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Abstract. A parallel LOD algorithms for solving the 3D problem with
nonlocal boundary condition is considered. The algorithm is implemented
using the parallel array object tool ParSol, then a parallel algorithm
follows semi-automatically from the serial one. Results of computational
experiments are presented.

1 Problem Formulation

Boundary conditions are important part of any mathematical model. Recently
new types of boundary conditions are proposed and investigated. Many physical
and technological processes are described by mathematical models consisting
of elliptic or parabolic problems with non-local boundary conditions. A review
of such applications and mathematical results for analysis of one-dimensional
problems is presented in the recent survey paper of Dehghan [9]. Numerical
algorithms for solving linear and nonlinear parabolic problems with nonlocal
boundary conditions are investigated in [5,7,8,11,12].

In this paper we consider parallel numerical algorithms for solving 3D parabo-
lic problem with the additional integral boundary condition. Let Q7 = 2x0, T,
2=1(0;1) x (0;1) x (0;1) be a domain with the boundary 942. This boundary
is split into two parts 962 = 0021 U0f2s, 0029 = {X : (21,22,0),0<2; <1, j =
1,2}. In Q7 we consider a parabolic equation
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subject to boundary conditions:
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initial condition:

u(xl,xg,I?,,O):U0($1,$2,l’3), XEQU&Q,



and the additional nonlocal condition:
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Here ko, q,d, p, f,uo0, M, 15,7 = 1,2 are given continuous functions, and the func-
tions u(X,t), uo(t) are unknown. Thus the initial-boundary problem (1)—(2) is
over-specified, and the integral condition is used to identify the boundary condi-
tion function p(t), i.e. we solve an inverse problem. When this boundary value is
obtained, we can use any efficient method to solve a standard three-dimensional
parabolic boundary value problem.

The existence and uniqueness of the solution of 2D problem is studied in
[2]. The analysis of the forward Euler method and a modified Locally One Di-
mensional (LOD) scheme is presented in [10,16]. At each splitting step of the
LOD scheme one-dimensional problems were approximated by the forward Euler
method, thus the obtained LOD method was only conditionally stable.

The analysis of new finite difference schemes (including the LOD method)
is presented in [3,4]. It is proved that integral (2) can be approximated by the
trapezoidal rule, if the initial condition is approximated in consistent way.

High-performance computers with massive parallel processors are developing
very fast and parallel numerical algorithms play an important role in large-scale
scientific and engineering computations. Three groups of methods are widely
used for solving multidimensional parabolic initial-boundary value problems:
a) explicit algorithms, b) fully implicit approximations, ¢) splitting methods.
In splitting methods the multidimensional problem is reduced to a sequence
of one dimensional implicit difference systems with tridiagonal matrix. Special
parallel versions of the serial factorization algorithm are used to implement LOD
algorithms on multiprocessor computers. A reduction of communication costs is
the second main problem in developing efficient parallel splitting algorithms for
parallel computers with distributed memory.

In this paper we consider the LOD parallel algorithm for solving three di-
mensional problem (1)—(2) with the nonlocal boundary condition. The rest of
the paper is organized as follows. In Section 2, we formulate the LOD finite-
difference scheme. In Section 3 the parallel LOD algorithm is proposed. The
parallel array object tool ParSol is used for its implementation. Then a parallel
algorithm follows semi-automatically from the serial one. The complexity and
scalability analysis of the parallel LOD algorithm is done. In Section 4 results of
computational experiments are presented to test the accuracy and the efficiency
of the parallel algorithm.

2 Locally One Dimensional Method

In Q7 we define a uniform grid Qp, = wp X w;:

wh = {(#14, 225, T3k)  Tay = ih, h = %, 0<i<J},
wr={t": t"=nr,n=12,...,N, Nr=T}.



Let ~, be a boundary of wp, we split it into two parts v, = v1p U Yop,. Let
Uy, = U(x1i, x25, T3k, ™) be a discrete approximation to the exact solution of
differential problem (1)—(2).

We propose unconditionally stable LOD scheme, which approximates 3D
parabolic problem and the integral condition:
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Boundary conditions are approximated consistently with the approximation of
the differential equations [17]. Here we use the following difference operators:

1
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Integral condition (2) is approximated by the trapezoidal rule
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We propose to change the simplest approximation of the initial condition
Ul = up(X), X € wp Uy
by the following one, which exactly satisfies the discrete nonlocal condition:

M (t°) uo(X)

0_
vh= Shuo

, X ew,Uyy,. (5)

Then the truncation error of the discrete initial condition is given by

U = uo(X)| = O(h?),



but this error is not propagating in time due to the stability of the LOD method
with respect to the initial condition. This new discretization of the initial condi-
tion is mass conservative, therefore the accuracy of approximation of the bound-
ary condition p™ is increased to the second order.

The LOD scheme is implemented as follows. The first two subproblems for
j = 1,2 are standard: we solve (J — 1)? systems of linear equations, the matrix
of each system is tridiagonal. Total costs of these two steps are O(J?3) floating
point operations.

The serial implementation algorithm of the third step was proposed in [3]. By
using the Dirichlet boundary condition at 15, (1 = 1) and discrete 1D equations
with operator A; we obtain the factorization coefficients %1, ff”“ such that:

n+l _ ~n+lyrn+1l an+1 .. _
gk = Ul a0, 0<i,j<J k=J,... 1

Then the solution is expressed in the following form:

n+1 _  n+lym+1 n—+1 .
an = Ule + B, 4,7 =0,...,J, (6)
n+l _ ~n+l1l n+l _ ntl
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By using the discrete non-local condition we find the function:
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After determination of p{ ' solution U™ is computed by using (6). The com-
plexity of the third step of LOD scheme is equal to O(J3).

3 Parallel Algorithm

Let us assume that we have p processors, which are connected by three dimen-
sional mesh, i.e. p = p1 X pa X p3. The grid wy, (a data set) is decomposed into a
number of 3D subgrids by using a block distribution scheme. Then each subgrid
wpp has
J+1) (J+1) I+ _ (J+1)3
Y41 p1 n p

computational points of the grid wy, and it is assigned to one processor, which is
responsible for all computations of the local part of vector U.

Since the sub-domains are connected at their boundaries, processors dealing
with neighbouring sub-domains have to exchange boundary information with
each other at every time-step. More exactly, the update of vector U"+! at grid
points which lie beside cutting planes (i.e. boundary nodes of the local part of
the vector U) needs a special attention, since information from the neighbouring




processors is required to compute new values of U t!. Such information is ob-
tained by exchanging data with neighbour processors in the specified topology
of processors. The amount of exchanged data depends also on the grid stencil,
which is used to discretize the PDE model. A star-stencil of seven points is used
in (3), therefore local subgrids are enlarged by two ghost points in each dimension
of the subgrid.

In the parallel algorithm the implementation of the third step of the LOD
scheme is modified to the following one:

U7L+1 —_ Vn+1 4 ,Yn+1Wn+1
where V"1 is a solution of the discrete boundary value problem

VnJrl - Un+2/3
L T T AV, X ew,

-
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Function W™*! is a solution of the auxiliary problem
Wntl/r = AsWnHl ) X € wy,
Wnrtl =0, X €y, (8)

W = (X074, X € .

Then we find ugﬂ by using the discrete nonlocal condition:

el _ M(tn+1) _ Shvn+1
K SpWntl

Thus during implementation of the parallel LOD algorithm we solve 4(J — 1)
systems of linear equations with tridiagonal matrix.

The complexity of solving one tridiagonal system of J equations by the serial
factorization algorithm is equal to 8J arithmetical operations.

For two processors the Gaussian elimination process is started simultane-
ously at the first and last equations and it goes in opposite directions. Proces-
sors exchange two factorization coeflicients at the end of the first stage of the
factorization algorithm. The total complexity of this modified algorithm is equal
to 8J arithmetical operations.

For the case when a system is distributed between p; > 2 processors, we use
the Wang parallel factorization algorithm [14]. It solves the tridiagonal system
by using 17J arithmetical operations. The main idea is to reduce the given
system to a new tridiagonal system of p; equations, where each processor has
only one equation. Such small system is solved by using the serial factorization
algorithm. The total costs of the parallel Wang algorithm in the worst case when



the simplest algorithm is used to broadcast data to the master process can be
estimated as

17J
Tp(J) = ? + 8p1 +p1(04 +5)

4 Complexity and Scalability Analysis

We will estimate the complexity of the LOD algorithm by counting basic oper-
ations. At each time step the following amount of work is done:

1. Coefficients of the LOD scheme (3) are computed. The complexity of this
step is J°3.

2. 3(J —1)? systems with tridiagonal matrix are solved. The complexity of this
step is aJ?.

3. Discrete approximations of integrals Sj(V"*1), S, (W"*!) are computed.
The complexity of this step is b.J3.

4. The values of the solution on boundary ~ys;, are updated with a known func-
tion ,ug'H. The complexity of this step is cJ?2.

As a result, the total complexity of the serial LOD algorithm can be expressed
as
W=0+a+bJ>+cJ?>=(1+a+b)J>+0(J%. (9)

The communication step is implemented before updating vectors U"17/3,
7 =1,2,3 and only neighbouring processors are communicating with each other.
Each processor exchanges with its six neighbours vector elements corresponding
to boundary points of the local subdomain. A total amount of data, exchanged
between two processors, is equal to J2/p*/3 elements. This can be done in

JZ
T p(J)=a+ ==
p p2/3
time, by using the odd-even data exchange algorithm. Here « is the message
startup time and £ is the time required to send one element of data.

When the required information is exchanged, processors compute in parallel
coefficients of local part of the matrix. The complexity of this step is given by

J3
TQﬁp(J) = ? .

Parallel computation of integrals Sy (V"*1) and Sj,(Wn"*!) requires global
communication among all processors during summation of local parts of inte-
grals. The complexity of reduce operation depends strongly on the architecture
of the parallel computer (see [13]). We will estimate the time required to reduce
local values of integrals between p processors by B(p) = R(p)(ap + Bp), where
R(p) depends on the algorithm used to implement the MPI_ALLREDUCE operation



and the architecture of the computer. For the simplest reduce algorithm, when
every processor sends its result to the master processor, who finishes computa-
tion of the integral and broadcasts the global sum to all processors, R(p) = p.
Thus the complexity of parallel computation of both integrals and updating
boundary values on o is given by

J3 J?
T3,(J) = 2R(p)(cw + Bp) + b? + CW

The time required to solve all 4(J — 1)? systems of linear equations is esti-

mated as

4 17aJ3
Tiy(7) = 3 g + 41280 491 4 9)).

Summing up all obtained estimates we compute the complexity of the parallel

LOD algorithm
17 J3 J? J?

T,(J) = (1+ 7@ +b)— +6<a+,6’ 2/3) + ey +2RE) o+ ). (10

According to the definition of the isoefficiency function, we must find the rate
at which the problem size W needs to grow with p for a fixed efficiency of the
algorithm. Let H(p, W) = pT,, — W be the total overhead of a parallel algorithm.
Then the isoefficiency function W = g(p, F) is defined by the implicit equation
(see [14]):

w= -2 mpw)
1_FE b, .
The total overhead of the parallel LOD algorithm is given by

11
H(p,W) = —aJ® +6ap+ (68 + ) p'/*J + 2pR(p) (0, + )

B 11a (68 + c)p!
= W+6ap+(1+ +b)2/3

2/3
6(1+a+0) W2 + 2pR(p) (o + By)-

The first term defines a range of possible values of E. This term in H(p, W)
arises due to the fact the parallel algorithm does not coincide with the serial
LOD algorithm. For simplicity of notation we take F such, that

11aE 1

6(l+a+b)(1—FE) 2

Since it is impossible to get the isoefficiency function in a closed form as a
function of p, we will analyze the influence of each individual term. The compo-
nent that requires the problem size to grow at the fastest rate determines the
overall asymptotic isoefficiency function. After simple computations we get the
following three isoefficiency functions

W =0(p), W=0(p), W=O0(R(@p).



Thus the the overall asymptotic isoefficiency function is defined by the overheads
of the global reduction operation. Let us assume that processors are connected by
three—dimensional mesh p!/3 x p'/3 x p!/3. Then the global reduce and broadcast
operations can be implemented with R(p) = p'/3. Thus the problem size W has
to grow as (’)(p4/ 3) to maintain a certain efficiency. For a hypercube mesh we have
smaller costs of the global reduction operation R(p) = logp, then isoefficiency
function is close to linear W = O(plogp).

We note, that in the case of a moderate number of processors p = O(J), the
costs of global reduction operation can be ignored and the isoefficiency function
W = O(p) depends linearly on p.

Parallel numerical objects. Special tools are developed to simplify paralleliza-
tion of sequential algorithms, e.g. Diffpack tool [15] and PETSc toolkit [1]. We
have developed new tool ParSol of parallel numerical arrays, which can be used
for semi—automatic parallelization of data parallel algorithms, that are imple-
mented in C++. Such algorithms are usually constructed for solving PDEs and
systems of PDEs on logically regular rectangular grids. ParSol is a library of
parallel array objects, a functionality of which is similar to Distributed Arrays
in PETSc. We list the following main features of ParSol (see [6]): a) created for
C++ programming language, b) based on HPF ideology, c) the library heavily
uses such C++ features as OOP and template, d) MPI 1.1 standard is used to
implement parallelization.

ParSol arrays have a number of advantages for programming mathematical
algorithms, such as virtual indexing, built-in array operations, automated man-
agement of dynamically allocated memory, periodic boundary conditions. ParSol
arrays simulate numerical objects of linear algebra and many useful basic vector
operations are supported within the ParSol library, e.g. parallel computation of
vector norms, the inner product of two vectors, scaling of vectors.

The LOD algorithm can not be described as a simple data parallel algorithm,
but ParSol library is used to implement the algorithm (3) and only the Wang
algorithm requires a special treatment.

5 Results of Computational Experiments

In this section we present some results of computational experiments. Compu-
tations were performed on IBM SP5 computer at CINECA, Bologna. We have
solved problem (1)—(2) with the following coefficients and the exact solution:

Eo(X,t) =1+ (22 + 22+ 22)t, q(X,t) = (x1 + x2 + 23)t7,
M(t) — et(AS + BS)7 A= 2(60'5 _ 1)7 B = 2(2 _ 60'5),
p(X,t) =14 21mom3, w(X,t) =exp (0.5(zx1 +z2+ x3) +1).

In order to scale the computation time for different space steps h = 1/(J — 1),
a solution was computed in time intervals [0, T'(J)], where

T(40) = 0.4, T(80) = 0.04, T(120) = 0.005, T(160) = 0.001.



T1(J)

and
T,(J)

In Table 1 we present the values of experimental speedup S,(J) =

. Sp(J . . . .
efficiency E,(J) = o) coefficients for different sizes of the discrete problem.
Table 1. The speedup and efficiency coefficients for the LOD method. CPU time

of the sequential algorithm (in s): 71(40) = 64.8, T1(80) = 105.2, T1(120) = 94.98,
T1(160) = 131.0

D Spao Epao Spso Epso Spi20 Epi20 Spico Epieo

2 1.979 0.990 2.001 1.000 2.115 1.058 1.955 0.978
4 3.880 0.970 4.062 1.016 4.236 1.059 4.662 1.166
8 7.043 0.880 7.684 0.961 8.284 1.036 9.388 1.173
16 11.54 0.721 14.30 0.894 15.23 0.952 18.10 1.131
32 18.72 0.585 26.73 0.835 29.67 0.927 34.77 1.087

It follows from results, presented in Table 1, that the parallel LOD algorithm
scales well.

Remark 1. We see that a superlinear speedup of the parallel algorithm is ob-
tained, when more processors are used. This effect is due to special properties
of cash memory usage in SP5 processors. We implemented a simple test, where
matrix operations A := A+ B, C := C' — D were performed many times. The
dimension of matrix is taken to be 160 x 160 x 160. The following results were
obtained:

T, =353, To =153, Ty =718, Ty =2.83, Tis=1.29, Ty = 0.65.
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