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Abstract. Running workloads in a Grid environment may become a challenging 
problem when no appropriate means are available for resource brokering. Many 
times resources are provided under various administrative policies and 
agreements that must be known in order to perform adequate scheduling 
decisions. Thus, providing suitable solutions for resource management is 
important if we want to cope with the increased scale and complexity of such 
distributed system.  In this paper we explore the key requirements a brokering 
infrastructure must meet in large and dynamic Grid environments and illustrate 
how these requirements are addressed by a specialized infrastructure, DI-
GRUBER - a distributed usage service level agreement (uSLA) brokering 
service. The accuracy function of the brokering infrastructure connectivity and 
the performance gains when a client scheduling policy is employed are analyzed 
in high detail. In addition, a performance comparison with a P2P-based 
distributed lookup service is performed to illustrate the performance differences 
between two different technologies that address similar problems (Grids that 
focus on federated resource sharing scenarios and P2Ps that focus on self-
organizing distributed resource sharing systems, in which most of the 
communication is symmetric).  
 

1. Introduction  

The motivating scenarios of our work are large grid environments in which virtual 
organizations (VOs) and agreements appear and vanish with a high frequency (every 
day or week). Such VOs might be companies requiring outsourcing services over 
short time intervals or scientific communities that want to participate temporarily in 
different collaborations with access to other types of resources. In these environments, 
we distinguish between two types of entities participating: resource providers and 
resource consumers. They may be nested: a provider may function as a middleman, 
providing access to resources to which the provider has itself been granted access by 
some other provider. While sharing policies issues can arise at multiple levels in such 
scenarios, the dynamicity of such an environment is also a problem. Providers want to 
express (and enforce) various sharing policies (what we call usage service level 
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agreements or uSLAs) under which resources are made available to consumers. 
Consumers want to access and interpret uSLA statements published by providers, in 
order to monitor their agreements and guide their activities. Starting from this 
environment and interactions model, our main focus is the identification of 
requirements and the provisioning of the design ingredients for building a scalable 
distributed resource brokering service that supports uSLA expression, publication, 
discovery, interpretation, enforcement, and verification in large dynamic Grid 
environments. We build on much previous work concerning the specification and 
enforcement of resource uSLAs [1-5], information lookup, scheduling and brokering 
services [6-8], the GRUBER broker [9], and the DI-GRUBER version [10].  

The main contributions of this paper are on three dimensions. First, we identify 
several requirements a brokering infrastructure has to meet when deployed in large 
and dynamic Grid environments. We base our judgment on our past experience with 
the GRUBER framework in the Grid3 [11] context and the enhanced version, DI-
GRUBER. Second, we present several novel DI-GRUBER performance 
measurements, namely the brokering accuracy function of infrastructure components’  
connectivity, and the gains in performance when using automated decision point 
scheduling for the clients.  Third, we realize a performance comparison with a P2P-
based system for file management. The paper also introduces two major technical 
enhancements to the DI-GRUBER two layer brokering infrastructure: WS-Index 
Service-based infrastructure discovery [6] and a specific solution for handling 
infrastructures decision points’  scheduling in order to meet the outlined requirements 
[10]. The first enhancement takes advantage of the WS-Index Service functionalities 
that acts as a lookup service. Each GRUBER decision point registers itself with a 
predefined list of WS-Index Services at startup and it is automatically deleted when it 
no longer provides brokering services. The second enhancement also takes advantage 
of the WS-Index Service to discover the most appropriate decision point (DP).  

2. Brokering Key Requirements for Large and Dynamic Grids 

This work targets Grids (and any large distributed systems in general) that may 
comprise hundreds of institutions and thousands of individual investigators where the 
participants often join or leave the environment [11]. Moreover, each individual 
investigator and institution may participate in, and contribute resources to multiple 
collaborative projects that can vary widely in scale, lifetime, and formality [10, 12]. 
Such globally distributed systems provide several key benefits over large centralized 
solutions, in particular: maintenance costs and upgrade operations are more easily 
handled and there are no single points of failure. Two main environment examples of 
this class are introduced next.  

2.1.  Grid Environment Examples  

Open Science Grid (previously known as Grid3 [11]) is a multi-virtual organization 
(multi-VO) environment that sustains production level services required by various 
physics experiments. The Grid3 infrastructure had comprised more than 30 sites and 
4500 CPUs, over 1300 simultaneous jobs and more than 2 TB/day aggregate data 
traffic. The participating sites were (are) the main resource providers under various 
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conditions. Thus, we consider that OSG/Grid is a good example of the kind of 
environments we envisage for the work in this paper. However, with times we believe 
that this infrastructure can grow. For example, the number of sites can increase by 
means of new joins; the rate of jobs can jump when new scientific communities will 
want to solve high computer power consummative applications. Thus, the resource 
management infrastructure we envisage in this paper targets Grid environments ten to 
hundred times bigger than today OSG. 

The other Grid testbed example is the LHC Computing Project (LCG). LCG targets 
to build and to maintain a data storage and analysis infrastructure for the entire high 
energy physics community that will use the LHC (Large Hadron Collider) [13]. The 
data from the LHC experiments will be distributed around the globe, according to a 
four-tiered model. Two of the goals of the LCG project include developing and 
deploying computing services based on a distributed Grid model, and managing 
acquisition, installation, and capacity planning for the large number of commodity 
hardware components. The expected size of the entire community is around 5000 
scientists in 500 research institutes and universities worldwide. The analysis of the 
data, including simulations, requires around 100,000 CPUs. Such a distributed system 
presents a number of significant challenges; the most important one from our point of 
view is the provisioning of controlled resource sharing mechanisms so that different 
groups have fair access, based on their needs and contributions, to the infrastructure.  

2.2.  Resource Brokering Key Requirements  

The resource brokering (and scheduling) problem in such Grid environments 
encompasses intertwined requirements, while the most important three ones in our 
vision are: support for brokering of numerous resources, an adequate level of 
accuracy of the brokering infrastructure and fault-tolerant brokering.  �

 Support for Brokering of Dynamic and Numerous Resources (scalability): 
dynamicity implies in our view that various communities, providers or VOs might 
join a Grid environment for short (days to weeks) time intervals in order to solve fast 
various problems. This dynamicity imposes certain technical requirements, such as 
rapid propagation of information about available resources in the brokering 
infrastructure and of the new administrative policies under which these resources are 
made available. When the environment is large (composed of hundreds to thousands 
simultaneous providers and more than thousands of consumers), the brokering 
solution must be scalable enough to handle such an infrastructure.  �

 Adequate Level of Brokering Accuracy Independent of the Infrastructure: 
regarding management information, an important problem is the accuracy of 
information provided by a brokering service in order to perform adequate scheduling 
decisions. Even more, for a distributed infrastructure, several operations have to be 
considered, such as propagation, reconciliation and removal. These operations may 
occur whenever new decisions are performed and new resources join or leave the 
environment. The entire brokering infrastructure must become aware of these changes 
in a timely fashion manner.  �

 Fault-tolerant Resource Brokering: fault tolerance is important from a client 
point of view. Even when a client cannot contact a brokering decision point, it still 
expects to perform scheduling operations over the Grid with a lower but acceptable 
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execution performance. Also, when many clients perform queries, the brokering 
infrastructure must be able to cope with this request load. Even the reader might think 
about the P2P networks and their properties to re-organize, we pursue the path of 
scheduling the brokering decision points as any other resources. Thus, the 
employment of an adequate strategy becomes important in this approach.   

3. Illustrating the Key Requirements in a Concrete Case 

We now introduce the main concepts and tools used in this paper.  We start with 
the WS-Index Service (monitoring and discovery service [6]) used as a supporting 
tool and introduce afterwards our brokering infrastructure (DI-GRUBER [10]) used as 
a vehicle for proving our assumptions.  

3.1.  WS-Index Service  

WS-Index Service [6] is a standard component of the Globus Toolkit (one of the 
Grid technologies largely used in science and industry [14]). It provides specialized 
functions for resource and service monitoring and discovery, and it is used as the 
central rendezvous point by our brokering infrastructure. While someone might 
consider the WS-Index Service a bottle-neck, our previous experiments proved that its 
scalability is well beyond our needs. Thus, WS-Index Service's main function in our 
infrastructure is to act as a specialized directory of all DI-GRUBER decision points for 
all clients and the decision points themselves, and for infrastructure management.   

3.2.  DI-GRUBER (A Distributed Grid Resource uSLA-based Broker) 

GRUBER [9] is a prototype Grid V-PEP and S-PEP infrastructure that implements 
the brokering functionalities required for steering workloads in a distributed 
environment based on uSLAs. It is able to perform job scheduling based on notions 
such as sites, VOs, VO groups, and uSLAs at various levels [4]. Currently, GRUBER 
is implemented as a Grid Web Service using the Globus Toolkit (GT4) technologies 
[14]. As an additional clarification, GRUBER does not perform job submission by 
itself, but can be used in conjunction with various grid job submission infrastructures. 
So far, we have interfaced GRUBER for job execution with the Euryale and Pegasus 
planners, largely used on Grid3 [11].  

However, managing uSLAs within environments that integrate participants and 
resources spanning many physical institutions is a challenging problem when a 
centralized infrastructure is employed. A single unified uSLA management decision 
point providing brokering decisions over hundreds to thousands of jobs and sites can 
easily become a bottleneck in terms of reliability as well as performance. DI-
GRUBER, an extension to the GRUBER prototype, was developed as a distributed 
uSLA-based resource broker that allows multiple decision points to coexist and 
cooperate in real-time. DI-GRUBER targets to provide a scalable management service 
with the same functionalities as GRUBER but in a distributed approach [10]. It is a 
two layer resource brokering service, capable of working over large Grids, extending 



Problems for Resource Brokering in Large and Dynamic Grid Environments      5 

GRUBER with support for multiple brokering decision points that cooperate by 
periodically exchanging status information.  

3.3.  DI-GRUBER Enhancements to Meet Previous Requirements  

DI-GRUBER was developed as a distributed uSLA-based grid resource broker 
that allows multiple decision points to coexist and cooperate in real-time. The 
problem is that without support for dynamic discovery of the brokering infrastructure, 
some of the advantages offered by this infrastructure become impractical. Here we 
outline how the interfacing and integration with the WS-Index Service practically 
fulfills the requirements enumerated in Section 2.  �

 Transparent Decision Point Bootstrapping: As already described, the ability to 
bring up a decision point is important in a large and dynamic Grid. Our proposed 
solution uses the functionalities offered by the WS-Index Service for various clients 
by employing the notion of rendezvous point. In our implementation, each DI-
GRUBER decision point registers with a predefined WS-Index Service at startup, 
while it is automatically deleted when it vanishes.  �

 Transparent Client Scheduling: Further, all decision points and clients can use 
this registry to find information about the existing infrastructure and select the most 
appropriate point of contact. When we use the term most appropriate, we refer to 
metrics such as load and number of clients already connected. The scheduling policy 
employed by each client in selecting a decision point was the least-used (LU) strategy. 
Also, whenever a decision point stops responding, its clients query automatically the 
registry and select a new different decision point to communicate.  �

 Failure Handling: While dynamic DI-GRUBER decision point bootstrapping 
might be difficult to automate in a generic environment, the solution we have devised 
is simple. Every time a client fails to communicate or to connect with a decision 
point, it registers with the WS-Index Service a request fault. Such faults can be 
consumed by a specialized entity that based on various policies starts dynamically 
new decision points by means of the WS-GRAM service. �

 Brokering Infrastructure Accuracy Identification: An important aspect of the 
work in this paper is to identify the accuracy of our brokering infrastructure function 
of the connectivity of each decision point to the rest of the network. This analysis falls 
into the same class of scenarios where a decision point has only partial knowledge, 
and is on the same path as the analysis of dealing with stalled information, measured 
and analyzed somewhere else [10].  

4. DI-GRUBER Infrastructure Performance Results  

Here we report on our latest results [10] while also considering some of our 
previous results. We used one to ten DI-GRUBER decision points deployed on the 
PlanetLab nodes [15]. Each decision point maintains a local view of the environment 
configuration and via periodic exchanges (in the experiments that follow every three 
minutes) with other decision points acquires the necessary knowledge about recent 
job dispatch operations or other changes in the system (new resources, new uSLAs).   

The three metrics employed for analysis are Throughput, Response (or Average 
Response Time) and Accuracy. Throughput is defined as the number of requests 
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completed successfully by the service per time unit. Response is defined by the 
following formula (with RTi being the individual job time response and N being the 
number of jobs processed during the execution period): Response = � i=1..N RTi / N. 
Finally, we define the scheduling accuracy for a specific job (SAi) as the ratio of free 
resources at the selected site to the total free resources over the entire grid. Accuracy 
is then the aggregated value of all scheduling accuracies measured for each individual 
job: Accuracy = � i=1..N (SAi) / N.  

For all the experiments, we used synthetic workloads with a constant arrival rate of 
1 job/s for each client or as soon as the previous scheduling decision was served that 
overlaid work for 60 VOs and 10 groups per VO. The experiment duration was one 
hour in all cases. Each of the 120 submission hosts (“clients” ) maintained a 
connection with one decision point; selected either under the random or the least used 
scheduling policy. The emulated environment was composed of 300 sites representing 
40,000 nodes. The entire configuration was based on Grid3’s landscape in terms of 
number of CPUs, disk space, network connectivity, etc., but ten times larger [10].  

4.1.  Decision Accuracy with Brokering Network Mesh Connectivity 

First, we measure Accuracy of the brokering infrastructure function of the decision 
points’  average connectivity. We consider practically three cases: full connectivity 
(DPs see each other), half connectivity (each DP collects information only from half 
of all the others), and one-fourth connectivity (each DP collects information only from 
a quarter of all the others).  The results were achieved by means of the DI-GRUBER 
infrastructure in all three above configurations and are captured in Table 1.  

Table 1. DI-GRUBER Accuracy Performance with Mesh Connectivity 
 Connectivity Util Accuracy 

All 35% 75% 
One half 27% 62% 

Requests Handled  
by GRUBER 

One fourth 20% 55% 
All 41% 68% 

One half 30% 60% 
Total Request 

One fourth 21% 50% 
 

We can observe that the performance of the brokering infrastructure drops 
substantially with connectivity degree of each individual decision point. As an 
additional note, the Util parameter is low because jobs do not start all in the 
beginning, but are scheduled every second during the entire execution period. In a 
nutshell, Accuracy drops almost linearly with clients’  connectivity degree, intuitively. 

4.2.  Decision Point Scheduling and Performance Gains  

Second, we focus on capturing the gains a client can achieve in term of 
performance when a least-used service selection policy is employed vs. the random 
scheduling policy we employed before. The results for the random scheduling policy 
are captured in Fig. 1 and Fig. 2, while the results for least-used scheduling policy are 
captured in Fig. 3 and Fig. 4. As can be observed in the first two figures, the 
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distributed service provides a symmetrical behavior with the number of concurrent 
machines that is independent of the state of the Grid (lightly or heavily loaded). Also, 
with three decision points, Throughput increases slowly to about 4 job scheduling 
requests per second when all testing machines are accessing the service. With 10 
decision points, the average Response time decreased even further to about 13 
seconds, and the achieved Throughput reached about 7.5 queries per second [10].  

Next two figures report the experiments performed when using the WS-Index 
Service and LU scheduling policy was employed by each client. We must mention 
that we also used this time a final GT4 release based implementation. As can be easily 
observed, the results show improvement in terms of both Response and Throughput. 
Clients achieved a more stable response time compared with the one in the previous 
set of tests. The Response metric’s value is always less than 30 seconds for 3 decision 
points, and less than 10 seconds for 10 decision points. The Throughput metric’ s 
value shows even higher improvements, reaching a constant value of 5 queries per 
seconds for 3 decision points, while going us up as 16 queries per second for 10 
decision points.   

However, on average, we find modest improvements for 3 decision points (19% 
higher throughput and 8% lower response time) and signif icant improvements for 10 
decision points (68% higher throughput and 70% lower response times). From this 
observation we conclude that, practically, the request load was better balanced among 
the decision points and the infrastructure was able to achieve higher Throughput and 
lower Response.  
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Fig. 1. DI-GRUBER Throughput (1, 3 and 10 Decision Points) 
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Fig. 2. DI-GRUBER Response (1, 3 and 10 Decision Points) 
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Fig. 3. DI-GRUBER Throughput (3 and 10 Decision Points) 
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Fig. 4. DI-GRUBER Scalability Response (3 and 10 Decision Points) 

4.3. Comparison with a FreePastry-based Lookup Service (PAST) 

For convincing the reader that even though DI-GRUBER's transaction throughput 
seems low compared to 'other transaction processing systems', we have performed 
further performance studies by means of DiPerF [16] on PlanetLab for a pretty well 
know distributed lookup service. The service chosen for testing was the PAST 
application [7], built on top of the PASTRY substrate.  

The chosen setup was very similar to the one used for DI-GRUBER: the same 
PlanetLab nodes (around 120). This time we used five machines for running 
permanent PAST nodes, while the rest ones were brought up dynamically, joining and 
leaving the network in a controlled manner. Again, we used only one of the five nodes 
as the main contact point (a node situated at the University of Chicago). The rest ones 
were maintained as backup and to mimic the DI-GRUBER network. The length of the 
experiment was again one hour, while each joining node requested a lookup and an 
insert operation every second (or, if the previous operation took more than one 
second, at soon as the previous operation ended).  

Our performance results are presented in Fig. 5. The measurements show that for 
insert and lookup operations, the PAST’s response time is around 2.5 seconds with a 
higher variance in the beginning (the stabilization of the P2P network), while the 
throughput goes as up as 27 transaction per second in average. Also, the message lost 
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rate for this ad-hoc network was pretty high compared with the one of DI-GRUBER. 
However, the network stabilization delay is higher for the P2P system (first 18% of 
the experimental time) compared with DI-GRUBER clients’  instantaneous network 
join operation. Our last note is that all operations were performed and measured on 
the local nodes (insertion followed by lookup); each node was responsible to 
propagate the results further (thus the higher response time and lower throughput than 
in the case of employing the continuation).  
 

 
Fig. 5. PAST Network Response Time (left axis) and Throughput (right axis) for a 

variable Load (left axis *  10) on 120 PlanetLab Nodes 

5. Conclusions  

Resource management within large VOs that integrate participants and resources 
spanning multiple physical institutions is a challenging problem. The main question 
this paper addresses is “what are the key requirements an already existing 
management infrastructure should meet in order to support large and dynamic Grid 
environments?” . The contributions of this paper are represented by results we 
achieved on three dimensions: we have identified three key requirements for 
extending a resource management service for large and dynamic Grid environments 
(and any other distributed systems in general), analyzed these requirements by means 
of a real infrastructure in a real case scenario, and also compared the performance 
results of the considered infrastructure with the ones of a P2P-based service.  

Our experimental results showed how the brokering accuracy decreases with the 
loss of connectivity for a single decision point instance, while the performance of the 
system almost doubles in the 10 decision points’  case due to the better repartition of 
the clients with the DI-GRUBER’s nodes. The last set of experiments, the comparison 
performance tests, convinced us that even though DI-GRUBER’s performance may 
seem low compared with a cluster resource manager, its performance is comparable in 
a similar environment in terms of response time and throughput with a distributed P2P 
system that, however, employs less functionality than the Grid counterpart 
technology.  
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