
dCache, storage system for the future

Patrick Fuhrmann1 and Volker Gülzow1 for the dCache team

Deutsches Elektronen Synchrotron
Notkestrasse 85, 22607 Hamburg

Abstract. In 2007, the most challenging high energy physics experi-
ment ever, the Large Hardon Collider(LHC), at CERN, will produce a
sustained stream of data in the order of 300MB/sec, equivalent to a
stack of CDs as high as the Eiffel Tower once per week. This data is,
while produced, distributed and persistently stored at several dozens of
sites around the world, building the LHC data grid. The destination sites
are expected to provide the necessary middle-ware, so called Storage El-
ements, offering standard protocols to receive the data and to store it
at the site specific Storage Systems. A major player in the set of Stor-
age Elements is the dCache/SRM system. dCache/SRM has proven to
be capable of managing the storage and exchange of several hundreds of
terabytes of data, transparently distributed among dozens of disk storage
nodes. One of the key design features of the dCache is that although the
location and multiplicity of the data is autonomously determined by the
system, based on configuration, cpu load and disk space, the name space
is uniquely represented within a single file system tree. The system has
shown to significantly improve the efficiency of connected tape storage
systems, by caching, ’gather & flush’ and scheduled staging techniques.
Furthermore, it optimizes the throughput to and from data clients as well
as smoothing the load of the connected disk storage nodes by dynami-
cally replicating datasets on the detection of load hot spots. The system
is tolerant against failures of its data servers which enables administra-
tors to go for commodity disk storage components. Access to the data
is provided by various standard protocols. Furthermore the software is
coming with an implementation of the Storage Resource Manager pro-
tocol (SRM), which is evolving to an open standard for grid middleware
to communicate with site specific storage fabrics.

1 Contributors

dCache/SRM is a joined effort between the Deutsches Elektronen-Synchrotron[1]
in Hamburg and the Fermi National Accelerator Laboratory[2] near Chicago
with significant distributions and support from the University of California, San
Diego, INFN, Bari as well as from the GridPP people at Rutherford Appleton
Laboratory, UK[4] and CERN[3].



II

2 The LHC Computing Grid and the Storage Element

The worlds largest installation of a High Energy Physics Particle accelerator,
using superconducting magnets, is the Large Hardron Collider[5] at CERN, next
to Geneva in Switzerland. A 27 Km tunnel holds two ring pipes equipped with
supercooling magnets, accelerating bunches of protons to nearly the speed of
light and letting them collide at an energy of 14 TeV. This is the highest energy
achieved ever by any accelerator in the world as well as the most intense beam.
At four locations within the ring structure, huge detectors are placed, detecting
particles produced during beam collisions. Knowing that those collisions will
happen at a rate of 800 million times a second and that one bunch crossing may
produce up to 20 physical events, it becomes clear that computer science faces
the challenge of processing and storing data two orders of magnitude larger than
they did for known physics experiments. This in mind, the LHC Computing Grid
Group, LCG[6] was formed, targeting computing challenges common to all LHC
experiments. Although other computing patterns may have solved the upcoming
challenges as well, a Tier approach had been chosen. Within this design, the raw
data source, namely CERN, builds the Tier 0 centre surrounded by only very few
Tier 1 centres per country. Those, in turn, deliver data to some dozens of Tier 2
centers. Most of those centres have already been in place far before agreeing to
join the LCG Tier tree and consequently are running their own compute farms
and storage fabrics. So, sufficiently flexible interfaces to compute and storage
systems had to be defined, allowing interoperability of the tier tree without
forcing the local sites to change their existing software stack. In LCG terms, the
abstraction of a storage system is called a Storage Element, SE if it complies
with a certain set of interfaces allowing interoperability with the LCG middle
ware [32].

3 Technical Overview

The intention of this publication is to describe features, behaviour and applica-
tions of a storage middleware system, called the dCache/SRM[12][10][27][31].

The core part of the dCache has proven to combine heterogenous disk storage
systems in the order of several hundred tera bytes and let its data repository
appear under a single filesystem tree. It takes care of data hot spots, failing
hardware and makes sure, if configured, that at least a minimum number of
copies of each dataset resides within the system to ensure full data availability
in case of disk server maintenance or failure. Furthermore, dCache supports a
large set of standard access protocols to the data repository and its namespace.

If dCache is connected to a Tertiary Storage System, it optimizes the access
to such a system by various technics. Currently Enstore[7], the Open Storage
Manager (OSM), the High Performance Storage System (HPSS) and the Tivoli
Storage Manager (TSM)[9][29] are supported by the dCache middleware.

Moreover, dCache/SRM supports all interfaces of the LCG storage element
definition.



III

4 Technical Specification

4.1 File name space and dataset location

dCache strictly separates the filename space[33][24] of its data repository from
the actual physical location of the datasets. The filename space is internally
managed by a database and interfaced to the user resp. to the application pro-
cess by the nfs2[16] protocol and through the various ftp filename operations.
The location of a particular file may be on one or more dCache data servers as
well as within the repository of an external Tertiary Storage Manager. dCache
transparently handles all necessary data transfers between nodes and optionally
between the external Storage Manager and the cache itself. Inter dCache trans-
fers may be caused by configuration or load balancing constrains. As long as a
file is transient, all dCache client operations to the dataset are suspended and
resumed as soon as the file is fully available.

4.2 Maintenance and fault tolerance

As a result of the name space and data separation, dCache data server nodes,
subsequently denoted as pools, can be added at any time without interfering
with system operation. Having a Tertiary Storage System attached, or having
the system configured to hold multiple copies of each dataset, data nodes can
even be shut down at any time. In both setups, the dCache system is extremely
tolerant against failures of its data server nodes.

4.3 Data access methods

In order to access dataset contents, dCache provides a native protocol (dCap),
supporting regular file access functionality. The software package includes a c-
language client implementation of this protocol offering the posix open, read,
write, seek, stat, close as well as the standard filesystem name space operations.
This library may be linked against the client application or may be preloaded
to overwrite the file system I/O. The library supports pluggable security mech-
anisms where the GssApi (Kerberos) and ssl security protocols are already im-
plemented. Additionally, it performs all necessary actions to survive a network
or pool node failure. It is available for Solaris, Linux, Irix64 and windows. Fur-
thermore, it allows to open files using an URL like syntax without having the
dCache nfs file system mounted. In addition to this native access, various FTP
dialects[27] are supported, e.g. GssFtp (kerberos)[15] and GsiFtp (GridFtp)[14].
An interface definition is provided, allowing other protocols to be implemented
as well.

4.4 Tertiary Storage Manager connection

Although dCache may be operated stand alone, it can also be connected to
one or more Tertiary Storage Systems. In order to interact with such a system,



IV

a dCache external procedure must be provided to store data into and retrieve
data from the corresponding store. A single dCache instance may talk to as many
storage systems as required. The cache provides standard methods to optimize
access to those systems. Whenever a dataset is requested and cannot be found
on one of the dCache pools, the cache sends a request to the connected Tape
Storage Systems and retrieves the file from there. If done so, the file is made
available to the requesting client. To select a pool for staging a file, the cache
considers configuration information as well as pool load, available space and a
Least Recently Used algorithms to free space for the incoming data. Data, written
into the cache by clients, is collected and, depending on configuration, flushed
into the connected tape system based on a timer or on the maximum number of
bytes stored, or both. The incoming data is sorted, so that only data is flushed
which will go to the same tape or tape set. Mechanisms are provided that allow
giving hints to the cache system about which file will be needed in the near
future. The cache will do its best to stage the particular file before it’s requested
for transfer. Space management is internally handled by the dCache itself. Files
which have their origin on a connected tape storage system will be removed from
cache, based on a Least Recently Used algorithm, if space is running short. Less
frequently used files are removed only when new space is needed. In order to
allow site administrators to tune dCache according to their local tape storage
system or their migration and retrieval rules, dCache provides an open API to
centrally steer all interactions with Tertiary Storage Systems.

4.5 Pool Attraction Model

Though dCache distributes datasets autonomously among its data nodes, prefer-
ences may be configured. As input, those rules can take the data flow direction,
the subdirectory location within the dCache file system, storage information of
the connected Storage Systems as well as the IP number of the requesting client
and the data transfer protocol, the client is able to support. The cache defines
data flow direction as getting the file from a client, delivering a file to a client
and fetching a file from the Tertiary Storage System. The simplest setup would
direct incoming data to data pools with highly reliable disk systems, collect it
and flush it to the Tape Storage System when needed. Those pools could e.g. not
be allowed to retrieve data from the Tertiary Storage System as well as deliver
data to the clients. The commodity pools on the other hand would only han-
dle data fetched from the Storage System and delivered to the clients because
they would never hold the original copy and therefore a disk resp. node failure
wouldn’t do any harm to the cache. Extended setups may include the network
topology to select an appropriate pool node. Those rules result in a matrix of
pools from which the load balancing module, described below, may choose the
most appropriate candidate. The final decision, which pool to select out of this
set, is based on free space, age of file and node load considerations.



V

4.6 Load Balancing and pool to pool transfers

The load balancing module is, as described above, the second step in the pool
selection process. This module keeps itself updated on the number of active data
transfers and the age of the least recently used file for each pool. Based on this set
of information, the most appropriate pool is chosen. This mechanism is efficient
even if requests are arriving in bunches. In other words, as a new request comes
in, the scheduler already knows about the overall state change of the whole
system triggered by the previous request though this state change might not
even have fully evolved. System administrators may decide to make pools with
unused files more attractive than pools with only a small number of movers, or
some combination. Starting at a certain load, pools can be configured to transfer
datasets to other, less loaded pools, to smooth out the overall load pattern. At
a certain point, pools may even refetch a file from the Tertiary Storage System
rather than an other pool, assuming that all pools, holding the requested dataset
are too busy. Regulations are in place to suppress chaotic pool to pool transfer
orgies in case the global load is steadily increasing. Furthermore, the maximum
numbers of replica of the same file can be defined to avoid having the same set
of files on each node.

4.7 File Replica Manager

The Replica Manager Module[26] enforces that at least N copies of each file,
distributed over different pool nodes, must exist within the system, but never
more than M copies. This approach allows to shut down servers without affecting
system availability or to overcome node or disk failures. The administration
interface allows to announce a scheduled node shut down to the Replica Manager
so that it can adjust the N ¡ M interval prior to the shutdown.

4.8 Data Grid functionality

In order to comply with the definitions of a LCG Storage Element the storage
fabric must provide the following interfaces :

There must be a protocol for locally accessing data. dCache provides this by
nfs mounting a server for file name operations but transferring the actual data via
faster channels. Local Storage Elements, including dCache, hide this mechanism
by being integrated into a local filesystem wrapper software provided by CERN,
the Grid File Access Layer, GFAL[20].

A secure wide-are transfer protocol must be implemented which, at the time
being, is agreed to be GsiFtp, a secure Ftp dialect. Furthermore dCache offers
kerberos based FTP as well as regular and secure http access.

To allow central services to select an appropriate Storage Element for file
copy or file transfer requests, each Storage Element has to provide sufficient
information about its status. This includes its availability as well as its total
and available space. Currently this information is provided via the ldap protocol
but this, for scalability reasons, is in process of being redesigned. In order to



VI

be independend of the actually distribution mechanism, dCache provides an
interface to the Generic Information Provider, GIP. GIP[23] is responsible to
make this information available to the connected grid middle ware.

The forth area, defining a LCG Storage Element, is a protocol which makes
a storage area a manageable. The interface is called the Storage Resource Man-
ager,SRM[10]. Beside name space operations, it allows to prepare datasets for
transfers directly to the client or to initiate third party transfers between Storage
Elements. SRM takes care that transfers are retried in case they didn’t succeed
and handles space reservation and management. In addition, it protects storage
systems and data transfer channels from being overloaded by scheduling trans-
fers appropriately. The SRM doesn’t do the transfer by itself, instead it allows
to negotiate transfer protocols available by the data exchanging parties.

5 Performance considerations and future plans

The core design of dCache has been avoiding central components to be involved
in data transfers. Therefor, because of the fact that CPU speed is increasing
faster than disk system access speeds or even network transfer speeds, dCache
data mover components are always limited by either the performance of the
underlying RAID system or by the network components. Consequently dCache
data transfer performance turned out to be as good as the hardware it’s build
upon. This is different for name space operations and the initial open time for
datasets. These tasks are processed within central components. Further evalu-
ation on dCache systems beyond 100 TByes of disk space and a frequency of
opening files above 10 Hz let us believe that the file system name space sim-
ulation software builds the actual bottleneck. To overcome this limitation, the
name space module has been revised and will be replaced by Chimera[33][24], a
fully database based system specially tuned for this kind of access. Chimera is
currently in the extended testing phase.

6 Dissemination

At the time of this publication, dCache is in production at various locations in
Europe and the US. The largest installation is, to our knowledge, the CDF sys-
tem at FERMI [2]. More than 150 Tbytes are stored on commodity disk systems
and in the order of 50 Tbytes have been delivered to about 1000 clients daily
for more than a year. FERMI dCache installations are typically connected to
ENSTORE[7], the FERMI tape storage system. CDF is operating more than 10
tape-less dCache installations outside of FERMI, evaluating the dCache Replica
Manager. The US devision of the LHC CMS[19] experiment is using the dCache
as Grid Storage Element and large file store in the US and Europe. At DESY,
dCache is connected to the Open Storage Manager (OSM) and serving data out
of 100 Tbytes of disk space. The German LHC Grid Tier 1 center in Karlruhe
(GridKa,[18]) is in the process of building a dCache installation as Grid Stor-
age Element, connected to their Tivoli Storage Manager[9] installation. End of



VII

2005 and beginning of 2006 the majority of sites participating in the LCG data
challenges have been transferring and storing their data under the control of
dCache/SRM storage elements.

Furthermore dCache is a component of the german D-Grid[21][25] e-science
initiative.

7 References

References

1. DESY : http://www.desy.de
2. FERMI : http://www.fnal.gov
3. CERN : http://www.cern.ch
4. Rutherford Appleton Laboratory : http://www.cclrc.ac.uk/
5. Large Hadron Collider : http://lhc.web.cern.ch/lhc/
6. LHC Computing Grid : http://lcg.web.cern.ch/LCG/
7. Fermi Enstore http://www.fnal.gov/docs/products/enstore/
8. High Performance Storage System : http://www.hpss-collaboration.org/hpss/
9. Tivoli Storage Manager : http://www-306.ibm.com/software/tivoli/products/storage-

mgr/
10. SRM : http://sdm.lbl.gov/srm-wg
11. CASTOR Storage Manager : http://castor.web.cern.ch/castor/
12. dCache Documentation : http://www.dcache.org
13. dCache, the Book : http://www.dcache.org/manuals/Book
14. GsiFtp http://www.globus.org/ datagrid/deliverables/gsiftp-tools.html
15. Secure Ftp : http://www.ietf.org/rfc/rfc2228.txt
16. NFS2 : http://www.ietf.org/rfc/rfc1094.txt
17. Fermi CDF Experiment : http://www-cdf.fnal.gov
18. GridKA : http://www.gridka.de/
19. Cern CMS Experiment : http://cmsinfo.cern.ch
20. Grid GFAL http://lcg.web.cern.ch/LCG/peb/GTA/GTA-ES/Grid-File-

AccessDesign-v1.0.doc
21. D-Grid, The German e-science program : http://www.d-grid.de
22. Patrick Fuhrmann et al. dCache, the Upgrade. Spring 2006, CHEP06, Mumbai,

India
23. Lawrence Field et al. Grid Deployment Experiences: The path to a production

quality LDAP based grid information system. Spring 2006, CHEP06, Mumbai, India
24. Tigran Mkrtchyan et al. Chimera. Spring 2006, CHEP06, Mumbai, India
25. Lars Schley, Martin Radicke et al. A Computational and Data Scheduling Archi-

tecture for HEP Application. Spring 2006, CHEP06, Mumbai, India
26. Alex KULYAVTSEV et al. Resilient dCache: Replicating Files for Integrity and

Availability Spring 2006, CHEP06, Mumbai, India
27. Timur Perelmutov et al. Enabling Grid features in dCache Spring 2006, CHEP06,

Mumbai, India
28. Abhishek Sinh Rana et al. gPLAZMA : Introducing RBAC Security in dCache

Spring 2006, CHEP06, Mumbai, India
29. Patrick Fuhrmann et al. The TSM in the LHC Grid World Sep 2005, TSM Sym-

posium , Oxford, UK



VIII

30. Patrick Fuhrmann, dCache, the commodity cache. Spring 2004, Twelfth NASA
Goddard and Twenty First IEEE Conference on Mass Storage Systems and Tech-
nologies. Washington DC, USA

31. Timur Perelmutov, Storage Resource Managers by CMS,LCG. Spring 2004,
Twelfth NASA Goddard and Twenty First IEEE Conference on Mass Storage Sys-
tems and Technologies. Washington DC

32. Michael Ernst et al. Managed Data Storage and Data Access Services for Data
Grids. Sep 2004, CHEP04, Interlaken, Switzerland

33. Tigran Mkrtchyan et al. Chimera, the commodity namespace service. Sep 2004,
CHEP04, Interlaken, Switzerland

34. Patrick Fuhrmann et al. dCache, LCG SE and enhanced use cases. Sep 2004,
CHEP04, Interlaken, Switzerland

35. Michael Ernst, Patrick Fuhrmann et al. dCache. March 2003, CHEP03, San Diego,
USA

36. Patrick Fuhrmann et al. dCache. Sep 2001, CHEP01, Bejing, China


