
Multi-Dimensional Kernel Generation
for Loop Nest Software Pipelining

Alban Douillet†, Hongbo Rong‡, Guang R. Gao†

† University of Delaware ‡ Microsoft Corporation
Newark, DE 19716, USA Redmond, WA 98052, USA

Abstract. Single-dimension Software Pipelining (SSP) has been proposed as an
effective software pipelining technique for multi-dimensional loops [16]. This
paper introduces for the first time the scheduling methods that actually pro-
duce the kernel code. Because of the multi-dimensional nature of the problem,
the scheduling problem is more complex and challenging than with traditional
modulo scheduling. The scheduler must handle multiple subkernels and initia-
tion rates under specific scheduling constraints, while producing a solution that
minimizes the execution time of the final schedule.
In this paper three approaches are proposed: thelevel-by-levelmethod, which
schedules operations in loop level order, starting from the innermost, and does not
let other operations interfere with the already scheduled levels, theflat method,
which schedules operations from different loop levels with the same priority, and
the hybrid method, which uses the level-by-level mechanism for the innermost
level and the flat solution for the other levels. The methods subsume Huff’s mod-
ulo scheduling [8] for single loops as a special case. We also break a scheduling
constraint introduced in earlier publications and allow for a more compact kernel.
The proposed approaches were implemented in the Open64/ORC compiler, and
evaluated on loop nests from the Livermore, SPEC200 and NAS benchmarks.

1 Introduction

Software pipelining (SWP) is an important loop scheduling technique that overlaps the
execution of consecutive iterations of a loop to explore instruction-level parallelism [9,
8, 13, 1, 7, 10]. Traditionally, it is applied to the innermost loop of a loop nest. The
schedule can be extended to outer loops by hierarchical reduction [9, 11, 17]. Loop
transformations can be performed to the innermost loop before SWP [2, 18, 12].

Single-dimension Software Pipelining (SSP) [16] is a unique resource-constrained
framework for software pipelining a loop nest. The scheduling technique overlaps the
iterations of any loop in a loop nest that satisfies the dependence constraints. The com-
pilation framework is shown in Fig. 1. First, the loop level deemed the most profitable
is selected and themulti-dimensional data dependence graph (n-D DDG)is simplified
into aone-dimensional DDG (1-D DDG)and sent as input to the scheduler [16]. The
kernel is then computed. If the register pressure is reasonable [5], registers are allo-
cated [14] and the final code is generated [15].

1 This work was supported in part by the DOD, by DARPA contract No.NBCH30904, by NSF
grants No.0103723 and No.0429781, and by DOE grant No.DE-FC02-OIER25503.

Selection
Loop

Simplification
Dependence

Register Pressure
EvaluationAllocation

Register
Generation

Code

loop
level DDG

1−D

increase initiation intervalchoose different loop level
too high

ok
schedule

final

nest
loop Kernel

Generation
kernel

allocated
register

kernel

Fig. 1.SSP Compilation Framework

In this paper, we present for the first time algorithms for thekernel generationstep.
The computed kernel must minimize the execution time of the final multi-dimensional
schedule. The problem is complex - as it involves the overlapping of operations from
several loop levels (dimensions) of a loop nest, a challenge not encountered in tradi-
tional modulo scheduling. The kernel is partitioned intosubkernels, one per loop level
and each with its own initiation interval. Those subkernels interact with each other and
optimizing one subkernel could have a negative impact on the others. Moreover, when
the scheduler fails and the initiation interval must be increased, which subkernel should
be chosen?

Three approaches are proposed and studied. Thelevel-by-levelapproach generates
the subkernels in order, starting from the innermost. Once a subkernel has been com-
puted, it cannot be altered. Theflat approach does not lock a subkernel once fully sched-
uled. Operations from any loop level may be considered and undo previous decisions
made in a different subkernel. A larger solution space can therefore be explored. Finally,
thehybrid approach schedules the innermost subkernel first and locks it. The other op-
erations are then scheduled using the flat method. It allows for a shorter compilation
time than the flat method while exploring a large solution space and focusing resources
on the innermost loop. The three approaches subsumes Huff’s scheduler [8] as a special
case when the loop nest is a single loop.

We also break an SSP limitation that forced operations from different loop levels
to be scheduled in distinct stages and that may artificially bloat the size of the kernel.
We prove that, with minor modifications to the code generator and without code size
increase, operations other than innermost can actually be scheduled in the same stage
than operations from a different level.

The proposed approaches and heuristics associated with them have been imple-
mented in the Open64/ORC compiler and analyzed on loop nests from the Livermore
and NAS benchmarks. Experimental results show that the hybrid approach avoids the
pitfalls of the two other approaches and produces schedules on average twice faster than
modulo-scheduling schedules. Because of its large search space, the flat approach may
not reach a good solution fast enough and showed poor results.

The rest of the paper is organized as follows. First, the SSP technique is reviewed.
In section 2, the kernel generation problem for SSP is presented. Section 3 explains
how to schedule operations from different levels into the same stage. The next section
presents the scheduling methods in details. The last three sections are devoted toward
experiments, related work, and conclusion, respectively.

2 The SSP Kernel Generation Problem

2.1 Single-Dimension Software Pipelining

Single-dimension Software Pipelining (SSP) [16, 15, 14, 5] is a resource-constrained
software pipelining method for both perfect and imperfect loop nests with a rectan-
gular iteration space. Unlike other approaches [9, 6, 17, 11], SSP does not necessarily
software pipeline the innermost loop of a loop nest, but directly software pipelines the
loop level estimated to be the most profitable. From the SSP point of view, the loop
levels enclosing the selected loop are ignored. Therefore, the selected loop becomes the
outermost loop. Within an iteration of the outermost loop, inner loops run sequentially.

Beside being able to software pipeline any loop level and overlap the execution of
the prolog and epilog of the inner loops, the advantage of SSP over modulo-scheduling
(MS) is that instruction-level parallelism or data cache reuse properties present in the
outer loops are now accessible. Without prior iteration space transformations, a faster
schedule with better cache performance can be found. If the innermost loop level is
chosen, SSP is equivalent to classical modulo scheduling. SSP retains the simplicity of
modulo scheduling, and yet may achieve significantly higher performance [16].

empty

l 1 l 2 l n f n

T 2 T n

f 2

K2 Kn

f =01

T=T1

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

0
1
2

T−2

...

T−1

Modulo cyclestage index

K=K1

S=S1

S2

nS

Fig. 2.Generic SSP Kernel

The final SSP schedule is derived from the kernel. Unlike the MS kernel, the SSP
kernel has multiple initiation intervals and is composed of one subkernelKi per loop
level i in the loop nest. Each subkernel has its own number of stagesSi and initiation
intervalTi. We notefi andli the index of the first and last stages ofKi in the full kernel.
Some slots are empty because of the kernel nesting constraints presented next (Fig. 2).

2.2 Problem Statement

The operations in the kernel must obey the scheduling constraints. A possible conserva-
tive definition of those constraints is given below. The modulo property and the resource
constraints are identical to those used in MS. However, the dependence constraints now
include the number of unused cycles term (uc, defined in Sec. 4), corresponding to the
empty stages. The other constraints only exist in SSP. Letσ(op) be the schedule time
of operationop in the kernel. The constraints are:

– Modulo Property: operations are issued everyT cycles.T is the initiation interval
of the kernel.

– Resource Constraints: at any given cycle of the kernel, a hardware resource is not
allocated to more than one operation.

– Dependence Constraints: σ(op1) + δ ≤ σ(op2) + k ∗ T − uc(op1, op2, k) for all
the dependences from the 1-D DDG fromop1 to op2 whereδ is the latency of the
dependence andk the distance.

– Sequential Constraints: σ(op)+δ ≤ Sp∗Tn for every positive dependence
−→
d =<

d1, ..., dn > originating fromop in the original multi-dimensional DDG and where
dp is the first non-null element in the subvector< d2, ..., dn >.

– Kernel Nesting Constraints: operations from different loop levels cannot be
scheduled in the same stage and a stage cannot be enclosed between stages of
deeper loop levels.

The SSP kernel generation problem can then be formulated as follows: given a set
of loop nest operations and the associated 1-D DDG, schedule the operations so that
the scheduling constraints are honored and the initiation interval of each subkernel is
minimized. Even when the loop nest is a single loop, the problem is NP-hard [19].

2.3 Issues

To satisfy the constraints mentioned above, several issues need to be solved. First, the
kernel is composed of subkernels with different initiation intervals (II) which must be
respected during the scheduling process. In Fig. 3(a), the II of the innermost kernel is
2 and the number of functional units (FUs) is also 2. When insertingop4, op3 must be
ejected to maintain the current II. Also, if a subkernel is rescheduled to a different cycle,
one must make sure that the subkernel is not truncated as shown in Fig. 3(b)

op1
op2
op3

op5
op1

op2
op3

op4
op5place op4

op3 is ejectedII=2

(a) Strict Initiation Rate of Subkernels

op5 op2
op3

subkernel
schedule

1 cycle later

truncated subkernel

op3

op2op5

(b) Truncation of Subkernels

Number of FUs: 2

op2
op3

op4
op5

op1
op2
op3

op4
op5

op1
outermost II

increase

cannot place other op in innermost kernel

(c) Useless II Increment Decision

op3
op4

op5
op6

op1
op2op1op3

op4
op5
op6 op2

Number of FUs: 3
increase

innermost II

op3 depends on op2
latency of op2: 2

innermost II
unnecessarily high

(d) Non-Optimal II Increment Decision

Fig. 3.Kernel Generation Issues

Then, the multiple II feature raises issues of its own. When the scheduler cannot find
a solution and the II of one subkernel must be incremented, which subkernel should be
chosen? Fig. 3(c) and 3(d) shows examples of inefficient schedules because of poor II
increment decisions.

3 Breaking the Kernel Nesting Constraints

The kernel nesting constraints were originally introduced for implementation reasons.
We now show that those constraints are unnecessary and can be removed. The advantage
is two-fold. First, it gives more freedom to the scheduler which may be able to find a
more compact kernel as shown in Fig. 4:op1, an operation from the outermost loop can
now be scheduled in the same stage as operations from the innermost level. Second,
because the number of stages may decrease, so may the register pressure.

To produce a correct final schedule from such a kernel, it is sufficient to condition-
ally emit the operations of the kernel. During the emission of stages for the execution
of loop leveli only operations from leveli and deeper are emitted. If operations from
other loop levels are present in the stage, they are simply ignored.

op4
op2
op3 op1 op2

op1
op4
op3

S = 3 S = 2
without level

nesting constraint

Fig. 4.Removal of the Kernel Nesting Constraints

Since the innermost loop is most frequently executed, it is not desirable to put op-
erations from other levels into the innermost subkernel, in case they artificially increase
its II. Also, the conditional emission of operations in the innermost stages requires code
duplication to be used. Therefore, we will instead enforce a weaker limitation, called the
innermost level separation limitation, that forbids outer loop operations to be scheduled
into the innermost loop stages.

4 Solution

The algorithm framework, shared by the three approaches, is derived from Huff’s algo-
rithm [8, 13, 1] and shown in Fig. 5. Starting with the minimum legal II [16] for each
loop level, the scheduler proceeds as follows. The minimum legal scheduling distance
(mindist) between any two dependent operations is computed. Using that informa-
tion, the earliest and latest start time,estart and lstart respectively, of each opera-
tion is computed. The differencelstart− estart, calledslack, is representative of the
scheduling freedom of an operation. The operations are then scheduled in the kernel in
a heuristic-based order. If the scheduling of the current operation does not cause any re-
source conflict, the choice is validated. Otherwise, the conflicting operations are ejected.
In both cases, theestart andlstart values of the ejected or not-scheduled operations
are updated accordingly. The process is repeated until all the operations are scheduled.

SSP SCHEDULER(approach, priority, II increment, max II try, max op try):
for each loop level i do

set Ti to the minimum legal II for that level
end for
for max II try attempts do

initialize mindist table and modulo resource table
compute slack of operations
for max op try attempts do

choose next operation op according to approach and priority
if no operation left then

enforce sequential constraints
return success

end if
schedule operation op
eject operations violating resource constraints with op
eject operations violating dependence constraints with op
eject operations violating innermost level separation limitation with op
update slack and MRT

end for
choose level i to increase II according to II increment
increment Ti by 1

end for
return failure

Fig. 5.Scheduling Framework

After too many iterations without success (max op try attempts), the II of one sub-
kernel is incremented and the scheduler starts over. Aftermax II try II increments,
the scheduler gives up. If a solution is found, the scheduler enforces the sequential con-
straints and returns successfully. The different steps are detailed in the next subsections.

The proposed approaches are correct. As shown in the next subsections, the gen-
erated kernel respects all the scheduling constraints. Because the algorithm is based
on modulo scheduling, the resource constraints are also honored. Moreover, when ap-
plied to a single loop, the method is Huff’s algorithm and therefore subsumes modulo
scheduling as a special case.

4.1 Scheduling Approaches

Three different scheduling approaches are proposed. Withlevel-by-levelscheduling, the
operations are scheduled in the order of their loop levels, starting from the innermost.
Once all the operations of one level are scheduled, the entire schedule becomes a virtual
operation from the point of view of the enclosing level. The virtual operation acts as
a white box both for dependences and resource usage. Operations within the virtual
operation cannot be rescheduled. The method is simple and fast. However, the early
scheduling decisions made in the inner loops might prevent the scheduler from reaching
more beneficial solutions later in the scheduling process. Fig. 6 shows an example where
we assume 2 functional units and a dependence betweenop1 andop2 with a latency

op2
op3

op4 op1

op2
op3

op4
op1

op2
op3

op4
op1

T 1=3

op2
op3

op4

innermost kernel
(fixed)

resource conflict
with op2 and op4place op1 outermost II

increase
number of FUs: 2

latency conflict with op2

(a) Level-by-Level Scheduling Solution

op1op2
op3

op2
op3

op4 op1op2
op3

op4

T 1=2
op4

resource conflict: eject op2 and op4innermost kernel

place op1 place op4 and op2

(b) Flat Scheduling Solution

Fig. 6.Advantage of the Flat Approach over the Level-by-Level Approach

of 2 cycles. The level-by-level scheduler must increaseT1 to 3 in order to schedule
op1 whereas the flat scheduler can reschedule inner operations to obtain a kernel with
T1 = 2.

Flat scheduling considers operations from all loop levels as potential candidates.
When backtracking, conflicting operations from all levels can be ejected from the sched-
ule. The main advantage of this approach is its flexibility. Early decisions can always be
undone. Such flexibility leads to a larger solution space, and potentially better sched-
ules. On the down side, the search space might become too large and slow down the
scheduler.

The hybrid approach embeds the flat scheduling into a level-by-level framework.
The innermost level is scheduled first. Its kernel becomes a virtual operation and the flat
scheduling method is used for the other loop levels. The hybrid approach is intuitively
a good compromise between level-by-level and flat scheduling, as confirmed by the
experimental results. It can find better solutions than the level-by-level method without
the cost in compile time of the flat method.

4.2 Enforcement of the SSP Scheduling Constraints

The dependence constraints,σ(op2) − σ(op1) ≥ δ − k ∗ T + uc(op1, op2, k), is en-
forced through themindist table. Because the table is generated before scheduling the
operations,uc must be expressed independently of the yet unknown schedule time of
op1 andop2. The following tight upper bound is proposed:

σ(op2)− σ(op1) ≥
T

Tn
∗ (δ + 2 ∗ T − (k + 2) ∗ Tn)

The right-hand side of the equation is themindist(op1, op2). By construction [4], the
dependence constraints are always enforced.

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� � �
� � �
	 	 	
	 	 	

� �
� �

Kn K2
1K

after innermost before

kernels may vary
position of inner

length of scheduling
block may vary

empty

Fig. 7.Scheduling Blocks Example

The sequential constraints are not enforced during the scheduling process, but as a
posteriori transformation once a schedule that satisfies the other constraints has been
found. At that time, empty stages are inserted in the schedule until the sequential con-
straints are verified. The need for extra stages occurs rarely enough to justify such a
technique.

To enforce the innermost level separation limitation without any extra computation
cost, the schedule is conceptually split into threescheduling blocks: before, innermost
andafter. Operations that lexically appear before (after, respectively) the innermost
loop are scheduled independently into the ’before’ (’after’) scheduling block (Fig. 7).
Innermost operations are scheduled into the ’innermost’ scheduling block. Within each
scheduling block, the length of the schedule may vary without breaking the separa-
tion limitation and final length of the full schedule is only known at the very end. The
modulo resource reservation table is shared between the three blocks.

When an operation is scheduled or when an operation is ejected, the slack of depen-
dent operations must be recomputed. Usually, such an update is incremental. However,
a dummySTART and a dummySTOPoperations are used to mark the boundaries of each
scheduling block. As the slack is computed relatively to the distance between theSTART

andSTOPoperations, if a dummy operation of one block is ejected and rescheduled, the
slack of every operation within this block has to be recomputed.

4.3 Kernel Integrity

In the level-by-level approach, the subkernels are computed separately and therefore
the initiation intervals are always respected. Truncation is avoided by forbidding the
subkernels from being scheduled in cycles that would cause it.

In the flat approach, the initiation intervals are enforced by scheduling an opera-
tion first within the current boundaries of its subkernel. If impossible, the operation is
scheduled at some other cycle. The subkernel is then correspondingly moved. All the
operations that are then not within the boundaries of the kernel anymore are ejected.
Therefore, subkernels cannot be truncated.

4.4 Operation Selection

The operation selection order is determined by a two-level priority mechanism. The pri-
mary priority is based on the loop level of the operation. Ininnermost firstorder, the op-
erations are scheduled in depth order, starting from the innermost. Inlexical order, the
operations are scheduled in the order they appear in the original source code. Inblock

lexical order, the operations are scheduled in the order of scheduling blocks: before-
innermost-after. Inunsortedorder, the primary priority is bypassed. Then, 3 secondary
priorities are used to break ties. Withslackpriority, the operations with a smaller slack
are scheduled first. Critical operations, i.e. operations that use resource used at 90% or
more in the schedule, have their slack divided by two to increase their priority. With
smaller lstartpriority, the operations with a smaller latest start time are scheduled first.
The priority can be seen as a top-down scheduling approach. Withlarger estartprior-
ity, the operations with a larger earliest start time are scheduled first. It is a bottom-up
scheduling approach.

4.5 Operation Scheduling

The legal range of schedule cycles for an operation selected for scheduling is defined
by [estart, lstart]. If the operation is scheduled for the first time,estart is chosen.
Otherwise, the next value in the legal range since the last scheduling attempt is chosen.
If there is none, the other scheduled operations, the availability of resources, and the
II of the level of the operation are ignored andestart is chosen. Conflicts created by
the decision will be solved by later ejecting the scheduled operations involved in the
conflicts.

4.6 Initiation Interval Increment

Several heuristics are proposed to decide which subkernel should have its II incre-
mented when the scheduler times out. Withlowest slack first, the average slack of the
operations of each level is computed. The loop level with the lowest average slack is
selected. Withinnermost first, the first level (from the innermost to the outermost) in
which not all the operations have been already scheduled is selected. The heuristic is
to be used only with the innermost first scheduling priority, Withlexical, the first loop
level in lexical order in which not all the operations have been already scheduled is
selected. The heuristics is to be used only with the lexical scheduling priority.

5 Experiments

The proposed solution was implemented in the Open64/ORC2.1 compiler. 19 loop nests
of depth 2 or 3, extracted from the NAS, SPEC2000, and Livermore benchmark suites,
were software-pipelined at the outermost level and run on an Itanium2 workstation.

5.1 Comparison of the Scheduling Approaches

The best execution time for each approach was measured (Fig. 8). On average, hybrid
and level-by-level schedules are twice faster than MS schedules. In several occasions,
the flat solution is slower. Even when given as much as 10 times more attempts to find
a solution, the flat scheduler fails and had to increment the initiation intervals, resulting
in a slower final schedule. In one case (liv-5), the flat schedule was able to perform
better than the level-by-level approach. As expected, the hybrid approach combined

� � �� � �� � �

���
�
��� ������ ������ ���		

��� ���

�

� �� �� �� �
���� �� �� �� �� �

���
��

���
�
���
�

���
���
��

���
���
��

� �� �� �� �� �� �
� �� �� �� �� �� �

���
�
���
�

���
�
���
�

���
���
���

���
���
���

���
���
���
���
��

���
���
���
���
��

!!!
!!!
!!!

"""
"""
"""
"""
""

###
###
###
###
#

$$$
$
%%%
%

&&&
&&
'''
'' (((

(((
)))
))

* * *+ + +

, ,, ,- -- -. .. ./ // /
0 00 0112 22 233 445

5
667
7

8 88 89 99 9 ::
:

;;
;

<<=
=

>>
>>
>

??
??
?

@@
@@

AA
AA

B BB BC CC C
D DD DE EE E FF

FF
FF

GG
GG
GG

HH
HH
HH
HH
H

II
II
II
II
I

J JJ JJ JJ JJ JJ JJ JJ J

KK
KK
KK
KK

L LL LL LL LL LL LL L

MM
MM
MM
M

N NN NOO
P PP PP P

QQ
Q RR

R

SS
S

 1

 2

 3

 4

 5

A
V

G

m
m

−k
ji

m
m

−k
ij

m
m

−j
ki

m
m

−j
ik

m
m

−i
kj

m
m

−i
jk

liv
−2

3

liv
−1

8.
3

liv
−1

8.
2

liv
−1

8.
1

liv
−7

liv
−5

liv
−4

liv
−3

liv
−2g3

bl
as

hy
dr

o

so
r

Sp
ee

du
p

vs
. M

od
ul

o
Sc

he
du

lin
g Flat

Level−by−Level
Hybrid

Fig. 8.Execution Time Speedup vs. Modulo Scheduling

the advantages of the two other methods and, for all benchmarks butliv-3, produces a
kernel with best execution time. Therefore, the hybrid approach should be the method
of choice to generate SSP kernels.

The register pressure was also measured. On average, the register pressure in SSP
schedules is 3.5 times higher than with MS schedules, in line with results from previous
publications. The hybrid and level-by-level approaches have comparable register pres-
sures, whereas the pressure is lower for the flat approach as the initiation intervals are
higher. Forhydro, the register pressure was too high with the level-by-level approach.
It was observed that the register pressure is directly related to the speedup results. The
higher the initiation intervals, the lower the register pressure and the execution time of
the schedules.

5.2 Comparison of the Heuristics

Fig. 9 compares the results of the different operation selection heuristics for each
scheduling approach. The minimum execution time and register pressures were
recorded and the relative difference of each heuristic to the minimum was computed
for each test case. The average is shown in the figure. The first letter U, L, I, or B stand
for the primary selection method: Unsorted, Lexical, Innermost first or Block lexical re-
spectively. The second letter S, E, or L for the secondary method: Slack, largest Estart
or smallest Lstart. Level-by-Level scheduling was only tested for the unsorted primary
method because all methods are equivalent when a single loop level is scheduled at a
time.

For the flat scheduler, the best heuristic is highly dependent on the benchmark being
evaluated. On average, each heuristic produces schedules 7.5% slower than the best
schedule. Those high variations are explained by the size of the search space. For the
two other methods, the choice of the heuristics have little influence on the execution
time of the final schedule.the quality of the computed solution.

The II increment heuristics were also compared for the two approaches that use
them: flat and hybrid. For the flat scheduler, the slack and lexical order produce the

� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

 0

 0.05

 0.1

 0.15

 0.2

 0.25

B
/E

B
/L

B
/SI/
E

I/
LI/
S

L
/E

L
/LL
/S

U
/E

U
/L

U
/S

execution time
register pressure

(a) Flat

� �� �
� �� �

��
�
��
�

� �� ���
��
��

��
��

�	
��
������������ 0

 0.05

 0.1

 0.15

 0.2

 0.25

U
/E

U
/L

U
/S

execution time
register pressure

(b) Level-by-Level

� �� �� �� �

��
�
��
� ��

�

��
�

��
��
��

��
��
��

��
��

		
		

��
��

��
��
��

��
��

��
��

� �� �� �
��
�

� �� �� �� �
� �� �� �
� �� �� �

� �� �� �� �

��
��

� �� �� �� �� �� �

� �� �� �� �� �� �

 0

 0.05

 0.1

 0.15

 0.2

 0.25

B
/E

B
/L

B
/SI/
E

I/
LI/
S

L
/E

L
/LL
/S

U
/E

U
/L

U
/S

execution time
register pressure

(c) Hybrid

Fig. 9.Comparison of the Operation Selection Heuristics

fastest schedules and are on average below 8% of the best schedule. The innermost
order can produce schedules 30% slower. Because the slack order is not dependent on
the operation selection heuristic used, it is to be preferred. For the hybrid scheduler,
the impact of the II increment heuristics is limited. Indeed, the innermost level, which
contains most of the operations, is treated as a special case. Therefore there is not much
scheduling pressure left for the other levels (2 to 3 maximum).

6 Related Work

SSP is not the only method to software pipeline loop nests. But, it is the first that has
performed a complete and systematic study on each of the subjects: scheduling, register
allocation, and code generation [16, 14, 15].

Modulo-scheduling techniques were extended to handle loop nests through hierar-
chical reduction [9, 17, 11], in order to overlap the prolog and the epilog of the inner
loops of successive outer loop iterations. Although seemingly similar in idea to the
level-by-level approach proposed here, hierarchical reduction software pipelines every
loop level of the loop nest starting from the innermost, dependencies and resource usage
permitting. The dependence graph needs to be reconstructed each time before schedul-
ing each level, and cache effects are not considered. SSP only tries to software pipeline
a single level and to execute its inner loops sequentially. MS has also been combined
with prior loop transformations [2, 18, 12].

Finally, there exists other theoretical loop nest software pipelining techniques such
as hyperplane scheduling [3]. Such method not consider fine-grain resources such as
function units and registers.

7 Conclusion

This paper proposed for the first time kernel generation methods and heuristics for the
Single-dimension Software Pipelining framework and break the kernel nesting con-
straints introduced in earlier publications [15]. We proved that each technique enforces
all the SSP scheduling constraints. Experiments demonstrated that, although the level-
by-level and hybrid approaches show comparable schedules in terms of execution and

register pressure, the hybrid method is to be preferred because it outperforms the level-
by-level approach in some cases. The flat method was victim of its own large search
space and could not find good solutions in a reasonable amount of time and had to set-
tle for kernels with larger initiation intervals. The choice of the heuristics have little
influence on the final schedules for the hybrid and level-by-level approach.

References

1. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Comput. Surv.
27(3) (1995) 367–432

2. Carr, S., Ding, C., Sweany, P.: Improving software pipelining with unroll-and-jam. In: Proc.
of HICSS’96, IEEE Computer Society (1996) 183–192

3. Darte, A., Schreiber, R., Rau, B.R., Vivien, F.: Constructing and exploiting linear schedules
with prescribed parallelism. ACM Trans. Des. Autom. Electron. Syst.7(1) (2002) 159–172

4. Douillet, A.: A Compiler Framework for Loop Nest Software-Pipelining. PhD thesis, Uni-
versity of Delaware, Newark, Delaware, USA (2006)

5. Douillet, A., Gao, G.R.: Register pressure in software-pipelined loop nests: Fast computation
and impact on architecture design. In: Proc. of LCPC’05, Springer-Verlag (2005)

6. Gao, G.R., Ning, Q., Dongen, V.: Extending software pipelining techniques for scheduling
nested loops. In: Proc. of LCPC’94. (1994) 340–357

7. Govindarajan, R., Altman, E.R., Gao, G.R.: A framework for resource-constrained rate-
optimal software pipelining. IEEE Trans. Parallel Distrib. Syst.7(11) (1996) 1133–1149

8. Huff, R.A.: Lifetime-sensitive modulo scheduling. In: Proc. of PLDI’93, ACM Press (1993)
258–267

9. Lam, M.: Software pipelining: an effective scheduling technique for vliw machines. In:
Proc. of PLDI ’88, ACM Press (1988) 318–328

10. Llosa, J.: Swing modulo scheduling: A lifetime-sensitive approach. In: Proc. of PACT’96,
IEEE Computer Society (1996) 80

11. Muthukumar, K., Doshi, G.: Software pipelining of nested loops. In: Proc. of CC’01,
Springer-Verlag (2001) 165–181

12. Petkov, D., Harr, R., Amarasinghe, S.: Efficient pipelining of nested loops: unroll-and-
squash. In: Proc. of IPDPS’02, IEEE (2002)

13. Rau, B.R.: Iterative modulo scheduling: an algorithm for software pipelining loops. In: Proc.
of MICRO 27, ACM Press (1994) 63–74

14. Rong, H., Douillet, A., Gao, G.R.: Register allocation for software pipelined multi-
dimensional loops. In: Proc. of PLDI’05. (2005) 154–167

15. Rong, H., Douillet, A., Govindarajan, R., Gao, G.R.: Code generation for single-dimension
software pipelining of multi-dimensional loops. In: Proc. of CGO’04. (2004) 175–186

16. Rong, H., Tang, Z., Govindarajan, R., Douillet, A., Gao, G.R.: Single-dimension software
pipelining for multi-dimensional loops. In: Proc. of CGO’04. (2004) 163–174

17. Wang, J., Gao, G.R.: Pipelining-dovetailing: A transformation to enhance software pipelin-
ing for nested loops. In: Proc. of CC ’96, Springer-Verlag (1996) 1–17

18. Wolf, M.E., Maydan, D.E., Chen, D.K.: Combining loop transformations considering caches
and scheduling. Int. J. Parallel Program.26(4) (1998) 479–503

19. Wood, G.: Global optimization of microprograms through modular control constructs. In:
Proc. of MICRO 12, IEEE (1979) 1–6

