its version vector VSj

is incremented in position j and a timestamped operation is recorded in
history HSj . OSj is a set of all writes performed by the server in the past.
The writes that belong to OSj come from direct requests received by Sj

from clients or are incorporated from other servers during the synchro-
nization procedure. The VsSG protocol eventually propagates all writes
to all servers. At the client’s side, vector RCi representing writes relevant
to reads issued by the client Ci is maintained. The linearly ordered set(
OSj ,

Sj

�

)
of past writes is denoted by HSj and called history [BSW05].

During synchronization of servers, their histories are concatenated. The
concatenation of histories HSj and HSk

, denoted by HSj ⊕HSk
, consists

in adding new operations from HSk
at the end of HSj , preserving at the

same time the appropriate relations [BSW05].



Below, we propose formal definitions of fault-tolerance mechanisms
used by the rVsMR protocol:

Definition 2. A log LogSj is a set of triples:{
〈i1, o1, T (o1)〉 〈i2, o2, T (o2)〉 ... 〈in, on, T (on)〉

}
,

where in represents the identifier of the client issuing a write operation
on ∈ OSj and T (on) is timestamp of on.

Definition 3. Checkpoint CkptSj is a couple
〈
VSj ,HSj

〉
, of version vec-

tor VSj and history HSj maintained by server Sj at the time t, where t is
a moment of taking a checkpoint.

In this paper we assume, that log and checkpoint are saved by the server
in a stable storage, able to survive all failures [EEL+02]. Additionally, we
assume that the newly taken checkpoint replaces the previous one, so just
one checkpoint for each server is kept in the stable storage.

4 The rVsMR protocol

For every client Ci that requires MR session guarantee when executing
read r, results of all writes, which have influenced the read issued by a
client before r cannot be lost. Unfortunately, at the moment of performing
the operation, the server does not possess the knowledge, whether in the
future the client will be interested in reading results of its writes or not.
So, to preserve MR, the recovery protocol should ensure that outcomes
of all writes performed by the server are not lost in the case of its failure.

In the proposed rVsMR protocol, we introduce a novel optimization
that reduces the number of saved operations: we propose that every server
Sj saves only operations obtained directly from clients. Although only
some of operations performed by Sj are saved, we prove that MR is ful-
filled in case of Sj failure.

The server that obtains the write request directly from client Ci, logs
the request to stable storage (Figure 1, l. 13), and only afterwards per-
forms it (l. 14). The moment of taking a checkpoint is determined by
obtaining a read request r2, which follows another read r1 issued by the
same client. The server, which obtains operation r2 from a client, checks
first, whether such a read can be performed (by comparing the values
of vectors VSj and W - l. 6). When performing read r2 is possible, the
server checks if it has already performed, since the latest checkpoint, any
write operation that influenced the state of objects observed by the read



Upon sending a request 〈o〉
to server Sj at client Ci

1: W ← 0
2: if (not iswrite(o)) then
3: W ← max (W, RCi)
4: end if
5: send 〈o, W 〉 to Sj

Upon receiving a request 〈o, W 〉
from client Ci at server Sj

6: while
�
VSj 6≥W

�
do

7: wait()
8: end while
9: if iswrite(o) then

10: CWSj ← CWSj ∪ i
11: VSj [j]← VSj [j] + 1
12: timestamp o with VSj

13: LogSj ← LogSj ∪ 〈i, o, T (o)〉
14: perform o and store results in res
15: HSj ← HSj ⊕ {o}
16: nWrites← nWrites + 1
17: end if
18: if not iswrite(o) then
19: if i ∈ CRSj then
20: secondRead← TRUE
21: else
22: CRSj ← CRSj ∪ i
23: RWSj [i]← nWrites
24: end if
25: if (RWSj [i] > 0) and secondRead

then
26: CkptSj ← 〈VSj , HSj 〉
27: LogSj ← ∅
28: CRSj ← ∅
29: secondRead← FALSE
30: nWrites← 0
31: RWSj ← 0
32: end if
33: perform o and store results in res
34: end if
35: send



o, res, VSj

�
to Ci

Upon receiving a reply 〈o, res, W 〉
from server Sj at client Ci

36: if iswrite(o) then
37: RCi ← max (RCi , W )
38: end if
39: deliver 〈res〉

Every ∆t at server Sj

40: foreach Sk 6= Sj do
41: send



Sj , HSj

�
to Sk

42: end for

Upon receiving an update 〈Sk, H〉
at server Sj

43: foreach wi ∈ H do
44: if VSj 6≥ T (wi) then
45: perform wi

46: VSj ← max
�
VSj , T (wi)

�

47: HSj ← HSj ⊕ {wi}
48: end if
49: end for
50: signal()

On rollback-recovery
51: 〈VSj , HSj 〉 ← CkptSj

52: CRSj ← ∅
53: secondRead← FALSE
54: nWrites← 0
55: RWSj ← 0

56: Logp
Sj
← LogSj

57: vrecover ← 0
58: while { op

j : T (op
j) > vrecover} 6= ∅

do
59: choose 〈ip, op

i, T (op
i)〉 with minimal

T (op
j) from Logp

Sj
where T (op

j) > VSj

60: VSj [j]← VSj [j] + 1

61: perform op
j

62: HSj ← HSj ⊕
�
op

j

	

63: CWSj ← CWSj ∪ ip

64: vrecover ← T (op
i)

65: nWrites← nWrites + 1
66: end while

Fig. 1. Checkpointing and rollback-recovery rVsMR protocol



r1 (l. 25). When at least one such write has been performed, the server
checkpoints its state (l. 26), performs the read operation (l. 33) and sends
a reply to the client (l. 35). Otherwise, the new checkpoint need not be
taken. After the checkpoint is taken, server logs are cleared (l. 27). Saving
the state of server earlier would be unnecessary, as when write request
is not followed by a read one, it does not violate MR. Essential is the
fact, that first the checkpoint is taken, and only afterwards the content of
log LogSj is cleared. (l. 27). After the failure occurrence, the failed server
restarts from the latest checkpoint (l. 51) and replays operations from
the log (l. 58-65) according to their timestamps, from the earliest to the
latest one. Writes received from other servers during update procedure,
and missing from the local history of Sj , are performed, but not logged (l.
45-47). Thus, such writes are lost after the failure occurrence. However,
those writes are saved in the log or in the checkpoint of servers, which
received them directly from clients. Hence, lost writes will be eventually
obtained again in consecutive synchronizations.

5 Safety of rVsMR protocol

Lemma 1. Every write operation w issued by client Ci and performed
by server Sj that received w directly from client Ci, is kept in checkpoint
CkptSjor in log LogSj .

Proof. Let us consider write operation w issued by client Ci and obtained
by server Sj .

1. From the algorithm, server Sj before performing the request w, saves
it in the stable storage by adding it to log LogSj (l. 13). Because
logging of w takes place before performing it (l. 14), then even in the
case of failure operation w is not lost, but remains in the log.

2. Log LogSj is cleared after performing by Sj the second read request
issued by the same client. However, according to the algorithm, read
operations cause storing the information on writes by checkpointing
the server’s version vector VSj and history HSj in CkptSj (l. 26). The
checkpoint is taken before clearing log LogSj (l. 27). Therefore, the
server failure, which occurs after clearing the log, does not affect safety
of the algorithm because writes from the log are already stored in the
checkpoint.

Lemma 2. The rollback-recovery procedure recovers all write operations
issued by clients and performed by server Sj that were logged in log LogSj

in the moment of server Sj failure.



Proof. Let us assume that server Sj fails. The rollback-recovery procedure
recovers operations remembered in the log (l. 58), after recovering VSj and
HSj from a checkpoint (l. 51). The recovered operation updates version
vector VSj (l. 60), is performed by Sj (l. 61) and added to the server’s Sj

history HSj (l. 62).
Assume now, that failures occur during the rollback-recovery proce-

dure. Due to such failures the results of operations that have already been
recovered are lost again. However, since log LogSj is cleared only after the
checkpoint is taken (line 27) and it is not modified during the rollback-
recovery procedure (l. 56), the log’s content is not changed. Hence, the
recovery procedure can be started from the beginning without loss of any
operation issued by clients and performed by server Sj after the moment
of taking checkpoint.

Lemma 3. Operations obtained and performed in the result of synchro-
nization procedure and required by MR, are performed again after the
failure of Sj, before processing a new read from a client.

Proof. By contradiction, let us assume that server Sj has performed a
new read operation r obtained from client Ci before performing again
operation w, received during a former synchronization and lost because
of Sj failure. According to VsSG protocol, before executing r the condition
VSj ≥ RCi is fulfilled (l. 6) .

Further assume, that w issued by Ci before r, has been performed by
server Sk. According to the protocol, after the reply from Sk is received
by Ci, vector RCi is modified: RCi ← max (W,RCi) . This means that
vector RCi is updated at least at position k: RCi [k] ← k + 1. (l. 37).
Server Sj , during synchronization procedure with Sk, performs w and
updates its version vector: VSj ← max

(
VSj , T (w)

)
, which means that VSj

has been modified at least in the position k (l. 46). However, if failure
of Sj happens, the state of Sj is recovered accordingly to values stored
in the checkpoint CkptSj (l. 51) and in the log LogSj (l. 58-65). From
the algorithm, while recovering operations from the log, the vector VSj

is updated only at position j. Thus, if operation w1 performed by Sj in
the result of synchronization with server Sk is lost because of Sj failure,
the value of VSj [k] does not reflect the information on w. Hence, until the
next update message is obtained, VSj [k] < RCi [k] , which contradicts the
assumption.

Lemma 4. The recovered server performs new read operation issued by
a client only after all writes performed before the failure and required by
MR are restored.



Proof. By contradiction, let us assume that there is a write operation
w performed by server Sj before the failure occurred, that has not been
recovered yet, and that the server has performed a new read operation
issued by client Ci. According to original VsSG protocol [BSW05], man-
aging only consistency not reliability issues, for reliable server Sj that
performs new read operation, the condition VSj ≥ RCi is fulfilled (l. 6-7).

Let us consider which actions are taken when a write operation is
issued by client Ci and performed by server Sj . On the server side, the
receipt of the write operation causes the update of vector VSj in the
following way: Vsj [j] ← V Sj [j] + 1 and results in timestamping w with
the unique identifier (l. 12). The server that has performed the write sends
a reply containing the modified vector VSj to the client. At the client side,
after the reply is received, vector RCi is modified: RCi ← max (W,RCi)
(l. 37). This means that vector RCi is updated at least at position j:
RCi [j]← max[j] + 1. If there is a write operation w performed by server
Sj before the failure that has not been recovered yet, then VSj [j] < RCi [j],
which follows from the ordering of recovered operations (l. 59). This is a
contradiction with VSj ≥ RCi . Hence, the new read operation cannot be
performed until all previous writes are recovered.

Theorem 1. MR session guarantee is preserved by rVsMR protocol for
clients requesting it, even in the presence of server failures.

Proof. It has been proven in [BSW05] that VsSG protocol preserves MR
session guarantee, when none of servers fails. According to Lemma 1, ev-
ery write operation performed by server Sj is saved in the checkpoint or
in the log. After the server’s failure, all operations from the checkpoint
are recovered. Further, all operations performed before the failure oc-
curred, but after the checkpoint was taken, are also recovered (according
to Lemma 2). According to Lemma 4, all recovered write operations are
applied before new reads are performed. Moreover, operations obtained
by Sj during synchronization procedure and lost because of Sj failure,
are also performed once again before new reads from Ci (from Lemma
3). Hence, for any client Ci and any server Sj , MR session guarantee is
preserved.

Full versions of the theorems and proofs can be found in [BKS05].

6 Conclusions

Although our implementation of rollback-recovery protocol is based on
the known techniques of operation logging and checkpointing of server’s



state, it is nevertheless unique in exploiting properties of Monotonic Reads
session guarantee while applying these techniques. This results in check-
pointing only the results of write operations, which are essential to pro-
vide MR. Furthermore, we have designed novel optimisations that reduce
the number of saved operations. We believe that rVsMR protocol can
be applied to other systems (Section 2), where it is required to maintain
consistency for mobile clients.

Our future work encompasses the development of rollback-recovery
protocols, which are integrated with other consistency protocols. More-
over, appropriate simulation experiments to quantitatively evaluate over-
head of rVsMR protocol are being carried out.
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[BSW05] J. Brzeziński, C. Sobaniec, and D. Wawrzyniak. Safety of a server-based
version vector protocol implementing session guarantees. In Proc. of Int.
Conf. on Computational Science (ICCS2005), LNCS 3516, pages 423–430,
Atlanta, USA, May 2005.

[CDFV00] G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Implementing
a caching service for distributed CORBA objects. In Proc. of Middleware
2000: IFIP/ACM Int. Conf. on Distributed Systems Platforms, pages 1–23,
April 2000.

[EEL+02] N. Elmootazbellah, Elnozahy, A. Lorenzo, Yi-Min Wang, and D.B. John-
son. A survey of rollback-recovery protocols in message-passing systems.
ACM Computing Surveys, 34(3):375–408, September 2002.

[GR04] Rachid Guerraoui and Luis Rodrigues. Introduction to distributed algo-
rithms. Springer-Verlag, 2004.

[KKvST98] Anne-Marie Kermarrec, Ihor Kuz, Maarten van Steen, and Andrew S.
Tanenbaum. A framework for consistent, replicated Web objects. In Proc.
of the 18th Int. Conf. on Distributed Computing Systems (ICDCS), May
1998.

[PBS05] F. Picconi, J-M. Busca, and P. Sens. Pastis: a highly-scalable multi-user
peer-to-peer file system. EuroPar 2005, pages 1173–1182, 2005.
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