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Abstract. The purpose of this paper is twofold. First, we present IOA-
gent, a tool that allows to generate synthetic workloads for parallel en-
vironments in a simple way. IOAgent has been implemented for Linux
and takes into account different I/O characteristics like synchronous and
asynchronous calls, buffered and unbuffered accesses, as well as different
numbers of disks, intermediate buffers and number of agents simulating
the workload. Second, we propose statistical models that help us to ana-
lyze the I/O behaviour of an IBM e-server OpenPower 710, with 4 SCSI
drives. The observations used to build the model have been obtained
using IOAgent.

keywords: parallel I/O, synthetic workload generator, Linux, performance
evaluation, statistical modelling

1 Introduction

The quest for tools that generate workloads for the evaluation of parallel I/O
comes from long ago [1]. It is a need both as an aid for the optimum configu-
ration of complex applications on complex computer architectures, and for the
evaluation of research on Operating Systems and storage performance. The rea-
son for such tools to exist is that they can emulate the behaviour of complex
applications, avoiding the use of such applications for evaluation.

Bonnie [2], LMbench [3] and FileBench [4] are examples of tools that allow
this type of workload emulation for Unix-like environments. However, such tools
are restricted from many different points of view, like the number of threads and
the type of I/O operating system calls that they can trigger.
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GRE-00352. Sergio Gómez-Villamor thanks IBM for its support through a CAS
grant.



In order to give access to a generic workload generator for the evaluation
of parallel I/O subsystems, we present IOAgent. Our tool sits on top of the
Operating System in the same way as an application would do, and allows for
the generation of workloads tailored to the needs of the system to evaluate.
IOAgent allows users to generate synthetic application-level requests and defines
a considerable number of behaviour-variables that allow to mimic an application.
Our tool has been tested in large environments with up to 24 disks to emulate
the accesses caused by a DBMS with a transactional processing workload [5].

In addition, as an example of the use of IOAgent, we evaluate an OpenPower
710 I/O subsystem. For the evaluation, we generate different workloads that
stress the I/O subsystem in different ways and execute them to obtain more
than 10 thousand execution time measures. With all those data, we propose a
statistical model of the system using the Analysis of Variance (ANOVA). We
show that using statistical tools it is easier and more reliable to extract conclu-
sions.

The rest of this paper is organized as follows. In Section 2 we explain IOAgent.
Then, in Section 3, we describe the environment and tests performed. In Section 4
we describe the statistical models obtained and in Section 5 we discuss the results
with the help of the models. In Section 6 we give a short overview of the literature
on the topic and, finally, we conclude.

2 IOAgent

IOAgent offers the possibility to mimic the stress imposed by an application
on the I/O subsystem. This is done by simulating processes that exercise read
and write predefined patterns on the accessed devices. Thus, IOAgent allows to
evaluate parallel environments, both from the processing and the I/O points of
view.

Currently, most OSs provide different system calls to execute I/O operations
in a synchronous or asynchronous manner. Also, depending on whether the
data blocks involved in I/O operations are mapped onto kernel buffers we can
distinguish between buffered or unbuffered I/O. IOAgent allows for all those
possibilities.

At this moment, IOAgent is implemented for Linux but could be ported to
any other OS with little effort. IOAgent can be freely accessed in [6].

2.1 Basic Structures

The synthetic workload configuration of IOAgent is set by means of (i) a set of
per-thread access-patterns, also called agents, and (ii) a set of pseudo-devices,
also called files.

Agents are responsible for performing the desired stress. Every agent is a
thread which performs one access pattern. The mixed execution of different
agents will determine the desired global workload. Each agent in a simulation
will have specific values for the following fields:



– File. The file used to perform the I/O operations.
– Operation mode. There are four simultaneously compatible operation modes:

• Synchronous or asynchronous. Synchronous I/O operations block a
process until the I/O is performed while asynchronous I/O operations
do not block the process.

• Number of buffers. IOAgent associates each I/O operation to a buffer.
Synchronous operations are performed sequentially, thus, IOAgent re-
quires only one buffer for synchronous agents. Asynchronous operations
can be performed concurrently, thus, asynchronous agents require as
many buffers as I/O operations on the fly. The buffers of IOAgent emu-
late those provided by the application it is emulating.

• Buffered or unbuffered. With buffered I/O, IOAgent uses its own
buffers, and indirectly those provided by the OS as an intermediate step
for the I/O operations. With unbuffered I/O, IOAgent only uses its own
buffers. Unbuffered I/O can be specified using raw devices or the Direct
I/O mode, which can be associated to a block device interface or a file of
some file systems (i.e. some file systems do not allow Direct I/O mode).

• Read or write. Each agent will perform exclusively read or write op-
erations.

• Sequential or random. Sequential accesses perform a set of consecu-
tive or strided I/O operations. Random accesses perform a number of
read or writes over each position of the file following a certain probabil-
ity distribution. At present, it is possible to choose among Uniform or
Poisson distributions.

– Operation size. The size of the I/O operations is fixed for an agent.
– Inter-arrival times. We fix this per-agent value as the number of I/O

operations per unit of time that each agent must generate.

Files are used in our environment to encapsulate the different storage capa-
bilities of a system. Therefore, every agent is associated to a file which represents
where the agent performs its I/O operations. Files are devices or common files
on which I/O operations are executed. Regarding the storage system support,
IOAgent allows for:

– File systems. The most common way to access hard disks (or its logical
partitions) is through files of a built-in file system (e.g. ext3, ext2, reiserfs,
xfs, jfs, etc.).

– Block devices interface. Different block devices (e.g. hard disks) of UNIX-
type systems can be accessed through the /dev interface.

– Raw devices interface. A raw device can be bound to an existing block
device (e.g. a disk) and can be used to perform raw I/O with that existing
block device. Such raw I/O bypasses the caching that is normally associated
with block devices.

For a comprehensive explanation of other parameters not used in this paper,
and how to configure a workload generation, we refer the reader to [5].



Processor 2 Power5 at 1.65 GHz

Memory 4 GBytes, DDR-I ECC at 266 MHz

L1 data cache 4-way set associative LRU

L2 cache 10-way set associative 1.9 MBytes

L3 cache 36 MBytes

4 146.8 GBytes drives at 10 Krpm
Storage 2 channel Ultra320 SCSI controller

320 MBps peak transfer
Table 1. OpenPower 710 configuration.

3 Evaluation Setup

In order to show the use of IOAgent, we perform an analysis of the I/O perfor-
mance characteristics of an IBM e-server OpenPower 710 [7], with 4 SCSI drives,
and Red Hat Enterprise Linux AS v4 for 64-bit IBM Power based on the 2.6
Kernel. The configuration of the OpenPower 710 evaluated in this paper is as
shown in Table 1.

We run extensive executions of IOAgent on the system. The executions added
up to 10,368 performance measures (two weeks of executions). For the evaluation,
we have set up the parameters of IOAgent shown in Table 2.

Buffered and unbuffered I/O tests were both performed on 4 GBytes files,
one per disk used. For buffered I/O tests, we used files mounted with an ext3 file
system and to allow buffered file system asynchronous I/O we patched a 2.6.12
kernel version [8]. Asynchronous I/O is a very recent feature in the Linux kernel,
therefore we focused our studies on this new feature. For unbuffered I/O we used
a 2.6.9 kernel version.

In order to analyze the system under maximum stress, we fix the inter-arrival
time to zero for all the agents.

4 Statistical Modelling

We study five different categorical variables (factors) related to the I/O subsys-
tem performance, namely, the use of the OS buffers, the number of disks accessed
by the application, the number of agents accessing the disks, the number of in-
termediate application buffers used to store the data managed during the I/O
operations, and the size of those intermediate application buffers. As a response
variable, we study the average transfer rate from disk for four different access
patterns: sequential reads, sequential writes, random reads and random writes.
We propose two models, a general one useful for the four access patterns, and a
simplified specific model for random reads, based on the five factors mentioned
above.

The models we propose provide a way to analyze the data collected and allow
us to find out which parameters are most significant.



Factor Name Levels #levels

Buffered O Buffered and Unbuffered 2

#disks D 1, 2 and 4 3

#agents/disk A 1, 2, 4, 8, 16 and 32 6

#buffers/agent B 1, 2, 4, 8, 16 and 32 6

buffer size (KBytes) S 8, 32 and 128 3
Table 2. Parameters used for the evaluation.

4.1 The Models

We use the Analysis of Variance (ANOVA) because it is the classical statistical
technique to describe the behaviour of a response variable as a function of some
factors [9]. Conversely, regression plays the same role for continuous variables.
The factors considered in the models and their levels are summarized in Table 2.
All of them are fixed effect factors, which means that the levels are considered
constants. This case is opposed to the random effects case, in which they are
considered observations from a random variable.

First, we try to model the transfer rate as a function of the main effects
of the factors without interactions. The results are not satisfactory since the
errors (difference between the observed and the predicted values) do not satisfy
the hypothesis of independence, normality and equal variance, required for the
ANOVA. The problem disappears by transforming the response variables by
means of a logarithm, and considering some interactions in the model. Following
the Principle of Parsimony [9], we have finally accepted the following model for
the four access patterns analyzed in this paper:

yijkml = µ + Oi + Dj + Ak + Sl + Bm +

+(OD)ij + (OA)ik + (OS)il + (OB)im + (DA)jk +

+(AS)kl + (AB)km + (SB)lm + eijklm (1)

for i = 1..2 (2 levels for factor O), j = 1..3 (3 levels for factor D), k = 1..6 (6
levels for factor A), l = 1..3 (3 levels for factor S), and m = 1..6 (6 levels for
factor B) where,

1. yijkml is the logarithm of the average transfer rate of 4 executions of the
application, that have been run under conditions i, j, k, m, l of the factors.

2. µ is known as the general average. In our case, it represents the mean value
of the logarithm of the average transfer rate expected if the conditions under
which the observation has been obtained are unknown.

3. Oi, Dj , Ak, Sl and Bm correspond to the main effects of the five factors ex-
plained before. Specifically, Oi corresponds to the effect of the ith level of
O, Dj corresponds to the effect of the j th level of D, and so on. For being
a fixed effects model, the conditions

∑
i Oi =

∑
j Dj =

∑
k Ak =

∑
l Sl =∑

m Bm = 0 must be satisfied.
4. (OD)ij corresponds to the interaction of the ith level of O with the j th

level of D. Those constants must verify that ∀i,
∑

j (OD)ij = 0 and ∀j,∑
i (OD)ij = 0. Analogously, (OA)ik , (OS)il, (OB)im, (DA)jk , (AS)kl,

(AB)km and (SB)lm correspond to the different interactions between the



levels of the corresponding factors, and the corresponding analogous restric-
tions must be verified.

5. eijklm corresponds to the experimental error and contains the information
in the data which is not explained by the considered factors.

However, for random reads, the model above can be simplified since some
interactions are not statistically significant. The simplified model is:

yijkml = µ + Oi + Dj + Ak + Sl + Bm +

+(OD)ij + (OS)il + (OB)im + (AB)km + eijklm (2)

The R-Squares of the four response variables modeled (sequential reads and
writes, and random reads and writes) are 0.81, 0.95, 0.99 and 0.99 respectively,
using model (1) for all the cases except for random reads, where we use model
(2). This means that the models explain the corresponding percentage of the
total variability in the data (i.e. 81% for 0.81). The error terms for each model
are independent and follow a normal distribution with zero mean and constant
variance. Therefore we can accept model (1) for sequential I/O activity and
random writes and model (2) for random reads.

5 Discussion

In the following paragraphs we dissect the general and specific characteristics
of the four types of accesses that we exercised: sequential reads and writes, and
random reads and writes. Although the models characterize the logarithm of
the transfer rate, we always refer to the transfer rate of the I/O subsystem for
simplicity in the text. All the plots show averages obtained from real executions.

5.1 Single Factor Analysis

First of all, it is remarkable that the models show an important difference be-
tween the levels of factor O, OS buffered/unbuffered accesses. While OS buffered
accesses work better in sequential reads, unbuffered accesses work better in the
rest of the cases. This can be understood from the fact that the OS monitors
sequential read access patterns and prefetches data blocks in those cases.

A general characteristic for factor A is that, in random accesses, the larger
the number of agents, the better, while in sequential accesses, the smaller the
number of agents, the better. An explanation to this follows. One of the strate-
gies to maximize throughput is to sort disk accesses to reduce the number of
backward and forward disk arm movements [10]. Therefore, in random accesses,
a small number of agents may cause the disk arms to move backward and for-
ward constantly. A larger number of random accesses (i.e. a larger number of
agents) causes more chance to have accesses to be on the route between two
far away accesses, improving the usage of the resource. On the other hand, in
sequential accesses, there is a trade off between the number of accesses and the



randomness introduced by having several sequential accesses along a significant
lapse of time.

Factors D and S increase the transfer rate of the I/O subsystem as their
values increase. Finally, although factor B behaves in the same way, there are
cases where its influence is unnoticeable.

5.2 Multiple Factor Analysis

Now we analyze the most significant interactions between pairs of factors for the
different access patterns.

Sequential Reads. Among the interactions modeled for this type of I/O ac-
cesses, we found that the most interesting were the two shown in Figure 1: (top
chart) between the OS buffered/unbuffered I/O, factor O, and the size of the ap-
plication buffers, factor S, and (bottom chart) between OS buffered/unbuffered
I/O, factor O, and the number of application buffers used, factor B.

As shown in Figure 1, OS buffered I/O always behaves better than unbuffered
I/O for sequential reads. Also, the interactions show that both increasing the
number of application buffers (factor B) or their size (factor S) benefits un-
buffered I/O while, in general, it is less significant for OS buffered I/O through-
put. This makes sense since the OS prefetches or reads data ahead when it
detects sequential access patterns. On the other hand, unbuffered I/O improves
with larger number and size of buffers (factors B and S respectively) because
the bandwidth of the I/O is exercised more intensely either with more agents in
parallel or with larger data sets accessed sequentially that, in both cases, allow
for better throughput.

Sequential Writes. The interactions that we chose in this case for their signifi-
cance are shown in Figure 2: (top chart) between the number of agents, factor A,
and the OS buffered/unbuffered I/O, factor O, and (bottom chart) between the
number of agents, factor A, and the number of buffers per agent, factor B.

The first interaction shows how increasing from one agent to two decreases
the performance of the I/O subsystem in OS buffered accesses. This is caused by
the randomness added by one more agent accessing a different set of data. The
performance for two agents is sustained for more agents as shown in the same
plot. Note that if we increase the size of the buffer (not shown in the plots),
we improve the performance, showing that increasing the sequentiality benefits
performance.

Turning to the plot at the bottom, we can see that the number of buffers used
per agent saturates the performance at a certain point with 8 or 16 buffers per
agent for one agent and more for more agents. This shows that having a larger
number of buffers allows for a better planning of the I/O activity when an agent
is writing data to the disks. This is also true when we increase the number of
agents but, in those cases, the randomness and the number of context switches
introduced due to a larger number of agents reduces significantly the performance
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Fig. 1. (top) Interaction between OS buffered I/O, factor O, and the application buffer
size, factor S, and (bottom) interaction between OS buffered I/O, factor O, and the
number of application buffers, factor B, for sequential data reads.

of the system. Therefore, the performance decreases when the number of agents
increases.

In general, we can say that it is beneficial to have a large number of buffers
per agent. In particular, the performance starts to saturate at 16 to 32 buffers
for the case of one agent.

Finally, not in the plots, we observe that the interaction between the number
of buffers per agent (factor B) and their size (factor S) is also significant. In
this case, the smaller the size of the buffer, the more beneficial it is to have a
larger number of buffers. In any case, the combination of large buffers with large
number of buffers is the best, even though it is more important to have large
buffers than a large number of them.
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Fig. 2. (top) Interaction between OS buffered I/O, factor O, and the number of agents,
factor A, and (bottom) interaction between the number of agents, factor A, and the
number of buffers per agent, factor B, for sequential data writes.

Random Reads and Random Writes. As a general observation, in the plot
of Figure 3 we observe that a larger number of agents is beneficial for random
operations, as opposed to sequential operations (plot at the bottom in Figure 2),
where it was better to have less agents.

More specifically, in the plot of Figure 3, we show the interaction between
the number of buffers per agent (factor B) and the number of agents (factor A)
for random reads (the behaviour for random writes is similar although the model
for random reads is simpler). The plot shows a clear tendency to converge to an
asymptote, with larger numbers of agents converging faster. This is so because
there is a better planing of the resources when the number of agents and buffers
is large. However, the size of the buffer (not shown in the plot) does not have
a significant interaction neither on the number of agents nor on the number of
buffers.
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Fig. 3. Interaction between the number of agents, factor A, and the number of buffers
per agent, factor B, for random data reads.

6 Related Work

There is a significant amount of work on synthetic workload generation tools for
Unix-like systems as Bonnie [2], LMbench [3] and FileBench [4]. However, those
softwares do not have all the features IOAgent offers and we have used here, as
explained above.

On the other hand, we are not aware of the existence of a comprehensive
study of the performance of the Linux asynchronous I/O on parallel devices be-
fore, or the Linux I/O performance on Power-based architectures. Moreover, our
characterization can be regarded as the first one to use statistical methods for
the analysis of the results. However, we want to mention the following pieces
of work related to Linux I/O characterization, as examples. Ram Pai et al. [11]
used iozone to study the performance improvement through readahead opti-
mization. Unfortunately, the tool used did not allow to test the optimizations
under the Linux native asynchronous I/O. Also, Suparna et al. [12] analyzed
the performance and robustness of the new Linux asynchronous I/O for enter-
prise workloads. The main difference between the evaluation done in this paper
and that in [12] is that we give a more generic view and make extensive use of
statistical infrastructure to validate the model presented.

7 Conclusions

This paper shows the importance of using a solid software and mathematical
infrastructure for the evaluation of hardware/software systems. Our most impor-
tant conclusion is that using a workload generator and a statistical methodology,
we can extract solid and sound conclusions about the interaction of a simulated
application, the OS and the hardware at use, in particular, the I/O subsystem.



Access Buffered Number of Buffer Number of

pattern mode agents size buffers

Sequential reads Buffered small large SNS

Sequential writes Unbuffered small SNS large

Random reads and writes Unbuffered large SNS large
Table 3. Recommended configurations. SNS stands for Statistically Not Significant.

We have generated test cases for the evaluation of the I/O subsystem of an
IBM OpenPower 710. With more than 10 thousand execution results, we have
built a statistical model that describes and fits accurately the behaviour of the
I/O subsystem. Table 1 summarizes the best configurations for the four scenarios
analyzed in this paper.

From the point of view of the use of IOAgent in a parallel environment, we
show that the benefits obtained with an increase in the degree of parallelism is
not straight forward.
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