
Supporting Efficient Execution of MPI
Applications across Multiple Sites ?

Enol Fernández, Elisa Heymann, and Miquel Àngel Senar

Departament d’Arquitectura de Computadors i Sistemes Operatius
Universitat Autònoma de Barcelona, Barcelona, Spain

enol@aomail.uab.es, {elisa.heymann, miquelangel.senar}@uab.es

Abstract. One of the main goals of the CrossGrid Project [1] is to
provide explicit support to parallel and interactive compute- and data-
intensive applications. The CrossBroker job manager provides services
as part of the CrossGrid middleware and allows execution of parallel
MPI applications on Grid resources in a transparent and automatic way.
This document describes the design and implementation of the key com-
ponents responsible for an efficient and reliable execution of MPI jobs
splitted over multiple Grid sites, executed either in an on-line or batch
manner. We also provide details on the overheads introduced by our
system, as well as an experimental study showing that our system is
well-suited for embarrassingly parallel applications.

1 Introduction

Large-scale Grid computing requires job-management services that address new
concerns arising in Grid environments. This ‘job management’ involves all as-
pects of the process of locating various types of resources, arranging these for use,
utilizing them and monitoring their state. In these environments, job-management
services have to deal with a heterogeneous multi-site computing environment
that, in general, exhibits different hardware architectures, loss of centralized
control, and as a result, inevitable differences in policies. Additionally, due to
the distributed nature of the Grid, computers, networks and storage devices can
fail in various ways.

Most systems described in the literature follow a similar pattern of execution
when scheduling a job over a Grid. There are typically three main phases, as
described in [2]:

– Resource discovery, which generates a list of potential resources to be used.
– Information gathering on those resources and the selection of a best set.
– Job execution, which includes file staging and cleanup.

? This work was made in the frame of the ”int-eu.grid” project (sponsored by the
European Union), and supported by the MEyC-Spain under contract TIN 2004-
03388, and partially supported by the NATO under contract EST.EAP.CLG 981032.

Many Grid initiatives follow these scheduling phases by providing the mid-
dleware infrastructure to develop applications on computational grids and to
manage resources. The job management system that we have developed in the
CrossGrid project follows the same approach in scheduling jobs. However, our
system, known as CrossBroker, is targeted to the kinds of applications that have
received very little attention to date. Most existing systems have focussed on
the execution of sequential jobs, the Grid being a large multi-site environment
where jobs run in a batch-like way. Crossgrid jobs are computationally intensive
applications mostly written with the MPICH library using the Globus2 device
[3], taking advantage of being executed on multiple Grid sites.

From the scheduling point of view, support for parallel applications intro-
duces the need for co-allocation. There are studies [4][5] that evaluate different
co-allocation strategies, although the kind of jobs and grid environment these
use are not applicable in CrossGrid and are focused on simulation.

To the best of our knowledge, only a basic support for running MPICH-G2
jobs is included in the Globus Toolkit by using the globusrun command and
the DUROC services [6]. However this command requires a manual intervention
of the user to discover and select resources, and to stage all necessary files to
the remote sites and it does not support a reliable co-allocation mechanism
to synchronize the start-up of all subjobs. GCM [7] deals with the execution of
multi-site jobs using PACX-MPI [8], but it does not include a mechanism for the
automatic selection of sites. Our job-management service supports MPICH-G2
job execution by performing the three main scheduling phases in an automatic
and reliable way.

The rest of this paper is organized as follows: Section 2 briefly outlines the
overall architecture of our resource-management services, Section 3 describes
the particular services that support submission of MPI applications on a Grid
environment. Section 4 describes some experimental evaluation of our system,
and Section 5 summarizes the main conclusions to this work.

2 General Architecture of the CrossBroker

This section briefly describes the global architecture of our scheduling approach.
A more detailed explanation can be found in [9]. The scenario that we are tar-
geting consists of a user who has a parallel application and wishes to execute
this on grid resources. The user can submit the job in either an on-line or batch
manner. On-line submission is made when the application must start immedi-
ately, i.e. in a period of time very close to the time of submission. This kind
of submission is suitable for interactive applications. It is worth observing that
batch submissions do not require an immediate application start.

When users submit their application, our scheduling services are responsible
for optimizing scheduling and node allocation decisions on a user basis. Specifi-
cally, they carry out three main functions:

1. Select the ”best” resources that a submitted application can use. This selec-
tion will take into account the application requirements needed for its exe-

cution. The most important requirement for on-line jobs is the availability
of free machines at submission time; therefore, if there are no free machines,
the job will be cancelled. In the case of batch submission, the application
can wait for a free slot in the Grid sites and also for resources where other
specified requirements are satisfied.

2. Perform a reliable submission of the application onto the selected resources.
This involves the proper co-allocation of resources when the application is
distributed among multiple sites.

3. Monitor the application execution and report on job termination.

Figure 1 presents the main components that constitute our resource man-
agement services. A user submits a job to a Scheduling Agent (SA) through a
User Interface, command line or Migrating Desktop. The job is described by a
JobAd (Job Advertisement) using the EU-Datagrid Job Description Language
(JDL) [10], which has been conveniently extended with additional attributes to
reflect the requirements of parallel applications.

Fig. 1. CrossBroker Resource-Manager Architecture.

Once the job has reached the SA, the Resource Searcher (RS) is asked for
resources to run the application. The main duty of the RS is to perform match-
making between job needs and available resources. Using the job description as
input, the RS returns as output a list of possible resources within which to exe-
cute the job. The matchmaking process is based on the Condor ClassAd library
[11], which has been extended with a set matchmaking capability, as described
in [9].

The SA then selects the best resource (or group of resources) from the list re-
turned by the RS taking into account its current state and the job requirements.
The computing resources (or group of resources), also referred to as Computing
Element (CE) in CrossGrid terminology, are passed to the Application Launcher,

which is responsible for the co-allocation and the actual submission of the job.
Due to the dynamic nature of the Grid, the job submission may fail on that
particular site. Therefore, the Scheduling Agent will try other sites from the
returned list until the job submission either succeeds or fails.

The Application Launcher is also in charge of the reliable submission of
parallel applications on the Grid. Currently, two different launchers are used for
MPI applications, one allowing execution on one site, described in detail in [9],
and one allowing execution on multiple sites, described in the following section.

3 MPICH-G2 Job Management

An MPI application for grid execution has to be compiled with MPICH-G2 [3],
a device which allows the submission to multiple grid sites, thus using the set
matchmaking capability of our Resource Searcher for the automatic search of
resources.

As we have already mentioned, an MPICH-G2 application can be executed
on multiple sites using the globusrun command. The globusrun call performs
subjob synchronization through a barrier mechanism. But when executing jobs
with globusrun, it falls to the users to decide which sites to use, and it is these
same users who should be aware of the need to ask for the status of their own
application, resubmitting the application again if something is amiss, and so
on. Any failure or delay in the startup of a subjob may block permanently the
application given that the remaining subjobs will stay within the synchronization
barrier. As a consequence, resources will be occupied but no progress will be
achieved in application execution.

The lack of reliability exhibited by the globusrun command has been over-
come by Condor-G [12], which constitutes a dependable submission system for
the Grid. Unfortunately, Condor-G only supports sequential applications. We
have modified the submission of MPICH-G2 jobs in such a way that the whole
application is decomposed into a set of independent tasks - submitted to the
Grid - which are submitted to Condor-G (and treated as sequential tasks). Ad-
ditionally, we have included the necessary synchronization actions within each
task so as to generate a reliable co-allocation of all tasks. We can thus react to
the synchronization-related problems experienced by globusrun and avoid any
blocking situation during the launching phase of the job.

Ideally, MPI applications should always run soon after submission. However,
there may be situations in which not all the remote resources involved in an
execution are available, causing the ready resources to stay idle until all subjobs
start. Our job-management service features a special mechanism to deal with
these situations for batch MPI jobs. Whenever a batch MPI-G2 application is
submitted, an agent (rather than the actual application) is submitted to the
remote sites. This agent, based on Condor Glide-In [12], is used to gain control
of remote machines independently of the local-site job scheduler. Each machine
acquired by the agent, is configured as two virtual machines, in order to create a
separate group of dedicated resources for two types of applications: batch MPI

on the one hand, and sequential, on the other hand. From a logical point of view,
MPI batch jobs will then run on one virtual machine and sequential jobs will run
on the other one. MPICH-G2 subjobs are submitted to the batch virtual machine
and will wait until all subjobs are ready for execution. Meanwhile, the sequential
virtual machine is used to execute other jobs using backfilling scheduling, hence
attaining better utilization of resources. In the case of on-line applications, the
agent submitted does not create two virtual machines, but rather immediately
starts the application to ensure a faster start-up time.

In order to ensure the co-allocation of the different subjobs that make up one
application, the Scheduler Agent launches an MPICH-G2 application launcher
(MPI-AL), through Condor-G. This MPI-AL follows a two-step commit protocol:

– In the first step, all the subjobs (with their agents) are submitted to the
remote sites.

– A second step guarantees that all subjobs have a machine for their execution,
and that they have executed the MPI Init call. Synchronization is achieved
through a barrier released by the MPI-AL. After such synchronization, the
subjobs will then be allowed to run.

In order to avoid blocking situations, the MPI-AL will wait for several min-
utes for on-line jobs to execute their MPI Init call. If this call is not performed
before the time is exhausted, the whole job will then be aborted. In the case of
batch jobs, time-out will occur when the site’s local scheduler removes the job.

Figure 2 depicts how execution over the multiple sites of a batch job is
performed. In this example scenario, we have N subjobs constituting an MPICH-
G2 application. These subjobs will be executed on different sites. For the sake
of simplicity, Fig. 2 only shows 2 sites. The A arrows show subjobs submission
to the remote machines. These subjobs will stage agent executable and will
start it to gain control of the node. Once the virtual machines are available,
the actual application is submitted to the batch virtual machine. This is shown
by the B arrows. Once the subjobs are executing on the remote machines, the
MPI-AL releases the barrier and starts monitoring their execution and writes an
application global-log file, providing complete information of the jobs execution.
This monitoring is shown by the C arrows in Fig. 2, and constitutes the key
point for providing both reliable application execution and robustness.

In the event of the application ending correctly or of there being a problem
with the execution of any subjob, the MPI-AL records this in a log file that will
be checked by the SA, which will then take the correct action, in accordance with
that information. This provides a reliable once-only execution of the application
without user intervention.

4 Experimental Results

In this section we present an experimental evaluation of our system. First, we
measure the overhead introduced by our software when running MPICH-G2 jobs
and following this, we evaluate the performance of a real application executed
on the Grid.

Fig. 2. MPI execution on multiple sites

4.1 MPICH-G2 Overhead

Submitting jobs to the Grid by using the CrossBroker incurs an initial overhead
due to the different actions taken before the real job execution. This overhead
depends on whether the MPICH-G2 job will run in an on-line or batch man-
ner. Maximum overhead is incurred in the second case because it requires the
following steps:

1. Submission of the different subjobs to the remote sites. This involves con-
tacting the Globus gatekeeper, which in turns contacts the site job scheduler
to create a basic job that starts our agent in a particular node.

2. Once the basic job has started in the remote site, the agent files are down-
loaded from the CrossBroker to the node that will execute the application.

3. Virtual Machine set-up: the virtual machines are created. The CrossBroker
is notified, which in turn will submit the user application to the agent.

4. Subjob start-up: user application files are downloaded and the job is started
in the remote node.

We have submitted a synthetic MPICH-G2 application in order to measure
the impact of the different steps. The sites used were the following:

– UAB: cluster in Barcelona with 6 heterogeneous CPUs. The CrossBroker
used for these tests is also located in Barcelona.

– FZK: remote cluster with 16 CPUs (4 nodes with 4 CPUs each) located in
Karlsruhe (Germany).

– IFCA: remote cluster with 6 CPUs in 2 dual nodes. This cluster is located
in Santander (Spain).

Figure 3 shows the time (in seconds) from job submission until the application
starts running using different combinations of the above sites. In addition to the

one-site submission, submissions using CPUs from two and three sites are also
shown. When more than one site was used, CPUs have were distributed equally
among all sites. The time obtained is the sum of the four steps mentioned above.
The figure shows that, in general, overhead mostly depends on the sites used.
With the increase in the number of sites involved in an execution, this overhead
also increases. It should be observed that these measures have been obtained for
a worst-case scenario, in which all the steps would be taken.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

T
im

e
(s

)

CPUs

MPICH-G2 submission overhead

FZK
UAB
IFCA

UAB+FZK
IFCA+FZK
UAB+IFCA

UAB+FZK+IFCA

Fig. 3. MPICH-G2 submission overhead for multiple sites.

In order to show the real influence of the different steps involved in application
submission, Fig. 4 depicts the first step (submission to the remote sites) and
agent download (second step) for the same scenario. Globus submission depends
on the queue status of the site’s local scheduler. In these tests, submission was
made to sites with empty local queues (PBS, Condor), hence the subjobs start
as soon as possible. As can be seen in Fig. 4, site submission remains almost
constant, despite the number of CPUs used, and depends on the sites used:
UAB and FZK jobs start earlier than those at IFCA. This is the minimum delay
for application execution in our environment, and is similar to that obtained
using globusrun directly or when using the on-line scheduling in CrossBroker
(the second and third step ares not executed in such a case).

Figure 4 also shows how agent download is the most time-consuming step
taken in submitting MPICH-G2 applications. This time depends on the limited
bandwidth between the CrossBroker machine and each of the nodes in which the
jobs is to be executed. As the number of CPUs increases, bandwidth is shared
among all these nodes and the downloading process takes longer. The download
takes longer in sites located at greater distance (FZK), i.e. having less bandwidth
between the site and the CrossBroker. Downloading time is limited to less than
a minute, which is negligible for batch applications intended to run for a much
longer period of time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

T
im

e
(s

)

CPUs

Globus Submission time

FZK
UAB
IFCA

UAB+FZK
IFCA+FZK
UAB+IFCA

UAB+FZK+IFCA
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

T
im

e
(s

)

CPUs

Agent download

FZK
UAB
IFCA

UAB+FZK
IFCA+FZK
UAB+IFCA

UAB+FZK+IFCA

Fig. 4. Left: Globus submission time. Right: Agent download time.

The third step, virtual machine set up, is the time elapsed from the agent file
download to the creation of the virtual machines on the remote machines. This
time is usually around one second, immediately after the CrossBroker submits
the actual application to the batch virtual machine. The last step involves down-
loading the application binaries. As in the case of the agent, the downloading
process depends on the sites involved. This step can be avoided if the user spec-
ifies a pre-staged binary in the job description or else makes use of the storage
facilities available in the remote sites.

Although the overall overhead is not significant for batch applications, down-
load times for the agent could be avoided by permanently installing the needed
files in the remote nodes. In such a case, the CrossBroker would therefore only
need to submit a simple job that initiates the agent without any previous down-
load.

4.2 MPICH-G2 Application Execution

MPICH-G2 allows the execution of any MPI application using different-cluster
nodes. Applications making heavy use of collective operations that are fairly sen-
sitive to high-latency links are not suitable for this kind of environments. How-
ever, there are many applications that exhibit a computation/communication
ratio that make them attractive for executiong over multiple sites. Many embar-
rassingly parallel applications are suited to such applications.

As an example, we have used a Master-Worker application developed in the
CrossGrid Project to measure the impact of multiple-site execution. This ap-
plication trains a neural network to find Higgs Boson [13]. The master node
assigns a list of files with input data to each of the workers, and the training is
repeated until the obtained error reaches a certain bound. The needed files are
downloaded from each of the workers using replica management tools [14].

We have executed the application on the same sites used in section 4.1. In
Fig. 5 the execution time is shown for the same CPU combination shown in the
previous subsection. Depicted time (in seconds) includes the overhead for on-line

scheduling, so implying there is therefore no creation of virtual machines in the
remote nodes. This overhead is around 20 to 30 seconds, depending on the used
sites.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

T
im

e
(s

)

CPUs

MPICH-G2 appliction execution time

FZK
UAB
IFCA

UAB+FZK
IFCA+FZK
UAB+IFCA

UAB+FZK+IFCA

Fig. 5. Neural-net application execution time.

The first measure uses two nodes, one master and one worker; for the remain-
ing measures, the number of workers has been increased. Application scalability
is good for a small number of CPUs (less than 10), but does not scale so well
for greater CPU numbers. However, application behaviour is not greatly affected
when using multiple sites. In general, the use of more sites introduces a some-
wahat larger bigger overhead (around 10 seconds), although it also allows the
use of faster CPUs not available in one-site executon. These results show that
it is possible to exploit such a Grid environment as a large cluster for executing
similar applications, without being limited to the number of CPUs available on
a single site.

5 Conclusions

We have described the main components of the resource-management system
that we have developed in order to provide automatic and reliable support for
MPI jobs over grid environments. The system consists of three main components:
a Scheduling Agent, a Resource Searcher and an Application Launcher.

The Scheduling Agent is the central element that records the job queue sub-
mitted by the user and carries out subsequent actions to run the application
effectively on the suitable resources. The Resource Searcher has the responsi-
bility of providing groups of machines for any MPI job, taking the application
requirements into account. Finally, the Application Launcher is the module that,
in the final stage, is responsible for ensuring reliable application execution and
co-allocation on the selected resources.

The job-management service provides a reliable on-line and batch MPICH-G2
submission to a Grid. It uses agents to take control of remote machines, allowing
the implementation of backfilling scheduling policies for sequential jobs, while
all the MPICH-G2 application subjobs are waiting for the proper co-allocation
of resources. The Application Launcher guarantees execution without blocking
machines, and takes the appropriate decisions in order to guarantee resubmission
of failed parallel jobs (due to crashes or failures with the network connection,
resource manager or remote resources) and exactly-once execution.

We have tested and evaluated our system, measuring the overhead intro-
duced by the CrossBroker when submitting MPICH-G2 jobs. This overhead is
introduced in the case of batch submission and is less than a minute - a short
duration for the kind of applications that the batch submission is targeted at,-
which usually take much longer to execute. We have also tested system util-
ity by the execution of a master-worker application. This application does not
make a heavy use of communications, showing similar scalability both in Grid
and in one-site-only execution. Many embarrassingly parallel applications should
behave in a similar way, and therefore are also suitable for this environment.

References

1. EU-CrossGrid: http://www.eu-crossgrid.org (2004)
2. Schopt, J.M.: Ten Actions When Grid Scheduling. In: Grid Resource Management

- State of the Art and Future Trends. Kluwer Academic Publishers (2003)
3. Karonis, N.T., et alters: Mpich-g2: A grid-enabled implementation of the message

passing interface. J. Parallel Distrib. Comput. 63(5) (2003) 551–563
4. Bucur, A., Epema, D.: The performance of processor co-allocation in multicluster.

In: 11th Int. Symp on High Perf. Distr. Comp. (2002)
5. Wang, L., et alters: Resource co-allocation for parallel tasks in computational

grids. In: Int. Workshop on Challenges of Large Apps. in Dist. Env. (2003)
6. Czajkowski, K., Foster, I., Kesselman, C.: Resource co-allocation in computational

grids. In: Proceedings of the HPDC-8. (1999) 219–228
7. Lindner, P., et alters: Gcm: a grid configuration manager for heterogeneous grid

enviromnents. Int. J. Grid and Utility Computing 1(1) (2005) 4–12
8. Gabriel, E., et alters: Distributed computing in a heterogenous computing envi-

ronment. In: EuroPVMMPI’98. (1998)
9. Heymann, E., et alters: Managing mpi applications in grid environments. In:

European Across Grids Conference. (2004) 42–50
10. Pazini, F.: Jdl attibutes. Technical report, European Datagrid Project (2001)
11. Raman, R., et alters: Matchmaking: Distributed resource management for high

throughput computing. In: HPDC-7, Chicago, IL (1998)
12. Thain, D., et alters: Condor and the grid. In: Grid Computing: Making the Global

Infrastructure a Reality. John Wiley & Sons Inc. (2003)
13. Gutiérrez, A., et alters: Parallelization of a neural net training program in a grid

environment. In: PDP 2004. (2004) 258–265
14. Cameron, D., et alters: Replica management services in the european datagrid

project. In: UK e-Science All Hands Conference. (2004)

