
Load Balanced Parallel Simulated Annealing on
a Cluster of SMP Nodes

Agnieszka Debudaj-Grabysz1 and Rolf Rabenseifner2

1 Silesian University of Technology, Department of Computer Science
Akademicka 16, 44-100 Gliwice, Poland

agrabysz@polsl.pl,
2 High-Performance Computing-Center (HLRS), University of Stuttgart

Nobelstr. 19, D-70550 Stuttgart, Germany
rabenseifner@hlrs.de, www.hlrs.de/people/rabenseifner

Abstract. The paper focuses on a parallel implementation of a simu-
lated annealing algorithm. In order to take advantage of the properties
of modern clustered SMP architectures a hybrid method using a combi-
nation of OpenMP nested in MPI is advocated. The development of the
reference implementation is proposed. Furthermore, a few load balancing
strategies are introduced: time scheduling at the annealing process level,
clustering at the basic annealing step level and suspending—inside of the
basic annealing step. The application of the algorithm to VRPTW—a ge-
nerally accepted benchmark problem—is used to illustrate their positive
influence on execution time and the quality of results.

Key words: Simulated annealing, parallel processing, load balancing, MPI,
OpenMP, hybrid parallelization.

1 Introduction

The paper presents a time scheduled algorithm for parallel simulated annealing—
a heuristic method of optimization—that is intended to run on modern clusters
of shared-memory (SMP) nodes. While clusters of SMPs with numbers of proces-
sors ranging into hundreds are becoming more and more popular, the question
of how to use them efficiently for parallel simulated annealing, knowing its sequ-
ential character, is still open. One of popular programming styles for clustered
systems uses different communication environments for their separate compo-
nents, combining the benefits of both shared and distributed memory systems
at the same time. The communication method discussed in the paper adopts such
a hybrid approach for simulated annealing and is called a hybrid communication
method (HC).

The research described in this work is a continuation of the efforts repor-
ted in [9], where the reference HC method was introduced. It proved to be the
most effective compared with the other tested methods, when solving a bicrite-
rion optimization problem. The paper presents a modification of the reference



method, namely the hybrid communication method with a single data exchange,
which is the way to improve quality of results for the second optimized criterion.
The time scheduling aspects for both methods are discussed. A constrained cost
is assumed, which means that searching for the optimal solution is performed
with a given pool of processors available for a specified period of time. This
approach produces linear speed-up.

Simulated annealing (SA) is a heuristic optimization method used when the
solution space is too large to explore all possibilities within a reasonable amount
of time. The vehicle routing problem with time windows (VRPTW) is an example
of such a problem. Other examples are school bus routing, newspaper and mail
distribution or delivery of goods to department stores. Optimization of routing
lowers distribution costs and parallelization allows a better route to be found
within given time constraints.

The SA bibliography focuses on the sequential version of the algorithm
(e.g., [2, 17]), however parallel versions are investigated too, as the sequential
method is considered to be slow when compared with other heuristics [18]. In [1,
3, 10, 12, 13] and many others, directional recommendations for parallelization
of SA can be found. VRPTW, formally formulated by Solomon [16], who also
proposed a suite of tests for benchmarking, also has a rich bibliography [18]. Ad-
ditionally, a few works discussing parallel SA to solve the VRPTW are known,
namely [6, 7, 4, 8]. Nevertheless, in contrast to the constraints applied in the
current research, i.e., limited time, the first two take advantage of the paral-
lel algorithm to achieve higher accuracy of solutions, while the others define
different stopping criteria for the algorithm.

The plan of the paper is as follows: section 2 presents the theoretical basis
of the sequential and parallel SA algorithm. Section 3 describes the two variants
of the hybrid communication method, while section 4 presents practical issues,
leading to load balanced execution. The results of the experiments are described
in section 5. Conclusions follow.

2 Sequential and Parallel Simulated Annealing

In simulated annealing, one searches for the optimal state, i.e., the state that gi-
ves either the minimum or maximum value of the cost function. It is achieved by
comparing the current solution with a random solution from a specific neighbo-
urhood. With some probability, worse solutions could be accepted as well, which
can prevent convergence to local optima. However, the probability of accepting
a worse solution decreases over the process of annealing, in synchronisation with
the parameter called temperature. An outline of the SA algorithm is presented in
Figure 1, where a single execution of the innermost loop step is called a trial. The
final solution which is returned is the best one ever found. Simulated annealing
can be also modelled by using the theory of Markov chains. The algorithm is
formed by a sequence of Markov chains where each chain consists of a sequence
of trials for which the acceptance criterion with a fixed value of temperature was
applied.



01 S ← GetInitialSolution();
02 T ← InitialTemperature;
03 for i← 1 to NumberOfTemperatureReduction do
04 for j ← 1 to EpochLength do
05 S′ ← GetSolutionFromNeighbourhood();
06 ∆C ← CostFunction(S′) − CostFunction(S);
07 if (∆C < 0 or AcceptWithProbabilityP(∆C, T ))
08 S ← S′; {i.e., the trial is accepted}
09 end if;
10 end for;
11 T ← λT ; {with λ < 1}
12 end for;

Fig. 1. SA algorithm

Since in SA each new state contains modifications to the previous state, the
process is often considered to be inherently sequential and its parallelization
is not trivial. However, a few strategies for designing a parallel SA algorithm
exist, e.g., based on different types of applied decomposition. In the research
the creation of trials is decomposed among processors. Additionally, the chain
length is fixed, meaning that the number of trials performed within the chain is
the same for both the sequential and parallel algorithms.

3 Hybrid Communication—Nesting OpenMP in MPI

Clustered SMP systems support two parallelization levels: the outer paralleli-
zation for communication between SMP nodes and the inner parallelization for
the shared memory environment within nodes. The HC method tries to exploit
the features of the parallel SA approach that can be supported by the architec-
ture: intensively communicating parts can be realised inside the inner level with
OpenMP [15], while parts with infrequent communication can be realised at the
outer level with MPI [11, 14].

3.1 The Reference Method

Outer-level parallelization. Following previous research [9], in the algorithm for
the outer level each Markov chain of SA optimization is divided into sub-chains.
Their length is equal to the length of the original chain divided by the number
of sub-chains. The main idea is to assign a separate sub-chain to each individual
cluster node and thus to let nodes generate different sub-chains simultaneously.
In this way the computation for generating a Markov chain is divided over all
the available nodes. After generating the first Markov chain, the process of ge-
nerating every consecutive chain is performed without communication between
nodes. For each node the outcome of the last trial of the preceding sub-chain



is the starting point for the subsequent sub-chain. At the end, the best solu-
tion found is picked up as the final one. The usage of multiple sub-chains allows
intensive exploration of the search space. However, excessive shortening of the
sub-chain length negatively affects the quality of results, so the maximum num-
ber of nodes used is limited by reasonable shortening of the sub-chain length.

Inner-level parallelization. Within a node a few threads can communicate to
build one sub-chain of the length determined at the outer level. Negligible dete-
rioration of quality is a key requirement for the inner-level algorithm. The idea
of parallelization is to divide the total number of trials of each sub-chain into
short sets of trials. The size of the sets equals the number of threads, so each
thread generates one trial at a time, independently of the others. After comple-
ting a set, the master thread selects one solution among all the accepted ones
and the others are discarded. The selected solution is common for all threads
and becomes the starting point for further computation.

3.2 The Method with a Single Data Exchange

Tracing the process of finding solutions one can conclude, that incorporating
lightweight communication between nodes could improve the quality of results.
During the optimization all processes working on cluster nodes explore the search
space, but after the first stage, which is characterized by “long jumps” and large
changes of position, it is likely that only a few processes will be working in
the “right” area of the global minimum. The rest of them may perform useless
computations. One can speculate that global selection of the best result found
during the stage of heavy exploration would let all the processes move into these
“right” areas, leading to significant improvement of the quality of results. The
ratio between durations of the two, above mentioned stages should be carefully
selected. The optimization process should be able to use an adequate period of
time during the first stage to explore the search space precisely enough to reach
the area of the global minimum. On the other hand, the duration of the second
stage should be long enough to let the processes exploit the promoted area and
further approach the minimum.

4 Load Balancing in the Hybrid Communication Methods

4.1 Outer Level Load Balancing

The major drawbacks to obtain balanced computational load and acceptable
speed-up are differences in the execution times of the trials, because the effort of
performing them depends on the current configuration. This leads to substantial
idle times when stopping the algorithm after generating a number of sub-chains.
This is shown in Figure 2, where the times for generating 8 separate sub-chains
are presented, based on an example run of the investigated problem (see section
5). To overcome this difficulty a real time limit is set for computation. It derives



0

100

200

0 10 20 30 40 50 60

number of temperature levels

ti
m
e 
[s
]

idle times

0

100

200

0 10 20 30 40 50 60

number of temperature levels

ti
m
e 
[s
]

the moment of 

simultaneous 

communication

Fig. 2. The times for generating 8 sub-chains based on a run for the investigated
problem. Left: scheduling by a fixed number of temperature levels with idle times
marked with arrows. Right: time-based scheduling, where communication is scheduled
after the same amount of time on all processes

from the average time needed by the sequential algorithm and is calculated so
as to assure linear speed-up.

A time-based scheduling is also suitable when defining the way for announ-
cing the moment of a single data exchange. Specifying the time limit for the
computation by measurements of the elapsed time, gives a new opportunity
to determine the exact moment of data exchange. Setting the number of data
exchanges is straightforward as well. Therefore the proposed method forces one
data exchange when a specific percentage of time limit (e.g., after 50%, 70% or
90%) elapses. After selecting and broadcasting the best solution found so far, all
processes starts their computation from this agreed solution. The method results
in much better balancing than an alternative with a fixed number of tempera-
ture levels (i.e., sub-chains) (Figure 2 (left)) and makes more efficient use of the
given time limit. In Figure 2 (right) the moment of simultaneous communica-
tion is marked on the time axis. This can be individually determined by working
processes irrespectively of the number of performed trials.

4.2 Inner Level Load Balancing

To achieve an acceptable inner-level speed-up a few optimization stages were
necessary for the OpenMP parallelization with loop worksharing. The need for
optimization stems from extremely varying execution time for each trial. In the
presented example these differences were within a factor of 100. Consequen-
tly, where the number of trials equals the number of threads, i.e., each thread
generates one trial at a time, a theoretically calculated speed-up, based on a
comparison of the execution times, does not exceed 2 with the use of 4 threads.
The average execution times of trials within a set, accumulated throughout the
whole example run, are presented in Figure 3 (left). A case of one trial per a
thread is marked white. The distance from the average is visible. The white bars
show the average execution time of the fastest (left most bar) trial in a set of 4
trials, up to the slowest trial (right most bar). In Figure 3 (right) the histogram
of trials with timings that falls into 25 ranges is presented. It also proves their
imbalanced distribution.



ti
m
e

separated trials clustered trials

average time

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

n
o
. 
o
f 
tr
ia
ls

separate trials, interval 8µs

clustered trials, interval 5×8µs

Fig. 3. Trials before the reconfiguration. Left: average execution times of the trials
within a set. Right: the histogram of execution times. Example: Solving VRPTW, test
R108 from Solomon’s benchmark set

ti
m
e

separate trials clustered trials

average time

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

n
o
. 
o
f 
tr
ia
ls

separate trials, interval 8µs

clustered trials, interval 5×8µs

Fig. 4. Trials after the reconfiguration. Left: average execution times of the trials within
a set. Right: the histogram of execution times. Example: Solving VRPTW, test R108
from Solomon’s benchmark set

The first optimization step was to increase the size of a set of trials to make
each thread generate a few trials at a time without any communication. In
this way the load imbalance was substantially decreased. Nevertheless, in order
to maintain quality, the size of the set of trials should be as small as possi-
ble, because it affects the number of accepted but discarded trials. The ave-
rage execution times of so called “clustered” trials within a set of the size 20
(= 4 threads× 5 trials/thread), as well as the histogram of execution times are
also presented in Figure 3, but marked black. The scale for “clustered” trials was
normalised to the scale of “separate” trials to indicate more clear their smaller
deviations from the average value and changed distribution.

The second optimization step was the redefinition of a trial, in order to
improve load balancing and simultaneously to decrease the number of discarded
trials. Hence, the speed-up as well as a quality of results can be increased. As
the execution time of each trial is determined by the time for finding a new
valid solution S′ in the neighbourhood of S, one can limit the number of actions
taken within GetSolutionFromNeighbourhood() (see Figure 1). If after only a few
disturbances of the current configuration no new solution can be created, the
algorithm produces a transitional status “no answer” and suspends the process of
completing a trial. After the selection has been made over the set by the master



thread, all uncompleted trials are continued. The influence of the redefinition
can be seen in Figure 4, where the time scale is the same as in Figure 3. The
average execution time of a trial is shortened but better balanced than before
the redefinition.

The third optimization step was to choose an appropriate moment for forking
as well as for joining parallel threads. As the execution time for a set of trials
can be short compared to the OpenMP fork-joined overhead, the parallel loop
should comprise a wider region, i.e., the whole temperature step.

5 Experimental Results

In the vehicle routing problem with time windows it is assumed that there is
a warehouse, centrally located to customers. There is a road between each pair
of customers and between each customer and the warehouse. The objective is
to supply goods to all customers at the minimum cost. The solution with fewer
route legs (the first goal of optimization) is better then a solution with smaller
total distance travelled (the second goal of optimization). Each customer as
well as the warehouse has a time window. Each customer has its own demand
level and should be visited only once. Each route must start and terminate
at the warehouse and should preserve maximum vehicle capacity. As already
mentioned, previous work [9] focused on the first goal of optimization, while this
paper focuses on the second one, i.e., optimizing the final distance when the
minimum number of route legs is already achieved. The sequential algorithm
from [5] was the basis for parallelization.

Experiments were carried out on a NEC Xeon EM64T Cluster installed at the
High Performance Computing Center, Stuttgart (HLRS). Additionally, for tests
of the OpenMP algorithm, a NEC TX-7 (ccNUMA) system was used. The nu-
merical data were obtained by running the program 100 times for Solomon’s [16]
R108, R111, RC105 and RC108 tests with 100 customers and the same set of pa-
rameters. The number of OpenMP threads was 4 and the size of the set of trials
was 20, this giving the best combination of efficiency and quality. Due to the
lack of access to a genuine clustered SMP machine with 4 CPUs per each node
(the NEC Xeon EM64T consists of dual CPU nodes), the usage of 4 OpenMP
threads per cluster node was emulated. The emulation was carried out by exten-
ding the applied time limit by the speed-up factor coming from a separate set
of experiments. Such an extension can be thought as undoing the speed-up to
be observed on a cluster of nodes having 4 CPUs instead of 2.

Time results. At the outer level both versions of the hybrid algorithm give li-
near speed-up, since a real time limit is applied. However, in case of the method
with a single data exchange one should consider the additional communication
overhead. In investigated examples the time needed for selecting and broadca-
sting the best solution between nodes was between 0.4ms (2 nodes) to 0.8ms
(30 nodes), which is substantially shorter than the execution time. At the inner
level the average speed-up factor obtained empirically was 2.7, which gives the
efficiency of OpenMP parallelization as 67%.



R108

965

970

975

980

985

990

1 8 16 20 32 40 60 80 100 120 200 400

number of processors

to
ta

l 
d
is

ta
n
ce

s e q HC4 HC4-0.9 HC4-0.7 HC4-0.5

R111

1110

1120

1130

1140

1150

1 8 16 20 32 40 60 80 100 120

number of processors

to
ta

l 
d
is

ta
n
ce

s e q HC4 HC4-0.9 HC4-0.7 HC4-0.5

RC105

1630

1640

1650

1660

1670

1 8 16 20 32 40 60 80 100 120 200

number of processors

to
ta

l 
d
is

ta
n
ce

s e q HC4 HC4-0.9 HC4-0.7 HC4-0.5

RC108

1140

1145

1150

1155

1160

1165

1170

1 8 16 20 32 40 60 80 100 120 200 400

number of processors

to
ta

l 
d
is

ta
n
ce

s e q HC4 HC4-0.9 HC4-0.7 HC4-0.5

Fig. 5. Comparison of quality results for hybrid communication methods

Quality results. A few parameters for controlling the data exchange were inve-
stigated, namely after reaching 50%, 70% and 90% of the time limit. The results
of experiments are presented in Figure 5. Generally, selecting a common solution
after 50% (HC4-0.5) or 70% (HC4-0.7) of the time limit was much better than
other tested possibilities. It should be noted that both HC4-0.5 and HC4-0.7
give better results than the reference method (HC4) almost for all investigated
numbers of processors (with only one exception). Nevertheless, when compared
to the sequential results (SEQ) it can be observed that the quality of the hybrid
parallelization depends on a test. E.g., for R108 up to 40 processors, R111 with
8 processors and RC108 (excluding 400 processors) the results of HC4-0.7 are
better than for the sequential version, but in other cases, i.e., RC105, R108 with
more than 40 processors and R111 (excluding 8 processors) they are worse.



To verify these observations one can incorporate test statistics. Statistical
hypotheses H0 : xi = xj versus alternative hypotheses H1 : xi < xj or H ′

1 : xi 6=
xj can be tested, where x denotes the mean value of the total travel distance,
i, j - populations that are compared (HC4-0.7 with HC4, HC4-0.7 with SEQ,
HC4-0.5 with SEQ, respectively). Let s denote the standard deviation, and n,
the population size, then u, the test statistic is given by:

u =
xi − xj√

s2
i

ni
+

s2
j

nj

The significance level is set as 0.05. When comparing HC4-0.7 with HC4 the
calculated values u indicate that H0 should be rejected in favour of H1 in 64%
of tested cases. This means HC4-0.7 gave statistically shorter total distance than
HC4. Besides, when comparing HC4-0.7 with SEQ, although for the tests R111
and RC105 H0 can not be rejected in favour of H ′

1 up to 20 processors, for R108 it
can not be rejected up to 100 processors. In other words there is no evidence that
HC4-0.7 gave statistically different results for these cases, compared to the se-
quential algorithm. Additionally, application of similar reasoning indicates, that
for test RC108, statistically HC4-0.7 allowed to achieve solutions with smaller
travel distances than its sequential equivalent for numbers of processors up to
200. For test R108, HC4-0.5 compared favourably to the sequential version with
up to 40 processors.

6 Conclusions

In this study the implementation of parallel SA algorithm that is intended to
run on clusters of SMP nodes is considered. The development of the reference
method, based on performing time scheduled data exchange was proposed. Ad-
ditionally, the paper provides detailed analyses of factors influencing the speed-
up and efficiency, e.g.: defining the moment for terminating the optimization
process, as well as time dependencies between randomly generated trials of SA
algorithm. A few optimization strategies were introduced, that resulted in better
balancing of the algorithm.

Based on experiments one can conclude that the quality of results for the
modified method outperforms the reference one. When compared to sequential
results, it needs to be stated that with proposed load balancing strategies it
is possible in many cases to achieve better or comparable quality, always with
linear speed-up. This observation is valid even up to 200 processors.

Acknowledgement

This work was supported by the EC-funded project HPC-Europa (contract No
RII3-CT-2003-506079) and by the State Committee for Scientific Research grant
3T 11F 00429. Computing time was also provided within the framework of the
HLRS-NEC cooperation.



References

1. Aarts, E., de Bont, F., Habers, J., van Laarhoven, P.: Parallel implementations of
the statistical cooling algorithm. Integration, the VLSI journal (1986) 209–238

2. Aarts, E., Korst, J.: Simulated Annealing and Boltzman Machines, John Wiley &
Sons (1989)

3. Azencott, R. (ed): Simulated Annealing Parallelization Techniques. John Wiley &
Sons, New York (1992)

4. Arbelaitz, O., Rodriguez, C., Zamakola, I.: Low Cost Parallel Solutions for the
VRPTW Optimization Problem, Proceedings of the International Conference on
Parallel Processing Workshops, IEEE Computer Society, Valencia–Spain, (2001)
176–181

5. Czarnas, P.: Traveling Salesman Problem With Time Windows. Solution by Simu-
lated Annealing. MSc thesis (in Polish), Uniwersytet Wroc lawski, Wroc law (2001)

6. Czech, Z.J., Czarnas, P.: Parallel simulated annealing for the vehicle routing pro-
blem with time windows. 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Canary Islands–Spain, (2002) 376–383

7. Czech, Z.J., Wieczorek, B.: Frequency of cooperation of parallel simulated anne-
aling processes, Proceedings of the 6th International Conference on Parallel Pro-
cessing and Applied Mathemetics (PPAM’05), Poland (in print)

8. Debudaj-Grabysz, A., Czech, Z.J.: A concurrent implementation of simulated anne-
aling and its application to the VRPTW optimization problem, in Juhasz Z., Kac-
suk P., Kranzlmuller D. (ed), Distributed and Parallel Systems. Cluster and Grid
Computing. Kluwer International Series in Engineering and Computer Science,
Vol. 777 (2004) 201–209

9. Debudaj-Grabysz, A., Rabenseifner, R.: Nesting OpenMP in MPI to implement a
hybrid communication method of parallel simulated annealing on a cluster of SMP
nodes, in Di Martino B., Kranzlmuller D., Dongarra J.,(ed.), Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Springer-Verlag Berlin
Heidelberg, LNCS 3666, (2005) 18–27

10. Greening, D.R.: Parallel Simulated Annealing Techniques. Physica D, 42, (1990)
293–306

11. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard, Parallel Computing
22(6) (1996) 789–828

12. Lee, F.A.: Parallel Simulated Annealing on a Message-Passing Multi-Computer.
PhD thesis, Utah State University (1995)

13. Lee, K.–G., Lee, S.–Y.: Synchronous and Asynchronous Parallel Simulated Anne-
aling with Multiple Markov Chains, IEEE Transactions on Parallel and Distributed
Systems, Vol. 7, No. 10 (1996) 993–1008

14. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Rel. 1.1, June 1995, www.mpi-forum.org

15. OpenMP C and C++ API 2.5 Specification, from www.openmp.org/specs/
16. Solomon, M.: Algorithms for the vehicle routing and scheduling problem with

time windows constraints, Operation Research 35 (1987) 254–265, see also
http://w.cba.neu.edu/˜msolomon/problems.htm

17. Salamon, P., Sibani, P., Frost, R.: Facts, Conjectures and Improvements for Simu-
lated Annealing, SIAM (2002)

18. Tan, K.C, Lee, L.H., Zhu, Q.L., Ou, K.: Heuristic methods for vehicle routing
problem with time windows. Artificial Intelligent in Engineering, Elsevier (2001)
281–295


