A Parallel Algorithm for the
Two-Dimensional Cutting Stock Problem

Luis Garcia, Coromoto Leén, Gara Miranda, Casiano Rodriguez

Dpto. Estadistica, I. O. y Computacién
Universidad de La Laguna
E-38271 La Laguna, Tenerife, Spain
{lgforte|cleon|gmirandalcasiano}@ull.es

Abstract. Cutting Stock Problems (CSP) arise in many production in-
dustries where large stock sheets must be cut into smaller pieces. We
present a parallel algorithm - based on Viswanathan and Bagchi al-
gorithm (VB) - solving the Two-Dimensional Cutting Stock Problem
(2DCSP). The algorithm guarantees the processing of best nodes first
and does not introduce any redundant combinations - others than the
already present in the sequential version. The improvement is orthogo-
nal to any other sequential improvements. Computational results of an
OpenMP implementation confirm the optimality of the algorithm. We
also produce a new syntactic based reformulation of the 2DCSP problem
which leads to a concise representation of the solutions. A highly efficient
data structure to store subproblems is introduced.

1 Introduction

Cutting Stock Problems (CSP) arise in many production industries where large
stock sheets (glass, textiles, pulp and paper, steel, etc.) must be cut into smaller
pieces. CSP can be classified [1, 2] attending to several characteristics: the num-
ber of dimensions (1D, 2D, 3D), the number of available surfaces and patterns,
the shape of the patterns (regular or irregular), the orientation, etc.

The Constrained 2 Dimensional Cutting Stock Problem (2DCSP) is one of
the most interesting variants of CSP and targets the cutting of a large rectangle
S of dimensions L x W in a set of smaller rectangles using orthogonal guillotine
cuts. That means that any cut must run from one side of the rectangle to the
other end and be parallel to the other two edges. The produced rectangles must
belong to one of a given set of rectangle types D = {T1...T,} where the i-th
type T; has dimensions [; X w;. Associated with each type T; there is a profit p;
and a demand constraint b;. The goal is to find a feasible cutting pattern with
x; pieces of type T; maximizing the total profit:

max y ., x;p; subject to z; < b; and z; € N

Though a large number of heuristics have been proposed [3-6], the num-
ber of exact algorithms is not so extensive. The optimal algorithms fall in two

2 L. Garcia, C. Leén, G. Miranda, C. Rodriguez

categories: depth-first searches [7] and best-first search methods [8-10]. To our
knowledge, not many parallel exact algorithms have been devised [11,12].

Wang [13] was the first to make the observation that all guillotine cutting
patterns can be obtained by means of horizontal and vertical builds of pieces
(Figure 1). Her idea was exploited by Viswanathan and Bagchi [8] to propose a
brilliant best-first search algorithm (VB) which uses Gilmore and Gomory [14]
dynamic programming solution - for the unbounded version of the problem -
to build an upper bound. The algorithm resembles A* algorithms and uses two
lists OPEN and CLIST to yield the set of feasible solutions. At each step, the
best build of pieces (or meta-rectangle) from OPEN is chosen and combined
with the already found best meta-rectangles (elements in CLIST) to produce
horizontal and vertical builds. Later, Hifi [9] and Cung, Hifi and Le-Cun [10]
proposed a modified version of VB algorithm (called MVB) introducing an initial
lower bound and rules to find in constant/time duplicated/dominated patterns.
The efficiency of MVB is also a consequence of other two novelties: CLIST is
represented by a bidimensional data structure and VB upper bound is reduced
combining it with the solution of a One-Dimensional Knapsack Problem. The
Knapsack Problem results from mapping the 2DCSP bidimensional constraints
onto one dimensional area constraints (similar proposals were made by Tschoeke
and Holthéfer in [11]).

Niklas et al. in [12] proposed a parallel version of Wang’s approximation
algorithm [13]. Unfortunately, Wang’s method does not always yield optimal so-
lutions in a single invocation and is slower than VB algorithm [8]. Tschoeke and
Holthofer parallel version [11] starts from the original VB algorithm and uses
the Paderborn Parallel Branch-and-Bound Library (PPBB-LIB [15]). Due to the
asynchronous nature provided by the PPBB-LIB skeleton, the algorithm does
not guarantee the processing of best subproblems first. Another consequence is
the generation of unwanted duplicates which aren’t produced by the sequential
version. In the worst case an exponential growth of elements may result. The
authors proposed a stamp-based mechanism to hinder the generation of dupli-
cates.

Though the next section is devoted to introduce VB algorithm, it contains
some contributions. Namely, it emphasizes a new syntactic based reformulation
of the problem and proposes a concise representation of the solutions. More
important, a highly efficient data structure to store subproblems is introduced.
In this section we also present an improvement to avoid unwanted repetitions of
computations which are common to the two parallel loops. The parallel algorithm
is presented in section 3. On each step the best subproblem from OPEN is all-to-
all reduced and combined with each of the elements in CLIST. The design of the
parallel algorithm was suggested by the bidimensional data structure proposed
by Cung and others [10,11] to hold VB CLIST. The bidimensional structure
leads to two traversing loops which can be parallelized. The performance gain is
compatible with any other sequential improvements. Some computational results
are shown in section 4. Finally, the conclusions and future works are given in
section 5.

A Parallel Algorithm for the Two-Dimensional Cutting Stock Problem 3

2 A Sequential Algorithm

Reformulating the 2DCSP Given two meta-rectangles « and 8 of dimen-
sions (a!,a®) and (8, B%) the vertical build |3 is a meta-rectangle of dimen-
sions (max{a!, '}, a® + B). The horizontal build o — 3 is a meta-rectangle of
dimensions (a! + B!, max{a™, 3*}). Using this idea, a feasible solution can be
represented by a formula like (T3|75)|(T1 — T2). Even better, we may use postfix
expressions avoiding the need for parenthesis, i.e. ToT5|T1T> — |, and leading to
a compact representation of the syntax tree (see Figure 1).

T1 T2 T3 T1T2- T273- TiT2| T213|

T1T2|T2T3]- TLT2-T2T3-| T273-T1T2|- T2T3|T1T2-|

Fig. 1. Examples of vertical and horizontal builds, shaded areas represent waste

Figure 2 presents a context free grammar G and the associated semantic rules
defining the attributes value (g), length (1), width (w) and number of used pa-
tterns (i) associated with meta-rectangles o € L(G). Given the aforementioned
syntax directed definition the 2DCSP can be reformulated as:

max{a? such that a € L(G), o! < L, a® < W and o! < b; for any pattern i}
Being L(G) the language generated by the grammar G. Observe how seman-
tic geometrical properties can be embeded into the syntactic structure easing
the expression of constant-time dominance rules as described in [10]. Moreover,
this notation makes possible to easily build new patterns compositions and to
manage and represent the problem (partial) solutions.

Syntax Semantic Rules
S9 =59 4 59
S — 515,| S' = max{S}, St}; S¥ = S 4 S
S' =51+ 85
59 =89 4+ 59
S — 51 82— S' =81 + S84 S* = max{SY, S¥}
8'=Si+ 85
S —Tiforeach T; € D[S =ci; S'=1; 8" =w;i; S =85"+1

Fig. 2. Syntax Directed Definition for the 2DCSTP. S is initialized to 0

4 L. Garcia, C. Leén, G. Miranda, C. Rodriguez

1 OPEN :={T\,Ts, ..., Tp}; CLIST :=0; f’ := UpperBound();

2 BestSol := Heuristic(); B: = BestSol?;

3 repeat

4 choose o meta-rectangle from OPEN with higher f' value;

5 return(Bestsol) if B = f'(a);

6 insert o in CLIST at entry (o', a™);

7 forz:=0to L -a' do{

8 forall B € CLIST, such that 8¢ < b; —a' do {

9 v=aB—; v =a + 6 v" = max(a®, "); /* horizontal build */
10 v =al + 39y =a 4+ ' Vi;

11 if (v > B) then { free OPEN from B to v9; B = v9; BestSol = v; }
12 if (f'(v) > B) then {insert v in OPEN at entry f'(v); }

13 }

4}

15 fory:=0to W-a” do{

16 forall 3 € CLIST, such that 8* < b; — o' do {

17 v = afl|; 4" = max(a!, 8Y); v = a* + B¥; /* vertical build */

18 Y =al4 B9y =o' + [Vi;

19 if (v > B) then { free OPEN from B to v9); B = v9; BestSol = v; }
20 if (f'(v) > B) then { insert v in OPEN at entry f'(v); }

21 }

22}

23 return(Bestsol) if OPEN = (;

24 forever;

Fig. 3. Modified Version of Viswanathan and Bagchi Algorithm (MVB)

The Modified Viswanathan and Bagchi Algorithm In VB original version
the combination is achieved traversing the whole CLIST, discarding non feasible
solutions. To alleviate this, Cun and others [10] introduced the skillful data struc-
ture depicted in Figure 4. This way using two loops (see Figure 3), one for the
horizontal combinations (lines 7-14) and another for the vertical combinations
(lines 15-22) only problems holding the geometry constraints are visited. There
is one loss however. Observe that (a8—)" = (af])" and (a8—)? = (af])? for any
«a and [and any pattern . When using the original list data structure these
common values are computed only once. The decoupling on two loops implies
the repetition of such calculus (lines 10 and 18). We can reduce this overhead as
follows: During the horizontal loop (lines 7-14) we save a pointer to « inside the
data structure representing the meta-rectangle 3 (for that we use an extra field,
let us call it current). On a second field (call it horizontal) we store a pointer to
af—. Now if during the vertical loop (lines 15-22) the meta-rectangle 3 (line 16)
has its current field pointing to a we can recover the values o + ¢ stored in
af— using the horizontal field of g.

Data Structure to Represent the Upper Bounds On any best-first search
algorithm, subproblems are sorted by the value of their upper bounds. Main-
taining this usually very large set is often cause for performance degradation.

A Parallel Algorithm for the Two-Dimensional Cutting Stock Problem 5

Fig. 4. Data Structure to store CLIST

Since along the execution of any branch-and-bound the lower bounds keep as-
cending and the upper bounds descending we can state that during the search
all the upper bounds fall in the interval [bestq, upperg]. We denote by besty the
initial heuristic value and by uppery the upper bound of the initial problem.
That suggest a natural solution: to have an array [best ... upperg] of pointers
to linked lists of subproblems. Subproblems with the same upper bound go to
the same linked list. Insertion then can be done in constant time. Notice that
insertion using the classical list approach [8,13] leads - for the VB algorithm
but it is also the general case for branch-and-bound - to O(2") time since in the
worst case the list grows exponentially with the number of patterns. The other
main operation involved, choosing/extracting the subproblem with the largest
upper bound consists now in descending the interval searching for a non void
pointer. Full segments of memory can be freed any time the lower bound im-
proves (line 19). When memory is an issue and there is no space to afford storing
the whole interval [besto, upperg] the data structure becomes a tree-of-intervals
(Figure 5). The root node is now a smaller interval [0, C] where C' = “2pero—besto,

d
Each item in [0, C] is a pointer to an interval of size & = “epero=besto 514 g6 on.
b p d d

Fig. 5. Data Structure to store OPEN

The idea is extremely simple - but as far as we know it is the first time
that it is proposed - and it can be applied to any best-first search branch-and-
bound algorithm and therefore to algorithmic skeletons [15-17] supporting this

6 L. Garcia, C. Leén, G. Miranda, C. Rodriguez

technique. Taking advantage of this structure we have sorted the subproblems
with same uppers by their lower values. This can change the search order and
cause the exploration of more nodes but the best solution value will increase
more quickly and we will be able to discard more subproblems.

3 The Parallel Algorithm

In order to improve the sequential scheme, we propose a parallel algorithm that
introduces a parallel generation of subproblems (meta-rectangles or builds) from
a certain best subproblem. The general operation of this parallel scheme follows
the same structure than the sequential scheme presented before (Figure 3). The
main difference appears in the subproblem generation loops. Each processor in-
volved in the resolution of the problem works on a section of the bidimensional
CLIST. It combines the current best subproblem with the subproblems con-
tained in its matrix section. The work distribution will depend on the processor
characteristics. It can be a dynamic or static (cyclic, block) distribution.

Each processor keeps a replicated copy of CLIST. Meanwhile, OPEN will be
distributed and only contains the subproblems generated by its owner processor.
These structures allow the processors to work independently in the generation
of new subproblems. After every combination of the current subproblem with
the previous best ones, each processor has its own best current subproblem. To
determine which is the global best current subproblem, it is necessary to add
an all-to-all reduction point. Once all processors have the new best subproblem,
they can begin with the generation work. The same reduction point is used to
update the best solution current value.

A brief description of the OpenMP implementation is given below:

1. Each thread initializes its OPEN and CLIST variables. The master thread
creates the initial subproblems and inserts them into its OPEN list.

2. At every iteration of the search loop, the global best subproblem must be
identified. Each thread makes public its best subproblem by updating the
corresponding entry at a shared static structure. The master thread deter-
mines the thread identifier having the best current subproblem and writes
it to a shared variable. Then the slave threads are able to access the best
global subproblem and copy it to a private variable. The owner of the best
global subproblem must remove it from its OPEN list.

3. If the subproblem is not the solution and is not dominated/duplicated, it
is inserted in each local CLIST (notice that operations for the detection of
dominated /duplicated builds are not included in the pseudocode of Figure 3).
If the subproblem is discarded, go to the previous step.

4. The horizontal new builds are generated in a first loop and in the second loop
are generated the vertical ones. These loops have a parallel-for pragma, so
each thread will do combinations of the subproblem with certain sections of
the CLIST matrix. The new subproblems are inserted into the corresponding
thread OPEN list.

A Parallel Algorithm for the Two-Dimensional Cutting Stock Problem 7

5. Once all the new subproblems have been created and inserted into the lists,
each thread must find its current best subproblem and copy it to the static
shared array. The same is done with the best solution.

6. These steps must be followed until the solution is found.

The main problem of the implementation done on shared memory deals with
the use of dynamic linked lists. These lists have to be modified by all threads
and there is no mechanism available to ensure the integrity of data. OpenMP
compilers usually ensure the integrity of the static structures, that is, arrays or
structs stored in the static segment or in the execution stack. But this is not the
case when dealing with data structures allocated in the heap. By this reason,
some additional operations are necessary to update the shared dynamic data
structures used by our implementation.

The exposed parallel algorithm can be easily implemented on a distributed
memory scheme. As in this case, each processor would have its own OPEN and
CLIST variables. A barrier point would be necessary to do the reduction of the
best subproblem and send it to every processor in the team.

4 Computational Results

For the computational study, we have selected some instances from the ones
available at [18]. From the instances proposed at [19] we have selected problem 1
from category 1 (cat1-1) and problem 2 from category 3 (cat3_2). The algorithms
have been also tested with the problem instances exposed in [9]. Tests have
been run over La Laguna University cluster (tarja). The cluster provides a Bull
NovaScale 6320 SMP server that consists of 32 Intel Itanium 2 processors at
1.5GHz. The compilers used are: gcc 3.3.3 and Intel C/C + + 8.1.20.

Table 1 presents the results for the sequential algorithms. Columns labelled
“Time” show execution times in seconds and the labelled “Gen.”, “Comp.” and
“Ins.” show the number of average generated, computed and inserted nodes res-
pectively. Notice that the generated nodes are the nodes that represent any build
created during the search process. Nodes removed from OPEN to be combined
with all the previous best subproblems are the computed nodes. Inserted nodes
represent the non duplicated generated nodes that can be inserted into OPEN.
The results grouped under the name “Initial Version” are for an initial im-
plementation based on VB algorithm. Sequential times for the modified version
described in section 2 are also shown in the table under the label “Improved Ver-
sion”. As we can see, the modified sequential implementation introduces great
improvements over the original version. The differences are due to the new data
structures. They make possible to easily sort elements in OPEN and find du-
plicated /dominated nodes. But, when the number of generated nodes increases,
the insertion of subproblems into OPEN turns too heavy for the first imple-
mentation. By this reason, large problem instances are not approachable by this
version.

Table 2 shows the results for the parallel implementation of the improved
algorithm. The columns labelled “Ins.” and “Gen.” show the number of nodes,

8 L. Garcia, C. Leén, G. Miranda, C. Rodriguez
Problem Instance Original Version Improved Version
=] g @ g g g % g
5 3 8 a <) S & &
catl_1 71631356 80575 124683 329,054 (71631356 42842 122307 74,031
cat3_2 5073790 10968 146468 437,434| 5067565 10966 145802 29,698
CL-10-24_01 1142805 4533 24654 2,714 | 1136429 3116 25335 1,042
CL_10-24_03 3547161 9551 32554 6,146 | 3544239 6625 33535 2,908
CL_10-24_09 1699757 7051 31819 4,873 | 1685099 4908 32049 1,580
CL_-10-51_01 825620 2359 30913 4,582 | 848216 1732 31703 1,068
1 652 48 198 0,001 825 42 266 0,001
1- 27543 974 1979 0,017 35694 578 2555 0,079
2 11014 240 5804 0,171 11142 161 6011 0,017
2_ 4414 136 2571 0,021 4586 91 2745 0,008
3 29935 1120 1868 0,046 31467 628 2141 0,038
3_ 282 44 182 0,002 290 32 194 0,002
Al 21757 688 4031 0,061 25026 440 4057 0,104
A2 184186 5813 11749 0,694 172684 2511 9642 0,238
A3 24331 379 4188 0,069 24538 262 4384 0,036
A4 64866 558 27373 3,303 68394 374 29002 0,174
Table 1. Sequential Results - Original and Improved Versions
Thread 1 |Thread 2|Thread 3|Thread 4|Thread 5|Thread 6| Thread 7|Thread 8
catl_1
Th 1 [|122 71631 421112.09
Th 2 || 72 35551|52 36079 50| 73.49
Th 4 || 39 18896|28 1987435 18093 (26 17515 56| 73.96
Th 8 || 20 11443|16 1389814 8216 |15 9427 |18 7068 (10 5657 |20 9503 |10 7894 |([57|68.99
cat3_2
Th 1 ||145 5067 10| 32.08
Th 2 43 2621 (44 2919 11| 5.59
Th 4 32 175 (31 179 |23 148 |23 110 3| 0.77
Th 8 30 200 (19 126 |21 184 |17 128 (25 172 |28 228 (12 112 |22 117 5] 1.01

Table 2. Improved Version - Parallel Results

in thousands, inserted and generated by every thread. The number of computed
nodes during the process is shown (also in thousands) in column “Comp.”. Com-
putational time, in seconds, invested in the search process is presented in column
“Time”. Parallel speedups strongly depend on the particular problem. That is a
result of changing the search space exploration order when more than one thread
is collaborating in the resolution. Even in worse cases (catl_1) we can improve
sequential times. A fair work load distribution between threads is difficult to ob-
tain since it is not only needed to fairly distribute the subproblems to generate
but also the ones to be inserted. Before doing a certain combination we are not
able to know if a build will be valid or not (to be inserted).

A Parallel Algorithm for the Two-Dimensional Cutting Stock Problem 9

5 Conclusions

An exact algorithm for the resolution of the Two-Dimensional Cutting Stock
Problem has been presented. The implementation is based on VB and MVB
algorithms. First of all, we have presented a new reformulation of the problem.
A new syntax is introduced for the representation of the solutions. This nota-
tion helps in the detection of similar properties between different subproblems,
making possible to efficiently detect duplicated combinations. By these represen-
tations we also are able to easily build the solution found. New data structures
have been designed in order to efficiently manage insertions, combinations and
dominance/duplication detections. The new data structure to manage subpro-
blems in OPEN allows to do insertions in constant time independently of the
number of nodes in the lists. The idea can be easily extend to any best-first
search, branch-and-bound or algorithmic skeletons giving support to these tech-
niques. In order to avoid the unnecessary recomputation of some subproblems,
we have added a mechanism to store subproblems related to a particular element
in CLIST. All these new features introduce an important improvement in the
sequential exact algorithm. For being able to afford larger problem instances,
we have presented a general parallel algorithm. The algorithm proposes a para-
llelization of the new build generation loop. On most space search algorithms,
the slightest changes in the search order may cause dramatic consequences on
the execution time. Super and sublinear speedups may occur since the parallel
algorithm alters the sequential order. A first parallel implementation has been
developed over shared memory. Porting an existing C application to OpenMP
even if the algorithm is straightforwardly parallel can be sometimes a nightmare
due to the lack of support to qualify dynamic memory variables as shared or
private.

Future work targets improvement of both, the upper bound and the initial
heuristic lower bound. This improvement in the bounds will allow to highly
reduce the search space. In relation to the parallel algorithm we would like to
develop a message passing implementation in order to compare with the one
presented. A deep study of the work load distribution is also required.

6 Acknowledgements

This work has been supported by the EC (FEDER) and by the Spanish Mi-
nistry of Education inside the ‘Plan Nacional de 1+D+1’ with contract number
TIN2005-08818-c04-04. The work of G. Miranda has been developed under the
grant FPU-AP2004-2290.

References

1. Sweeney, P.E., Paternoster, E.R.: Cutting and Packing Problems: A categorized,
application-orientated research bibliography. Journal of the Operational Research
Society 43(7) (1992) 691-706

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Garcia, C. Leén, G. Miranda, C. Rodriguez

. Dyckhoff, H.: A Typology of Cutting and Packing Problems. European Journal

of Operational Research 44(2) (1990) 145-159

Dowsland, K.A., Dowsland, W.B.: Packing Problems. European Journal of Oper-
ational Research 56(1) (1992) 2-14

Burke, E., Kendall, G.: Applying Simulated Annealing and the No Fit Polygon
to the Nesting Problem. In Arabnia, H.R., ed.: Proceedings of the International
Conference on Artificial Intelligence (IC-AI’99). Volume 1., CSREA Press (1999)
51-57 ekb@cs.nott.ac.uk, gxk@cs.nott.ac.uk.

Maouche, S.; Bounsaythip, C.: Optimizing Textile Shape Placement by Tree Ge-
netic Annealing. In: Proceedings of the Society for Computer Simulation Confer-
ence (SCSC’96). (1996) Salah.Maouche@univ-lillel.fr.

Roussel, G., Maouche, S.: Automatic Lay Planning for Irregular Shapes on Plain
Fabric. Search in Direct Graph and e-Admissible Resolution. In: Proceedings of
the XVI IFIP-TC7 Conference, Compiégne, France (1993)

Christofides, N., Whitlock, C.: An Algorithm for Two-Dimensional Cutting Prob-
lems. Operations Research 25(1) (1977) 3044

Viswanathan, K.V., Bagchi, A.: Best-First Search Methods for Constrained Two-
Dimensional Cutting Stock Problems. Operations Research 41(4) (1993) 768776
Hifi, M.: An Improvement of Viswanathan and Bagchi’s Exact Algorithm for Con-
strained Two-Dimensional Cutting Stock. Computer Operations Research 24(8)
(1997) 727-736

Cung, V.D., Hifi, M., Le-Cun, B.: Constrained Two-Dimensional Cutting Stock
Problems: A Best-First Branch-and-Bound Algorithm. Technical Report 97/020,
Laboratoire PRiSM - CNRS URA 1525. Université de Versailles, Saint Quentin en
Yvelines. 78035 Versailles Cedex, FRANCE (1997)

Tschoke, S., Holthdéfer, N.: A New Parallel Approach to the Constrained Two-
Dimensional Cutting Stock Problem. In Ferreira, A., Rolim, J., eds.: Parallel
Algorithms for Irregularly Structured Problems, Berlin, Germany, Springer-Verlag
(1995) 285-300 sts@uni-paderborn.de,
http://www.uni-paderborn.de/fachbereich/AG/monien/index.html.

Nicklas, L.D., Atkins, R.W., Setia, S.K., Wang, P.Y.: The Design and Implemen-
tation of a Parallel Solution to the Cutting Stock Problem. Concurrency - Practice
and Experience 10(10) (1998) 783-805

Wang, P.Y.: Two Algorithms for Constrained Two-Dimensional Cutting Stock
Problems. Operations Research 31(3) (1983) 573-586

Gilmore, P.C., Gomory, R.E.: The Theory and Computation of Knapsack Func-
tions. Operations Research 14 (1966) 1045-1074

Tschoke, S., Polzer, T.: Portable parallel branch-and-bound library - PPBB-lib
(1996)

Alba, E., et al: MaLLLLBa: A Library of Skeletons for Combinatorial Optimization.
In: Proceedings of Euro-Par. Volume 2400 of Lecture Notes in Computer Science.,
Paderborn (GE), Springer-Verlag (2002) 927-932

Le-Cun, B., Roucairol, C.: BOB : a unified platform for implementing branch-and-
bound like algorithms (1995)

Group, D.O.R.: Library of Instances (Two-Constraint Bin Packing Problem)
http://www.or.deis.unibo.it /research_pages/ORinstances/2CBP.html.

Hopper, E., Turton, C.H.: An Empirical Investigation of Meta-
heuristic and Heuristic Algorithms for a 2D Packing Problem (1999)
http://people.brunel.ac.uk/ mastjjb/jeb/orlib /files/strip1.txt.

