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Abstract. Fat-tree topology has become very popular among switch manufactur-
ers. Routing in fat-trees is composed of two phases, an adaptive upwards phase,
and a deterministic downwards phase. The unique downwards path to the desti-
nation depends on the switch that has been reached in the upwards phase. As
adaptive routing is used in the ascending phase, several output ports are possi-
ble at each switch and the final choice depends on the selection function. The
impact of the selection function on performance has been previously studied for
direct networks and has not resulted to be very important. In fat-trees, the deci-
sions made in the upwards phase by the selection function can be critical, since
it determines the switch reached in the upwards phase, and therefore the unique
downwards path to the destination. In this paper, we analyze the effect of the se-
lection function on fat-trees. Several selection functions are defined, compared
and evaluated. The evaluation shows that selection function has a great impact on
fat-trees.

Keywords: selection function, adaptive routing, fat-tree, inter-
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1 Introduction

Clusters of PCs have grown in popularity in the last years due to their ex-
cellent cost-performance ratio. The interconnection network has a great
impact in the performance of these systems. Several switch-based point-
to-point commercial networks are currently available. As long as high
degree switches are available, multistage networks (MINs) have become
very popular. Among them, the fat-tree topology is the preferred choice
(e.g.: Mellanox [13], Myricom [15], Quadrics [14]). Routing is one of the
most important design issues of interconnection networks. The routing
strategy determines the path that each packet follows between a source–
destination pair. Routing is deterministic if only one path is provided
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for every source–destination pair, or adaptive, if several paths are availa-
ble. Adaptive routing better balances network traffic, thus allowing the
network to obtain a higher throughput. The routing algorithm is imple-
mented by means of the routing and selection functions [3]. The routing
function supplies a set of suitable routing options to reach the destina-
tion. A choice from this set is made by the selection function based on
network status.

Many works [1], [2], [3] has pointed out the great influence that the
routing function has on network performance especially for direct net-
works. There are also some papers [10], [8], [6] that analyze the influ-
ence of selection function, showing that it has some small impact on per-
formance. In these networks, the routing function is adaptive along the
whole path. However, this is not the case of fat-trees topologies. Rou-
ting in fat-trees is performed in two phases, an upwards adaptive one
and a downwards deterministic one. The unique path to follow in the
downwards phase is determined by the selected upwards path. So, in fat-
trees the selection made in the upwards path is responsible of balancing
network traffic. Thus, we expect that the selection function will have a
greater influence on interconnection network performance.

The rest of the paper is organized as follows. Section 2 presents some
background on the fat-tree topology. Section 3 contains references to re-
lated work. In Section 4, we propose several selection functions for fat-
trees, analyzing their performance in Section 5. Finally, some conclusi-
ons are drawn.

2 Fat-trees

A multistage interconnection network (MIN) is a regular topology in
which switches are identical and organized as a set of stages. Each stage
is only connected to the previous and the next stage using regular connec-
tion patterns. Depending on the interconnection scheme employed bet-
ween two adjacent stages, several MINs have been proposed. In this pa-
per, we focus on the fat-tree topology.

A fat-tree topology is based on a complete tree. Unlike traditional
trees, fat-trees get thicker near the root. A set of processors is located
at the leaves and each edge of the tree corresponds to a bidirectional
channel. However, the degree of the switches increases as we go nearer
to the root, which makes the physical implementation unfeasible. Hence,
some alternative implementations have been proposed in order to use
switches with constant degree, as the k-ary n-trees. A k-ary n-tree is
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Fig. 1. a) The four possible paths from source 0 to destination 7 in a 2-ary 3-tree. (b) Link num-
bering in switches of a k-ary n-tree.

composed ofN = kn processing nodes and nkn−1 switches, with k input
and k outputs ports. In what follows, we will use either the term fat-tree
or k-ary n-tree to refer to k-ary n-trees.

Each processing node is represented as a n-tuple {0, 1, ..., k − 1}n,
and each switch is defined as a pair 〈s, o〉, where s is the stage where the
switch is located at, that is s ∈ {0..(n − 1)}, and o is a (n − 1)-tuple
{0, 1, ..., k − 1}n−1. Figure 1.(a) shows a 2-ary 3-tree, with 8 processing
nodes and 12 switches. We consider stage 0 as the closest one to the
processing nodes.

In a fat-tree, two switches 〈s, on−2, ..., o1, o0〉 and 〈s′, o′n−2, ..., o
′
1, o
′
0〉

are connected by an edge if s′ = s + 1 and oi = o′i for all i 6= s. On the
other hand, there is an edge between the switch 〈0, on−2, ..., o1, o0〉 and
the processing node pn−1, ..., p1, p0 if oi = pi+1 for all i∈ {n−2, ..., 1, 0}.
Descending links will be labeled from 0 to k-1, and ascending links from
k to 2k − 1 (see Figure 1.(b)).

In fat-trees, minimal routing from a source to a destination can be
accomplished by sending packets forward to one of the nearest common
ancestors of both source and destination and, from there, backward to
destination. When crossing stages in the forward direction, several paths
are possible, so adaptive routing is provided. Each switch can select any
of its upward output ports. Then, the packet is turned around and sent
backwards to its destination. Once the turnaround is crossed, a single
path is available up to the destination node. The stage up to which the



packet must be forwarded up is obtained by comparing the source and
destination components beginning from the n − 1 (the most significant
one). The fist pair of components that differs indicates the last stage to
forward up the packet. For instance, in order to send a packet from the
node pn−1, ..., p1, p0 to the node p′n−1, ..., p

′
1, p
′
0, the packet must be sent

up to the stage i, if pj = p′j for j ∈ {n − 1..i + 1} and pi 6= p′i. Once at
stage i, the descending path is deterministic. At each stage, the descen-
ding link to choose is indicated by the component corresponding to that
stage in the destination n-tuple. In the example, from stage i, the packet
must be forwarded through the p′i link; at stage i − 1 through link p′i−1,
and so on.

For instance in Figure 1.(a), a packet generated at node 0 whose de-
stination is node 2 will be forwarded up to stage number one (through
switch 0,00 and choosing either path to 1,00 or 1,01). From any of these
switches, the remaining bits of the destination node (10 in our example)
correctly forwards the packet.

3 Related Work

Although there is not any work about the impact of selection function
in fat-trees, there are some previous works about this issue on other to-
pologies. In [4], Duato proposed a time-dependent selection function for
hypercubes, which prevents a message from using certain virtual chan-
nels until the time a message has been waiting exceeds some threshold
value. In [1], Badr and Podar showed that the zigzag selection function
is optimal for meshes, in the sense that it maximizes the probability of
a message reaching the destination without delay. In [2], [5], and [6] the
authors, analyzed the impact of the selection function in the routing al-
gorithm performance in meshes and tori. In [9], Koibuchi et al. evaluated
a selection function that is not specific to any topology. Finally, in [10]
Martı́nez et al. analyzed the impact of selection function in the context
of irregular topologies.

4 Selection Functions

An adaptive routing algorithm is composed of the routing and selection
functions. The routing function supplies a set of output channels based
on the current and destination nodes. The selection function selects an
output channel from the set of channels supplied by the routing function.



All the selection functions proposed in this paper take into account
the state of the output physical link offered by the routing function and
then applies some criteria to select one of them. Virtual cut-trough swit-
ching with credit-based flow control is assumed. Notice that, if virtual
channel multiplexing is available, the selection function does not select
the virtual channel of the physical link that will store the packet. The vir-
tual channel will be selected when the packet is transferred through the
link, and the first virtual channel with a free buffer will be selected.

The selection functions presented below provide a preferred ascen-
ding link (i). When this link is not free, it performs a linear rotative search
starting at link i+ 1 until it finds a free link, if any.

We propose a possible hardware implementation for each selection
function. Unless said otherwise, all the selection functions can be imple-
mented in two steps: the first one will obtain the preferred link, and the
second implements the linear rotative search by using a programmable
priority encoder which takes the preferred link as an extra input. The en-
coder will give the highest priority to the input represented by this value.
The first step changes according to the particular selection function to
implement. Taking into account the set of physical links and the physical
link that is preferred, it changes the order of the set of physical links in
order to put the preferred one in the first position.

We have tested the following selection functions:
First Free (FF). The FF selection function selects the first physi-

cal link which has free space. It uses a lineal search, starting at the first
ascending physical link ( the kth, port according to our notation). FF can
be implemented by using a plain priority encoder.

Static Switch Priority (SSP). In a given stage, the SSP selection
function assigns the highest priority to a different ascending link at each
switch. The idea is to create a disjoint high priority ascending path for
each switch of the first stage. Hence, packets coming from different swit-
ches at the first stage will reach different switches at the last one, thus ba-
lancing the traffic. The high priority physical link for the switch 〈s, on−2, ..., o1, o0〉
is the ascending link labeled k + os. SSP needs the hardware mentioned
above, connecting the switch component 〈os〉 to the programmable prio-
rity encoder.

Static Destination Priority (SDP). The SDP selection function as-
signs priorities to physical links at each switch depending only on the
packet destination. The preferred physical link is given by the least si-
gnificant component of the packet destination, which represents the port
that the destination is attached to in the first stage. That is, a packet sent
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Fig. 2. Preferred links for each destination in SADP for a 2-ary-3-tree

to processing node pn−1, ..., p1, p0 has as the preferred link the k + p0

link. Thus the ascending paths of two packets with destination nodes
pn−1, ..., p1, p0 and p′n−1, ..., p

′
1, p
′
0 are not disjoint only if p0 = p′0. SDP

uses the last component of the packet destination to control the program-
mable priority encoder.

Static Origin Priority (SOP). The SOP selection function assigns
priorities to physical links depending only on the packet source. The
preferred physical link is given by the least significant component of
the packet source (which represents the port that the origin is attached
to in the first stage). That is, for a packet sent from processing node
pn−1, ..., p1, p0, it is k + p0. The hardware implementation of SOP is the
same as SDP, but connecting the last component of the packet source to
the programmable priority encoder.

Stage And Destination Priority (SADP). The SADP selection func-
tion takes into account both the stage at which the switch belongs to and
the component of the packet destination corresponding to that stage, (i.e.,
a switch located at stage s considers the sth component of the destination
address). That is, at the switch 〈s, on−2, ..., o1, o0〉, the highest priority
physical link for a packet with destination pn−1, ..., p1, p0 will be k + ps.
As a consequence, each switch located at the top of the tree concentrates
traffic destined to all processors whose id differ only by the most signi-



ficant digit. Indeed, the paths to these destination are disjoint, as each
one is reachable through different output ports of the switch. Figure 2
illustrates this selection function.

Packets are classified according to their destination considering all
the components and not only the last one component as SDP does. The
main difference between SADP and SDP is that in SDP packets destined
to different nodes can have the same preferred links if their destination
nodes have the same least significant component (p0). On the other hand,
in SADP, only those packets that share the first switch and are destined
to the same node will share all the preferred links along the complete
upwards phase.

To implement SADP, we need an additional multiplexer to select a
different component of the packet destination at each stage. The output
of this multiplexer is connected to the programmable priority encoder.

Cyclic Priority (CP). The CP selection function uses a round robin
algorithm to choose a different physical link each time a packet is forwar-
ded. The implementation of CP needs a counter that is incremented each
time a packet is routed. The counter is connected to the programmable
priority encoder.

More Credits (MC). Since we use credits to implement the flow
control mechanism, the MC selection function selects the link which has
the highest number of credits available. This number is determined by the
sum of the credits available in the all the virtual channels of the physical
link. The implementation of MC is more complex, as it needs several
comparators to select the link with more available credits.

Random Priority (RP). It selects a random physical link each time
a packet is transmitted. This function obtained similar performance re-
sults as CP. This is due to the fact that with a high number of packets to
transmit, CP and RP selects each physical link the same number of times
without considering the source or destination of the packets. The imple-
mentation of RP is complex, because it is difficult to obtain by hardware
a truly random number. As it obtains similar results to CP, we finally
decide to not to consider this selection function in this paper.

5 Performance Evaluation
5.1 Network Model
To evaluate the different selection functions proposed below, a detailed
event-driven simulator has been implemented. The simulator models a k-
ary n-tree with adaptive routing and virtual cut-through switching. Each



router has a full crossbar with queues both at the input and output ports.
We assumed that it takes 20 clock cycles to apply the routing algorithm
and the selection function, and switch and link bandwidth has been assu-
med to be one flit per clock cycle and fly time through the link has been
assumed to be 8 clock cycles. These values were used to model Myrinet
networks [7]. Credits are used to implement the flow control mechanism.
Each physical input port can be multiplexed into up to 3 virtual chan-
nels, with space to store two packets. Also, each output port link has a
two-packet output buffer.

Packet size is 8 Kb and packet generation rate is constant and the
same for all the processors in the network. We have evaluated two diffe-
rent traffic patterns: uniform and complement. In the uniform traffic pat-
tern, message destination is randomly chosen among all the processors
in the network, while in the complement traffic pattern each processor
sends all its messages to the opposite node. Thus, in a network with N
processors the processor i sends messages to the processor N − i − 1.
The complement traffic patterns has two interesting properties in fat-tree
networks. The first one is that all the packets have to reach the upper
stage in order to arrive to their destination, hence, the selection function
must be applied several times. The second one is that each processor node
only sends messages to one destination. This proves useful because with
a good selection function, the preferred ascending path of two packets
should not cross each other.

5.2 Evaluation Results

We have evaluated a wide range of k-ary-n-tree topologies. We have eva-
luated from 2-ary-2-tree (4 nodes) to 2-ary-8-tree (256 nodes), from 4-
ary-2-tree (16 nodes) to 4-ary-6-tree (4096 nodes), from 8-ary-2-tree (64
nodes) to 8-ary-4-tree (4096 nodes), from 16-ary-2-tree (256 nodes) to
16-ary-3-tree (4096 nodes) and for a 32-ary-2-tree (1024 nodes). Due to
space limitations, we show here only a subset of the most representative
simulations.

Figure 3.(a) shows results for a very small network (4-ary 2-tree, 16
nodes). The behavior of the selection functions is not very different, with
the exception of FF. FF always returns the same preferred ascending link,
therefore an ascending path needs to be saturated before another one is
selected. Hence, there is a really unbalanced link utilization as those that
belong to the preferred ascending paths always have a higher utilization
than the others. On the other hand, due to the fact that there are only 2
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Fig. 3. Average message latency versus traffic with uniform traffic pattern. (a) 4-ary-2-tree. (b)
4-ary-4-tree.
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Fig. 4. Average message latency versus traffic with uniform traffic pattern. (a) 4-ary-6-tree with
one virtual channel. (b) 4-ary-6-tree with three virtual channels.

stages, the rest of selection functions have almost the same performance,
because with a low number of stages there is a low number of different
paths that can be chosen to reach any destination.

Figure 3.(b) shows the results for a 4-ary 4-tree (256 nodes). As it
can be seen, with 4 stages there are more differences in packet latency
for the different selection functions. Despite SOP and SDP achieve a
better performance than FF, they still have a high network latency. Their
main drawback is that they select paths based only on the p0 component
of the packet origin (SOP) or destination (SDP). Therefore, the probabi-
lity of obtaining disjoint paths and, thus, an even network utilization is
quite low. On the other hand, CP, SSP and MC have almost the same per-
formance, because they do a good job balancing the network utilization.
However, in CP and MC there is not any mechanism to try avoiding that
the ascending paths of packets cross each other. In SSP, each switch at
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each stage tries to send the ascending traffic to a different switch, but it
does not take into account the destination of packets. Hence, the ascen-
ding paths of packets with different origin and destination processing
nodes may cross. SADP achieves the best performance because, assu-
ming that the preferred ascending path is free, only the ascending paths
of packets sent to the same destination will cross each other.

Figure 4.(a) shows results for a larger network. In this case, the dif-
ferences among selection functions are higher. This is due to the fact
that with more stages, there are more different ascending paths to choose
from, therefore more opportunities to balance traffic. On the other hand,
the selection functions with a poor traffic balance achieve even worse
results than in the previous examples.

Figure 4.(b) shows the effects of using virtual channel multiplexing.
The use of virtual channels reduces the effect of the head-of-line blocking.
By using three virtual channels, all the selection functions have a better
performance, but it is also important to balance network traffic. Although
all the selection functions benefits from the use of virtual channels, the
ones that have a balanced use of the links give better results than the other
ones.

We have also analyzed the impact of the arity (k) of the tree on perfor-
mance (not shown). The difference among the evaluated selection functi-
ons keeps qualitatively the same. This is due to the fact that the impact of
any selection function is greater when there is a high number on stages.

Figure 5 shows the utilization of network links for uniform traffic
when injecting traffic at the saturation rate of each selection function. As
can be expected, the selection functions that better balances traffic are
the ones that obtains the best performance.

Figure 4 show the performance of the selection functions for a me-
dium sized network 4-ary 4-tree (256 nodes). As expected, FF has the



worst performance. SOP and SDP with complement traffic have worse
performance than the one obtained with uniform traffic, because they
concentrates in the same switch of the last stage all the packets with the
same least significant component of the packet source or destination, and
in the complement traffic pattern all the packets reach the last stage. SSP
with complement traffic also shows worse performance, as in SSP the
chosen link does not depend on the source or destination node. There-
fore, packets with different destinations crosses each other.

Both CP and MC achieve a good performance with complement traf-
fic. MC has a better performance than CP because it takes into account
the current number of credits of the link, and this allows MC to select
the links that are less saturated. SADP shows the best performance of all.
Remember that, with SADP, the preferred ascending path of two packets
only can cross each other if the packets have the same destination and in
the complement traffic pattern, every packet sent from a different node
has a different destination. As a consequence, it achieves a good balance
on link utilization.

We have also analyzed the hot spot traffic pattern. As we expected,
all the selection functions proposed here obtain a very low performance,
because we do not use any congestion control mechanism. On the other
hand, other traffic patterns have been also analyzed (like perfect shuffle
and bit reversal) and the overall results are qualitatively similar to the
ones presented in this paper.

6 Conclusions

The selection function in fat-trees has a strong impact on network per-
formance. As in the descending phase routing is deterministic, it is very
important to choose the ascending path correctly. In this paper, we have
proposed several selection functions for fat-trees, which use one of the
two following strategies: the first one is to give always priority to one
ascending path; the second one is to dynamically balance the link utili-
zation without the use of preferred paths. FF, SDP, SOP, SSP and SADP
use the first approach, while MC and CP use the second one. From the
results of all the simulations we have performed, we can say that it is
important to balance the utilization of the links, that is what CP and MC
basically do. But an alternative way of achieving this good traffic balance
is by correctly choosing ascending paths (SADP).

SADP provides the best results, because it chooses the preferred path
in a manner so that the ascending paths of two packets only can cross



each other if the packets have the same origin switch or destination node.
This provides a balance of link utilization even better than the one provi-
ded by MC. For example, a 4-ary-6 with uniform traffic using SADP as
selection function reaches, for a medium network load, a 24.53% lower
latency than the same fat-tree using MC and the latter has a more com-
plex implementation. If we compare SADP with the naivest selection
function (FF), SADP decreases latency by a factor of 8.9.
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