
Reducing Communication Overhead and Page
Faults in SDSM Platforms

Artemis A. Christopoulou1 and Eleftherios D. Polychronopoulos1

High Performance Information Systems Laboratory
Computer Engineering & Informatics Department

University of Patras, 26500 Rio, GREECE
{aac,edp}@hpclab.ceid.upatras.gr

Abstract. In this paper we present a new dynamic, cache coherence
protocol for Software Distributed Shared Memory (SDSM) systems that
adopt the scope-consistency model[7]. We initially outline our basic pro-
tocol, called Reduced Message Protocol (RMP), and then propose two
enhancements: the Multiple Home RMP (RMP-MH) and the Lock Mi-
gration RMP (RMP-LM). The experimentation we conducted with the
proposed protocols, exhibits significant improvements by reducing two
of the major latency factors in SDSM platforms: the total communica-
tion messages and the overall number of page faults. To demonstrate the
efficiency and the effectiveness of the RMP protocols, we used SPLASH
as well as synthetic application benchmarks.

Keywords: Cache Coherence Protocols, Memory Consistency Models,
Software DSM Systems, Clusters, Grids.

1 Introduction

The advances of the last two decades in software environments for distributed
and cluster computing, along with the improvement in the networking technol-
ogy, have brought clusters in the proscenium of today’s massive multiprocessor
systems. When it comes to most enterprize and IT applications, cluster com-
puting of today dominates over tightly coupled multiprocessor systems or the
proprietary supercomputer designs of the previous decade. On the other hand,
programming clusters of computational nodes, in order to take advantage of par-
allel execution, is more complex than programming for shared memory systems
(the default model supported by multiprocessors). The communication cost of
message passing implementations has fallen drastically over the years, but re-
mains far higher than shared memory models, especially in the case of fine grain
parallel execution.

Our research builds upon previous approaches which combine the convenience
and low cost of clusters with the programming simplicity of shared memory
systems, hiding away the distributed architecture via efficient communication li-
braries. These libraries provide for the transparent integration of message passing
in a shared memory model as seen by the applications or the programmer. SDSM



2 Artemis A. Christopoulou and Eleftherios D. Polychronopoulos

models, have been the subject of significant research in the past two decades and
constitute the underlying framework for our research work.

In this paper we present a new dynamic Reduced Message Protocol (RMP)
for Software Distributed Shared Memory systems (SDSM) which adopts the
scope-consistency model[7]. Our main objective is the improvement of the SDSMs’
cache coherence protocol, enabling them to function in Wide Area Networks as
well as improving their performance in small to medium-sized clusters. Our ulti-
mate goal is to incorporate the proposed cache coherence protocol in wide area
clusters as well as define a computational platform in the Grid for parallel pro-
cessing, based on new SDSM platforms with advanced features in communica-
tion and computation mechanisms[13]. Recently there is active research interest
in this area, namely, using SDSMs platforms for investigating and testing new
methods for Grids[11][12].

Software DSMs are typically categorized into write-invalidate and write-
update, on the basis of the cache coherence protocol used to inform the proces-
sors for memory page modifications. In write-update protocols the modifications
of a page are sent to the processors and the page copies are updated, while in
write-invalidate protocols only write-notices for a modified page are sent and the
page copies are invalidated. Several protocols have been proposed which adapt
between write-invalidate and write-update. [4], [5] and [6] are some of them.
In this paper, we propose a new adaptive cache coherence protocol, which was
implemented in the Software DSM JiaJia[1]. Our protocol exploits the charac-
teristics of the Scope consistency model[7] used by Jiajia, in order to improve
the system’s performance.

The rest of the paper is organized as follows. Section 2 describes the new pro-
tocol, section 3 presents the experimental evaluation, section 4 describes related
work. Finally, the conclusions of the paper is drawn in Section 5.

2 Cache Coherence Protocol

The proposed protocol is based on the JiaJia protocol and specifically in it’s
write-vector version [1]. The main functions of JiaJia and our protocol have
been analyzed in [14]. The protocol’s objective is the reduction of page faults
inside critical sections and the reduction of the total sent messages. This objec-
tive is achieved by piggybacking to the acq-grant message the modifications of
the pages, expected to be used by the acquirer. Since the information is sent in
existing messages, the number of messages is greatly reduced, although the total
amount of transferred bytes remains the same. This provides for a significant
benefit, since a great part of communication burden is due to message initial-
ization, a cost greatly reduced when the same bytes are sent in fewer messages.
The pages which are piggybacked in the lock grant message are only the pages
which have the same home as the lock, since only these pages are available to
the processor that sends the lock-grant message. Thus, when a processor ac-
quires a lock, it receives within the acq-grant message updates of modified pages
instead of simply write-notices. Consequently, during the next critical section re-



Reducing Communication Overhead and Page Faults in SDSM Platforms 3

The JiaJia Protocol

B DC
home(p

1
)

A

home(l
1
)

home(p
2
)

home(l
2
)

write(x)

acq(l1)

write(z)

rel(l1)

write(y)

acq(l
2
)

write(w)

rel(l
2
)

fetch p
1

fetch p
2

apply
diffs p1

apply
diffs p2

fetch p1

fetch p2

apply
diffs p

1
apply

diffs p
2

x

y

z

w

page p
1

page p2

create
diffs p

1
,p

2

create
diffs p1,p2

apply
diffs p

1

apply
diffs p2

apply
diffs p1

apply
diffs p2

RMP Protocol

B DC
home(p

1
)

A

home(l
1
)

home(p
2
)

home(l
2
)

write(x)

acq(l1)

write(z)

rel(l1)

write(y)

acq(l2)

write(w)

rel(l
2
)

fetch p2

apply
diffs p1

apply
diffs p2

fetch p1

apply
diffs p1

apply
diffs p2

create
diffs p

1
,p

2

create
diffs p1,p2

apply
diffs p2

apply
diffs p

1

apply
diffs p1

apply
diffs p

2

Fig. 1. JiaJia - RMP Protocol

quests for the corresponding pages will be facilitated by the local copies instead
of resulting in page faults, minimizing the exchange of messages with the page
owner. In order to piggyback to a lock grant message as many pages as possible,
we perform page migrations as follows. When a locks home processor receives
write notices for the lock, it records the pages that were modified. The pages
that are frequently modified during critical sections of one lock migrate to the
locks home processor.

There is a small chance that a page contains two different variables which
are protected by different locks with different homes. In this case the question
that comes up is to which processor the page should migrate. Our protocol
follows a greedy approach according to which the page migrates to the first
processor that asks for it and cannot migrate to any other processor after that. In
addition, we have implemented two alternate approaches to the above problem:
lock-migration and multi-home pages.

– Multi-home Pages: In this protocol variation(RMP-MH), a page is allowed
to have more than one home, so that it can migrate to the homes of multiple
locks associated with it. The additional actions taken in this case are that



4 Artemis A. Christopoulou and Eleftherios D. Polychronopoulos

the diffs of a modified page are sent to all the home processors, and that
diffs are also created if a page is modified by one of its home processors.

– Lock Migration: In this protocol variation(RMP-LM), if a page is associated
with two different locks, then the page migrates to the home processor of
one of the locks, and so does the second lock.

A significant further improvement of our protocol, also presented in this
paper, regards the reduction of the diff messages, which are the messages that
contain a page’s modifications from some node. In the initial JiaJia protocol, a
node sent diff messages for the pages modified during the critical section of the
lock before issuing a lock release message. We reduce the diff and subsequently
the total messages as follows. For the pages that have the same home node as the
lock, we do not send extra messages for the page diffs, but piggyback them to the
lock release message. The operations of the JiaJia and our RMP and variations
protocols, are shown in figure 1.

3 Experiments

Our main protocols RMP as well as its two variations, RMP-MH and RMP-
LM have been implemented and compared against the initial protocol of JiaJia
JiaJia and it’s write vector version JiaJiaWV.

Experiments were carried out on two different systems, a 4-processor SMP
and a 4-node cluster. The SMP consisted of four processors 2 of them having
512KB and the other 2 having 1024KB cache and 512MB total main memory.
Each node of the cluster had two Intel Pentium III processors with 256KB per-
processor cache and 256MB per-node main memory. The nodes were intercon-
nected with a 1000Mbps Ethernet network. In all systems, the operating system
used was Linux and the application binaries were created with the gcc compiler.

Our protocols were evaluated using four applications, Water and Raytrace
from the SPLASH suite, the TSP problem from the JIAJIA SDSM distribution
and one of our synthetic benchmarks.

Water simulates forces between different molecules. It uses an array of data
structures, each corresponding to a molecule. The array is statically divided into
equal parts, each of which is assigned to a processor. Processors use locks to
protect the update of force values relating to the molecules. Barriers are used to
ensure that all processes perform calculations corresponding to the same time
step, as well as to guarantee global memory consistency at the beginning of each
step.

Raytrace renders a three-dimensional scene using ray-tracing. A hierarchical
uniform grid(similar to an octree) is used to represent the scene, and early ray
termination and antialiasing are implemented. A ray is traced through each pixel
in the image plane, and reflects in unpredictable ways of the objects it strikes.
Each contact generates multiple rays, and the recursion results in a ray tree per
pixel. The image plain is partitioned among processors in contiguous blocks of
pixel groups, and distributed task queues, and the primitives that describe the
scene. In this application the data access patterns are highly unpredictable.



Reducing Communication Overhead and Page Faults in SDSM Platforms 5

Application Variable JiaJia JiaJiaWV RMP RMP-LM RMP-MH

Synthetic

Total Messages 109458 109458 5474 5474 5474
Messages in bytes 399210264 21139224 20552784 20552784 20552784

Getp Requests 48120 48120 700 700 700
Diff Messages 4800 4800 42 42 42

TSP

Total Messages 11399 11341 4212 2527 3921
Messages in bytes 28525052 5422928 5956708 5904940 5771676

Getp Requests 3394 3355 730 312 273
Diff Messages 1503 1510 513 97 838

Water

Total Messages 1986 2000 1916 1921 2058
Messages in bytes 4186660 2402076 2453024 2460712 2613048

Getp Requests 426 433 380 388 233
Diff Messages 189 189 193 201 406

Raytrace

Total Messages 22567 22414 12329 12382 12280
Messages in bytes 33803804 12008220 11785268 11787940 11782188

Getp Requests 3993 4003 1199 1199 1200
Diff Messages 3827 3784 1529 1536 1523

Table 1. Protocols’ communication variables

TSP solves the travelling salesman problem using a branch and bound al-
gorithm. The major shared data structures of TSP include a pool of partially
evaluated tours, a priority queue containing pointers to tours in the pool, a
stack of pointers to unused tour elements in the pool, and the current shortest
path. Processors evaluate the partial paths successively and alternately until the
shortest path is found. Locks are used to ensure exclusive accesses to shared
objects.

The last application is a synthetic application which we used to stress the
proposed protocol and evaluate its maximum performance. In this application
there are four locks each of which protects forty variables in forty different mem-
ory pages. For each lock, each processor modifies the forty variables belonging
to the lock and this procedure is repeated one hundred times.

Programming Model Synthetic TSP Water Raytrace

Posix Threads 0,04 14,96 2,92 16
JiaJia 18,8 12,26 5,56 63

Table 2. Execution Time in SMP

In the SMP each application was programmed and executed twice, once using
Posix Threads and once using the SDSM JiaJia. These experiments were made
in order to show the overhead of an SDSM and the communication cost among
its nodes. In table 2 we see the total execution time for each application for each
case.



6 Artemis A. Christopoulou and Eleftherios D. Polychronopoulos

The results show that all the applications besides TSP take more than double
time to execute using JiaJia compared to Posix threads. This clearly indicates
that the overhead of an SDSM is significant, and therefore there is great need
to make it as efficient as possible.

The main way to improve the SDSM’s efficiency was by reducing the total
amount of messages sent among the SDSM nodes. Our experiments prove that
the cost in time of sending a message is given by the following type:

t(size) = tinit + tsend ∗ size (1)

, which means that the cost of sending a message is analogous to its size plus
an initialization cost. In the SMP system it was measured that tinit is 228,8007
and tsend is 0,0235, while in the cluster tinit is 121,1614 and tsend is 0,0337. All
time values are measured in microseconds.

Since the initialization cost of sending a message is that big, it is expected
that if we send the same amount of bytes in a smaller number of messages,
we can achieve a performance improvement. Our new protocol was designed to
achieve this goal.

Fig. 2. Messages sent

In Figure 2 we can see for each application and for each protocol the total
number of messages and it’s total execution time, while in table 1 we can more
details about see the messages’ reduction.

All the results shown have been normalized with the JiaJia results.
Checking the number of sent messages, we see a great reduction in our syn-

thetic application. In this application forty pages are modified during a critical
section and these pages must be sent to the other nodes before they are accessed
by them. In our protocol modifications of these pages are piggybacked to the lock
release and lock grant messages and as a consequence the total number of sent
messages is greatly reduced. Tsp uses locks as its synchronization method. Every
key used protects a lot of pages and since modifications of the pages are sent
with the lock release and lock grant messages, the total number of sent messages
of the application is significantly reduced. In Water both locks and barriers are
used for the synchronization, but the most page modifications occur in critical



Reducing Communication Overhead and Page Faults in SDSM Platforms 7

sections enclosed by barriers. Consequently the number of total sent messages is
little affected by our protocol. Contrary to Water, Raytrace uses only locks for
the synchronization which produces a reduction in the sent messages as in the
other two applications.

The reduction of sent messages in our protocols lead also to a reduction of
the execution time. In our synthetic application the reduction reaches the 63%
compared to the initial protocol of JiaJia and the 37% compared to JiaJia’s
write vector version. In Raytrace the reduction is 9% and 13%, in TSP 16% and
6% while Water shows a little reduction of the total execution time.

Fig. 3. Overhead breakdown

Another performance metric for the comparison of the protocols is their over-
head, which consists of the synchronization time, the SEGV time and the server
time. The synchronization time is the time spent for barriers, locks and unlocks,
the SEGV time is the time spent due to page faults and the server time is
the time a processor spends to serve other processors requests(i.e. lock or page
requests). The protocol overhead breakdown is shown figure 3.

In general, we can see that the SEGV as well as the server time is reduced,
while the synchronization time is increased. This happens because there are less
page faults which naturally reduces the SEGV time. Subsequently a processor
has less get page requests to serve and the server time is also reduced. On the
other hand, at a lock request, a processor receives larger messages, since in the
lock grant messages, modifications of some pages are piggybacked and as a result
the synchronization time is increased.

If we compare the three new protocols, we see very little variations. Actually,
the cases in which one of the variations needs to be taken are few. In table 3
we can see in detail for each application how many pages and how many locks



8 Artemis A. Christopoulou and Eleftherios D. Polychronopoulos

Applications Variable RMP RMP-LM RMP-MH

Synthetic
MIpages 120 120 120
MOpages 120 120 120
Mlocks - 0 -

TSP
MIpages 35 35 36
MOpages 35 35 35
Mlocks - 1 -

Water
MIpages 7 6 12
MOpages 7 6 6
Mlocks - 5 -

Raytrace
MIpages 0 0 0
MOpages 0 0 0
Mlocks - 0 -

Table 3. Protocols’ migration variables

migrate. MIpages is the number of pages that migrated to a node, while MOpages
is the number of pages that migrated from a node. These numbers are not equal
in RMP-MH, and for this reason they are given separately. Last, Mlocks is the
number of the migrated locks, which of course has a value only in the case of
RMP-LM protocol.

By the results, we see that in our synthetic application and in Raytrace
the three protocols show the same behavior, since no page includes variables
protected by different locks. In TSP only one such page exist, and in RMP-MH
this pages obtains two homes, while in RMP-LM one of the locks migrates to
the page’s home. In Water there are quite a few pages with variables protected
by different locks. In RMP-MH six pages obtain two homes, while in RMP-
LM, five locks to migrate. In this application we conclude that the best of the
three variations is the RMP-LM. It manages to include more pages in the lock
operations without any extra burden as in RMP-MH. For this reason, RMP-LM
has a larger speedup compared to the JiaJia protocol. Although the benefits of
the variations are not quite clear, we believe that their benefits will be greater
when applications are run in a different system when nodes are interconnected
with a slower network, as in Grids.

4 RelatedWork

Since the introduction of Ivy [10], the first Software DSM, many techniques have
been proposed to improve SDSM performance. Here we will focus on adaptive
techniques between write invalidate, write update, and prefetching techniques.

In [3], the proposed protocol tries to predict in various ways for each lock
it’s next acquirer(s). At a lock release, diffs of pages modified during the last
critical section are sent to the processors that belong to the set of the locks next
acquirers.



Reducing Communication Overhead and Page Faults in SDSM Platforms 9

A dynamic adaptation between write invalidation and write update is de-
scribed in [6]. Initially, for one page, the protocol switches from write invalidate to
write update if the most collaborating processes are in need of that page and the
page faults exceeds an experimental threshold. In [4] the pages are categorized
in migratory, producer/consumer and falsely-shared. Adaptation is based on the
category in which each page belongs. Migratory and producer/consumer pages
are managed in a single-writer mode and may be updated, while falsely-shared
pages are managed in multiple-writer mode and under invalidated protocol.

Three adaptive techniques are proposed in [5]: adaptation between single and
multiple writer, dynamic page aggregation and adaptation between write inval-
idation and write update. The adaptive protocol between the write invalidate
and write update, updates the pages that the processor is expected to access
and invalidates the others but there is a limit so that no more than eight pages
can be updated. For barrier based applications, each processor p records for a
particular page from which processors it has received page requests and sends
updates to these processor and invalidates to the others. For lock based appli-
cations, the pages that are protected by one lock are recorded and updates are
sent for these pages while invalidates for the others.

Finally, in [9] a prefetching technique is proposed, in which the data is in-
validated after a repetitive synchronization pattern and is prefetched at proper
times.

5 Conclusion

In this paper we introduced the RMP cache coherence protocol for SDSM sys-
tems. This protocol in some cases adopts write-invalidate and in some cases
write-update method. The difference with previous adaptive protocols is that in
the new protocol the updates of the pages is done without sending any extra
messages, but rather by piggybacking the information in the existing lock grant
messages. Since the updates are successful, we achieve sending in general the
same amount of bytes but in significantly less number of messages. We must also
note that the performance improvements are even bigger because the messages
are sent in the beginning of a critical section, while in other previous protocols,
such as in JiaJia, there would be many more page faults and consequently, mes-
sages sent during critical sections. Apart from page requests, we further reduce
messages owed to page diffs, which are piggybacked to lock release messages.

In order to send as many pages as possible in grant lock messages, we as-
sociate a lock with the pages modified during a critical section of the lock and
if a page is associated with only one lock, it migrates to the lock’s home. This
happens in all three proposed protocols. However, in order to include pages that
contain variables protected by different locks, we implemented two additional
variations of RMP. In the first variation, we allowed a page to have more than
one homes, and in the second, we permit, if necessary, a lock to migrate. The
second variation achieves better results than the first since it has no extra burden
like sending modifications of pages to it’s multiple homes. On the other hand,



10 Artemis A. Christopoulou and Eleftherios D. Polychronopoulos

it sends updates of more pages and achieves even less page faults. The signifi-
cant reduction of messages in all three proposed protocols, results respectively
in major reduction in the applications total execution time.

References

1. W. Shi, PhD thesis, Institute of Computing Technology, Chinese Academy of Sci-
ences, 1999.

2. W. Hu, W. Shi and Z. Tang, Optimizing Home-based Software DSM Protocols,
Cluster Computing: The Journal of Networks, Software and Applications, Baltzer
Science Publishers, 2001.

3. C. B. Seidel, R. Bianchini, and C. L. Amorim, The Affinity Entry Consistency
Protocol, Proceedings of the 1997 International Conference on Parallel Processing,
August 1997.

4. L. Whately, R. Pinto, M. Rangarajan, L. Iftode, R. Bianchini, and C. L.
Amorim, Adaptive Techniques for Home-Based Software DSMs, Proceedings of
the 13th Symposium on Computer Architecture and High-Performance Comput-
ing, September 2001.

5. C. Amza, A.L. Cox, S. Dwarkadas, K. Rajamani, and W. Zwaenepoel, Adaptive
Protocols for Software Distributed Shared Memory, Proceedings of the IEEE, Spe-
cial Issue on Distributed Shared Memory, vol.87, no.3, pages 467-475, March 1999.

6. M. Ng and W. Wong, Adaptive Schemes for Home-based DSM Systems, Proceed-
ings of the 1st Workshop on Software Distributed Shared Memory, pages. 13-20.
June 1999

7. L. Iftode, J. P. Singh, and K. Li, Scope consistency: A bridge between release con-
sistency and entry consistency, Proceedings of the 8th ACM Annual Symp. on
Parallel Algorithms and Architectures (SPAA’96), pages 277-287, June 1996.

8. H. C. Yun, S. K. Lee, J. Lee, and S. Maeng, An Efficient Lock Protocol for Home-
based Lazy Release Consistency, Proceedings of Cluster Computing and the Grid,
2001.

9. S. K. Lee, H. C. Yun, J. Lee, and S. Maeng, Adaptive Prefetching Technique for
Shared Virtual Memory, Proceedings of 3rd International Workshop on Software
Distributed Shared Memory System, Brisbane Australia, May 2001.

10. K. Li, A shared virtual memory system for parallel computing, Proceedings of the
1988 International Conference on Parallel Processing (ICPP88), pages 94101, 1988.

11. Louis Rilling and Christine Morin, A Practical Transparent Data Sharing Service
for the Grid, Proceedings Fifth International Workshop on Distributed Shared
Memory (DSM 2005), Cardiff, UK, May 2005.

12. G. Antoniu, L. Bouge, and M. Jan, JuxMem: Weaving together the P2P and DSM
paradigms to enable a Grid Datasharing Service, Kluwer Journal of Supercomput-
ing, 2004.

13. G. Tournabitis, E. Polychronopoulos, Multithreaded Home-based Lazy Release Con-
sistency for Clusters of SMPs, Technical Report, HPCLAB-TR-250206, February
2006.

14. A. Christopoulou, E. Polychronopoulos, A Dynamic Lock Protocol for Scope-
Consistency in Software DSM Systems, Technical Report, HPCLAB-TR-100106,
January 2006.


