
Online Checkpointing for Parallel Adjoint

Computation in PDEs: Application to

Goal-Oriented Adaptivity and Flow Control

Vincent Heuveline1 and Andrea Walther2

1 Universität Karlsruhe, Institute for Applied Mathematics, Karlsruhe, Germany
vincent.heuveline@math.uni-karlsruhe.de

2 Technische Universität Dresden, Institute of Scientific Computing, Dresden,
Germany Andrea.Walther@tu-dresden.de

Abstract. The computation of derivatives for the optimization of time-
dependent flow problems is based on the integration of the adjoint differ-
ential equation. For this purpose, the knowledge of the complete forward
solution is required. Similar information is needed for a posteriori error
estimation with respect to a given functional. In the area of flow con-
trol, especially for three dimensional problems, it is usually impossible
to store the full forward solution due to the lack of memory capacities.
Additionally, adaptive time-stepping procedures are needed for efficient
integration schemes in time. Therefore, standard optimal offline check-
pointing strategies are usually not well-suited in that framework.
We present a new online procedure for determining the checkpoint distri-
bution on the fly. Complexity estimates and consequences for storing and
retrieving the checkpoints using parallel I/O are discussed. The resulting
checkpointing approach is integrated in HiFlow, a multipurpose paral-
lel finite-element package with a strong emphasis in computational fluid
dynamic, reactive flows and related subjects. Using an adjoint-based er-
ror control for prototypical three dimensional flow problems, numerical
experiments demonstrate the effectiveness of the proposed approach.

1 Introduction

In time-dependent flow control as well as in the framework of goal-oriented a
posteriori error control, the calculation of adjoint information forms a basic in-
gredient to generate the required derivatives of the cost functional (see e.g. [8]).
However, the corresponding computations may become extremely tedious if pos-
sible at all because of the sheer size of the resulting discretized problem as well
as its nonlinear character, which requires keeping track of the complete forward
solution to be able to integrate the corresponding adjoint differential equation
backwards. This fact still forms a main bottleneck in the overall optimization
process despite the ever-growing size of memory devices. For that reason, several
checkpointing techniques have been developed. Here, only a few intermediate
states are stored as checkpoints. Subsequently, the required forward informa-
tion is recomputed piece by piece from the checkpoints according to the adjoint

2

calculation. Hence, checkpointing methods seek for an acceptable compromise
between memory requirements and run time increase due to re-computations
that cannot be avoided.

If the number of time steps for integrating the differential equation describ-
ing the state is known a priori, one very popular checkpointing strategy is to
distribute the checkpoints equidistantly over the time interval. However, it was
shown in [18] that this approach is not optimal. One can compute optimal check-
pointing schedules in advance to achieve for a given number of checkpoints an
optimal, i.e. minimal, run time increase [7]. This procedure is referred to as off-
line checkpointing and implemented in the package revolve [7]. However, in the
context of flow control, the partial differential equations to be solved are usually
stiff, and the solution process relies therefore on some adaptive time stepping
procedure. Hence, the number of time steps performed is known only after the
complete integration. This fact makes an offline checkpointing intractable. In-
stead, one may apply a straightforward checkpointing by placing a checkpoint
each time a certain number of time steps has been executed. This transforms
the uncertainty in the number of time steps to a uncertainty in the number of
checkpoints needed. This approach is used by CVODES [17]. However, when the
amount of memory per checkpoint is very high one certainly wants to deter-
mine the number of checkpoints required a priori. For that purpose, we propose
a new procedure for online checkpointing that distributes a given number of
checkpoints during the integration procedure. This new approach yields a time-
optimal adjoint computation for a given number of checkpoints. The present
paper focus on practical aspects, i.e. the specific online checkpointing algorithm
and the consequences for the computation of adjoint information on parallel
computers. Furthermore, it describes the coupling of the presented online check-
pointing software with the package HiFlow (see www.hiflow.de) for the parallel
computation of adjoints. A companion paper [10] concentrates on the theoretical
aspects of the goal-oriented adaptivity and the online checkpointing algorithm.

The outline of this paper is as follows. Section 2 is dedicated to the derivation
of adjoint-based a posteriori error control for flow problems and its link to flow
control. The new online checkpointing strategy is presented in Section 3. Here
also complexity estimates for the resulting checkpointing strategy and the usage
of the algorithm on parallel computers are addressed. First numerical experi-
ments are presented in Section 4. Finally, conclusions are drawn in Section 5.

2 Adjoint Based Techniques for Error Estimation

2.1 Problem Formulation

Let u denote the state variables, g the control variables, J(u, g) the objective
functional, and G(u, g) = 0 the constraints. A standard formulation for the
related optimization problem reads

Problem 1: Find controls g and states u such that J(u, g) is minimized subject
to G(u, g) = 0.

3

Our goal in this paper is to address the case where the constraints are de-
fined by means of time-dependent partial differential equations. Even though
the derived method is very general, we concentrate on the case of instationary,
incompressible, viscous flows modeled by means of the Navier-Stokes equations,
i.e., ignoring the controls g we have

∂u

∂t
− ν∆u+ u · ∇u+ ∇p = f in (0, T)×Ω, (1)

∇ · u = 0 in (0, T)×Ω, u|t=0 = u0, (2)

where u ∈ R
d describes the velocity field and p ∈ R the pressure. We assume

that the velocity field is subject to adequate boundary conditions. A standard
approach to solve such problems is based on the solution of an adjoint system
backward in time to compute the gradient of the functional J(u, g) (see e.g. [8]).
The state variables appear in the coefficients and right-hand sides of the adjoint
equations and must be available as the solver marches backward in time. Gen-
erally for flow control problems the storage of the state variables for every time
step results in a huge amount of data. Therefore, we propose a checkpointing
technique that relies on the storage of a few selected time steps. One then re-
computes the information required by the adjoint calculation time step per time
step.

Similarly to Problem 1, the proposed framework for checkpointing can be
used in the context of goal-oriented a posteriori error estimation for time-depen-
dent problems. Again one considers a state equation defined by partial differen-
tial equations F (u). We suppose that these equations are discretized by means
of a Galerkin method (e.g. finite-element method) and that the corresponding
discrete solution is denoted by uh. The goal is to determine the discretization
error with respect to some functional J(·), i.e. J(u)−J(uh). This problem can be
formulated as a control problem similar to Problem 1. In the remainder of this
paper we will consider this setup for the derivation of the proposed checkpointing
strategy.

2.2 A General Paradigm for Dual-Based a Posteriori Error
Estimation

In this section, we outline the concepts related to dual-based error estimation
following the general paradigm introduced in Eriksson et al. [3]. We refer to
Machiels et al. [13], Oden and Prudhomme [14], and Giles [6] for related ap-
proaches to goal-oriented error estimation.

Let A(·; ·) be a differentiable semi-linear form and F (·) a linear functional
defined on some function space V . For u ∈ V , A′(u; v)(·) denotes the directional
derivative of A(u; ·) in the v direction. The second derivative of A(u; ·) is refereed
to by A′′(·; ·)(·, ·). We seek a solution u ∈ V to the variational equation

A(u;ϕ) = F (ϕ) ∀ϕ ∈ V. (3)

4

This problem is approximated by a Galerkin method using a sequence of finite
dimensional subspaces Vh ⊂ V parameterized by a parameter h. The correspond-
ing discrete problem seeks uh ∈ Vh satisfying

A(uh;ϕh) = F (ϕh) ∀ϕh ∈ Vh. (4)

We assume that equations (3) and (4) possess unique solutions. A key feature of
the discrete problem (4) is the property of Galerkin orthogonality, which reads
in the general nonlinear case

A(u;ϕh) −A(uh;ϕh) = 0 ∀ϕh ∈ Vh. (5)

Suppose that the quantity J(u) has to be computed, where J(·) is a differentiable
functional defined on V . To control the error with respect to the functional J
we introduce the following dual problem

A′(uuh;ϕ)(ẑ) = J ′(uuh)(ϕ) ∀ϕ ∈ V, where (6)

A′(uuh;ϕ)(ψ) =

∫ 1

0

A′(su+ (1 − s)uh;ϕ)(ψ) ds,

J ′(uuh)(ϕ) =

∫ 1

0

J ′(su+ (1 − s)uh)(ϕ) ds.

We assume that (6) possesses a solution. Based on the dual solution ẑ and due
to the Galerkin orthogonality (5), we obtain the following error representation

J(u) − J(uh) = A′(uuh; e)(ẑ) = A(u; ẑ) −A(uh, ẑ)

= A(u; ẑ − ẑh) −A(uh; ẑ − ẑh)

= F (ẑ − ẑh) −A(uh; ẑ − ẑh) = ρ(uh, ẑ − ẑh)

for any ẑh ∈ Vh, where ρ(uh, ·) = F (·) − A(uh; ·) describes the primal residual,
and e := u− uh. In practice, the previously derived error representation cannot
be used directly since the adjoint problem (6) involves the unknown solution u.
One alternative is to replace the exact solution u by its approximation uh in the
adjoint problem (6). The resulting adjoint problem reads

A′(uh;ϕ)(z) = J ′(uh;ϕ) ∀ϕ ∈ V. (7)

One can show that the following modified error representation holds

J(u) − J(uh) = ρ(uh, z − zh) +R, (8)

for any zh ∈ Vh, where the remainder term R depends on the second order
derivatives of A(·; ·) and J(·). The remainder term vanishes if A(·; ·) and J(·)
are linear.

From now on, we consider procedures based on the error representation (8)
for the a posteriori error control with respect to the functional J . The remainder
term is neglected since, in our context, it involves higher order terms with respect
to the discretization parameter h which can be omitted for h small enough.

The solution of the dual problem (7) needed for the error representation
related to (8) corresponds in our context of time-dependent problems to the
adjoint problem which has to be solved backward in time.

5

2.3 Galerkin Discretization in Time and Space

We consider a discretization of the problem (1)-(2) using a Galerkin finite ele-
ment discretization simultaneously in space and in time. This setup allows us
to rely on the error representation (8) for the error control. Following the lines
of Eriksson and Johnson [4,5] we consider the dG(r)-method for the time dis-
cretization, i.e. we allow discontinuous functions in time. This discontinuity can
be used to decouple the considered system on each subinterval In = (tn−1, tn] of
the time interval (0, T], where 0 = t0 < · · · < tn < · · · < tN = T, kn = tn − tn−1.
For simplicity, we consider for each time step tn a unique regular spatial mesh.
Then, we can write the solution process as a standard time-stepping scheme.
For r = 0, the corresponding dG(0)-method is equivalent to the backward-Euler
scheme.

The Galerkin space discretization using conforming mixed finite elements
with continuous pressure is based on a variational formulation of the Navier-
Stokes equations (1)-(2). For this purpose, we employ standard Hood-Taylor
finite elements [12] for the trial and test spaces (for a detailed description see, e.g.,
[1]). This choice for the trial and test functions guarantees a stable approximation
of the pressure since the Babuska-Brezzi inf-sup stability condition is satisfied
uniformly in h (see [2] and references therein). The advantage, when compared to
equal order function spaces for the pressure and the velocity, is that no additional
stabilization terms are needed.

Based on this space discretization, the arising nonlinear algebraic systems are
then solved implicitly in a fully coupled manner by means of a damped Newton
method. The linear subproblems are solved by the Generalized Minimal Residual
Method (GMRES) (see [15]) preconditioned by means of a geometric multigrid
iteration (see [19]). Two specific features characterize the scheme we consider:
varying orders of the FEM ansatz on the mesh hierarchy and a Vanka-type
smoother. This somewhat technical part is described in full detail in [9].

3 Online Checkpointing Algorithms

Having a fixed number of checkpoints to store intermediate states but an un-
known number of time steps for which the adjoint has to be computed on the
base of the forward trajectory, one has to decide on the fly, i.e., during the
forward integration, where to place the checkpoints. Hence, without knowing
how many time steps are left to perform, one has to analyze the current distri-
bution of the checkpoints. Depending on the time steps performed so far, one
may then discard the contents of one checkpoint to store the current available
state. Obviously, one may think that this procedure could not be optimal since
it may happen that one reaches the final time just after replacing a checkpoint,
in which case another checkpoint distribution may be advantageous. A surpris-
ing efficient heuristic strategy to rearrange the checkpoints is implemented by
the online procedure arevolve [11]. Here, a checkpoint distribution is judged by
computing an approximation of the overall re-computation cost caused by the
current distribution. This number is compared with an approximation of the

6

re-computation cost if one resets a checkpoint to the currently available state.
Despite the fact that significant simplifications are made for approximating the
required re-computations, the resulting checkpointing schemes are comparatively
cheap. Naturally, the optimal cost can be computed only afterwards when the
number of time steps is known.

3.1 Optimal Online checkpointing

However, a main drawback of arevolve is that it is not possible to prove an
upper bound on the deviation from the optimal checkpointing schedule because
a heuristic is used to judge the current checkpointing distributions. In this paper,
we present online checkpointing strategies for an a priori unknown number l of
time steps and a given number of checkpoints c under the assumption that

l ≤

(

c+ 2

c

)

=
(c+ 2)(c+ 1)

2
=

c+1
∑

i=1

i ≡ bc . (9)

Hence, the upper bound bc on the number of time steps is directly determined
by the number of checkpoints c. Let Fl(x) denote the execution of the lth time
step corresponding to the discretized PDE. Using p as a pointer to the next
state where a checkpoint is set and s as a flag if a checkpoint has to be set, the
proposed online checkpointing procedure reads as follows:

Algorithm 1: Online Checkpointing Algorithm

Start: Set i = 0, o = c, p = c, s = 1
for l = 0, 1, . . .

1. Evaluate xl+1 = Fl(xl)
2. If termination criterion fulfilled then start reversal

If s = 1 then
Store state xl in checkpoint i
i = i+ 1
If i > o then i = 1

3. If l + 1 = p then s = 0
4. If l = p then

p = p+ o, o = o− 1, i = o

If o > 0 then s = 1 else s = 0
5. If l = p and o = −1 then error: l > bc

For a given value of c, this algorithm stores the states 0, . . . , c− 1 in the check-
points 0, . . . , c−1. Subsequently, the state c+1 is copied to the checkpoint c−1.
Then the states c+2, . . . , 2c−1 are stored in the checkpoints 1, . . . , c−2 by over-
writing the information already contained in these memory pads. This process
continues until either the termination criterion is fulfilled or the number of time
steps exceeds the upper bound bc. If a reversal is started in step 2, the optimal of-
fline checkpointing provided by revolve is applied. Analyzing the described online
checkpointing in more detail, we can prove the following complexity result:

7

Table 1. Upper bound bc

c 10 20 40 80 160 320

bc 66 231 861 3321 13041 51681

Theorem 1 (Optimal Online Checkpointing). Let the number of available

checkpoints equal c. Then the online checkpointing procedure given by Algorithm 1

ensures a time-minimal adjoint computation storing no more than c checkpoints

at any time for any number l of time steps if l satisfies the inequality l ≤ bc.

Proof: See [10].

Hence, provided that the number of time steps does not exceed the upper bound
bc one can compute the adjoint of a time step sequence with an a priori unknown
length using up to c checkpoints at any time with the optimal, i.e. minimal, run
time. This minimal run time is given by the number of time step evaluations in
addition to the evaluations of adjoint time steps. Since each adjoint time step
has to be executed exactly once, only the number of time steps performed can
vary for different checkpointing approaches. In [7], checkpoint strategies were
studied for an a priori known number l of time steps the adjoint of which has to
be calculated. It was shown that the minimal number of time step executions is
given by an explicit formula in the following way: Let t(c, l) denote the minimal
number of time steps evaluated to compute the adjoint of l time steps storing
up to c checkpoints at any time. Then t(c, l) has the explicit form

t(c, l) = rl − β(c+ 1, r − 1) + 1, (10)

where r is the unique integer satisfying β(c, r − 1) < l ≤ β(c, r) ≡
(

c+r

c

)

. Sur-
prisingly, the checkpoint algorithm proposed in this paper reaches this minimal
number of time steps even for an unknown number l of time steps as long as l
does not exceed the upper bound bc. The constant bc grows quadratically in the
number of checkpoints as illustrated by Table 1. Therefore, already a moderate
number of checkpoints ensures an optimal run time for a reasonable number of
time steps to be reversed. For example, usually no more than 200 checkpoints
are required for the problems considered in this paper.

3.2 Online Checkpointing on Parallel Computers

The optimal online checkpointing of Algorithm 1 has been implemented as an
extension of the optimal offline checkpointing software revolve [7]. It is planed
for a future version of revolve to incorporate the heuristics of arevolve in the case
of online checkpointing and l > bc. Here, one would perform the optimal online
checkpointing as long as l ≤ bc. If l exceeds bc the heuristics of arevolve will be
applied to avoid a break down of the overall adjoint computation.

8

Applying the checkpointing routine revolve on a parallel computer, one faces
two very different situations: The first possibility is that all checkpoints can
be kept in main memory. Then the access time to all checkpoints is negligible
as assumed in the theoretical analysis contained in [7]. However, the maximal
number of checkpoints may be considerably limited due to this approach. Taking
advantage of new features of parallel IO filesystems such as Lustre allows to
extend the number of checkpoints by storing checkpoints also on disc. Then the
access cost of the checkpoints is no longer negligible for all checkpoints because
of the parallel I/O. Hence, one has to take the memory access costs into account
resulting in a so-called multi-stage checkpointing. For this purpose, we present
the following result:

Theorem 2 (Number of Checkpoint Writes). Let l > c+ 2 be the number

of time steps the adjoint of which is computed using c checkpoints and the online

checkpointing Algorithm 1. If wi denotes the number of times data is written

onto the checkpoint i during the first integration to state xl, then one has for

l =

j
∑

i=1

(c+ 2 − i) + q ∈

{

j
∑

i=1

(c+ 2 − i), . . . ,

j+1
∑

i=1

(c+ 2 − i) − 1

}

if q ∈ {0, 1} : w0 = 1, wi = j 0 < i ≤ c− j, wi = c− i+ 1 c− j < i < c

if q = 2 : w0 = 1, wi = j 0 < i < c− j, wi = c− i+ 1 c− j ≤ i < c

if q > 2 : w0 = 1, wi = j + 1 0 < i < min{q − 1, c− j},

wi = j q − 2 < i < c− j,

wi = c− i+ 1 c− j ≤ i < c.

Proof: For l ≤ c+ 2, the checkpointing schedule is trivial. Therefore, we do not
consider this case here. For c + 2 < l ≤ bc, one can divide the range {0, . . . , bc}
into the c ranges

Rj ≡ {lj , . . . , uj} ≡

{

j
∑

i=1

(c+ 2 − i), . . . ,

j+1
∑

i=1

(c+ 2 − i) − 1

}

0 ≤ j < c− 1

Rc−1 ≡ {lc−1, . . . , uc−1} ≡ {bc − 3, . . . , bc}.

This separation is based on the definition of bc. Applying Algorithm 1, checkpoint
0 stores the initial state x0 and is not overwritten afterwards. Furthermore, the
states 1, . . . , c − 1 are stored in the checkpoints 1, . . . , c − 1 since l > c + 2.
Then, for each range Rj with j > 0 and l̃ < l for all l̃ ∈ Rj , the checkpoint
c − j stores the state lj and is not overwritten afterwards. Furthermore, the
states lj + 1, . . . , lj + c− j − 1 = lj + 1, . . . , uj − 1 are stored in the checkpoints
1, . . . , c − j − 1. For ju with l ∈ Rju

, lju
≤ l ≤ uju

, one has that l = lju
+ q

with q ≤ c − j + 1. Then, the checkpoint c − ju stores the state lju
if q > 1. If

q > 2, additionally the states lju
+1, . . . , lju

+q−2 are stored in the checkpoints
1, . . . , q − 2. Summarizing these observations proves the assertion.

9

The checkpoint write counts proved in the last theorem form a first step to allow
larger checkpoint numbers based for example on parallel IO filesystems such as
Lustre. The remaining part is an analysis of the checkpoint write and read counts
for the reversal process initiated by revolve. This topic is currently investigated
to allow an overall minimization of the access time to the checkpoints. From
the results obtained so far in this direction, a suitable strategy seems to be that
one assigns the more expensive checkpoints, i.e., the checkpoints distributed on
the file system to the checkpoints with higher numbers and to assign the less
expensive checkpoints, i.e., the checkpoints in main memory to the checkpoints
with lower numbers.

4 Numerical Experiments

The HiFlow package is a multipurpose parallel finite-element package with a
strong emphasis in computational fluid dynamic, reactive flows and related sub-
jects. It is developed in C++, and its design takes great advantage of the object-
oriented concepts and of the generic programming capabilities offered by this
language. The overall design of this project is highly modular and allows an
interplay of its different submodules. The computations presented in this paper
rely especially on two submodules: HiFlowOpti and HiFlowNavierStokes. The
HiFlowOpti submodule contains generic solvers for optimal control and parame-
ter identification as well as experimental design. This module has been extended
by means of the checkpointing strategy described in the previous section. The
HiFlowNavierStokes module contains the solvers related to the resolution of the
instationary Navier-Stokes equations. In both modules all methods are available
for both sequential and parallel platforms. The numerical experiments presented
in this paper have been performed on the high performance computer HP XC
6000 at the Computing Center of the University Karlsruhe. This parallel com-
puter is based Itanium2 processors with a frequency of 1.5 GHz. On each node
8 GB RAM are available.

4.1 Three Dimensional Benchmark Channel Flow

In order to validate the proposed checkpointing strategy we consider the three
dimensional benchmark configuration proposed by Schäfer et al. [16]. The pro-
posed setup consists of a flow channel around a cylinder with squared crossed
section. The height and width of the channel are H = 0.41m, and the diameter
of the cylinder is D = 0.1m. The goal of this benchmark is to compute accurately
the drag and lift forces acting on the cylinder, where the cost functional is the
averaged value of the drag over the interval I = [50, 100].

We stress that our aim in this section is to illustrate the capabilities of the
proposed checkpointing strategy. The exact analysis of the impact of such a
technique in relation with adjoint-based a posteriori error estimation is beyond
the scope of this paper and is described in more detail in [10].

10

Table 2. Results for the proposed checkpointing scheme for various computational
setups with l time steps. The amount of available memory capacity is equal for all
configurations and results in c checkpoints.

Unknowns (space) l c Nnew Nold

global refinement 1.2 106 912 600 310 1222

global refinement 1.0 107 702 36 664 1366

local refinement 8.2 105 854 715 137 991

In Table 2, results of the proposed checkpointing scheme are presented. For a
fixed amount of available memory, we consider three different levels of refinement
in space. For these three configurations the discretization in space is so fine that
the full storage of the forward solution in main memory would be impossible even
on the considered parallel platform. For this application, the number of available
checkpoints in main memory is a priori fixed due to the enormous amount of
memory needed for each checkpoint but the number of time steps is a priori
unknown. Therefore, one alternative checkpointing strategy would be to first
perform a pure function evaluation without adjoint computations to determine
the number of time steps to perform and then to apply revolve for the distribution
of the checkpoints. The required number of additional time steps needed by this
alternative is given by Nold in the last column of Table 2. Using the new optimal
online checkpointing proposed in this paper, the number of additional forward
steps can be reduced significantly, as shown by the column Nnew in Table 2. As
can be seen, the equation Nold = Nnew + l holds since the new checkpointing
approach does not require an extra integration to determine the value of l. For the
most memory consuming case of the 3D-channel with global refinement leading
to 107 unknowns we impose the number of checkpoints to be equal to c = 36.
The performances which are measured in Table 2 with respect to the number of
extra forward steps clearly show the high efficiency of the proposed scheme.

5 Conclusion

We present a provable optimal, i.e., time-minimal, online checkpointing proce-
dure. In the present paper, we focus on the practical aspects, that is the specific
application of revolve and its coupling with the parallel finite-element package
HiFlow for solving optimal control problems and goal-oriented error estimation
on parallel machines. The main advantage of the presented online checkpointing
is that it guarantees a time-minimal run time for an a priori unknown number
of time steps as long as this number does not exceed a given upper bound. Due
to the semi-implicit time stepping applied, this upper bound is only a very weak
restriction. Additionally, we proved an explicit formula for the number of times
data is written onto the checkpoints during the generation of the checkpoint dis-
tribution. This forms the first step to allow an improved checkpointing strategy
if parallel IO filesystems such as Lustre are used.

11

References

1. S.C. Brenner and R.L. Scott. The mathematical theory of finite element methods.
Springer, Berlin-Heidelberg-New-York, 1994.

2. F. Brezzi and R. Falk. Stability of higher-order Hood-Taylor methods. SIAM J.

Numer. Anal., 28(3):581–590, 1991.
3. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive

methods for differential equations. Acta Numerica, 4:105–158, 1995.
4. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic prob-

lems, I: A linear model problem. SIAM J. Numer. Anal., 28:43–77, 1991.
5. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic prob-

lems, II, IV, V. SIAM J. Numer. Anal., 32:706–740, 32:1729–1763, 1995.
6. M.B. Giles. On adjoint equations for error analysis and optimal grid adaptation.

In D.A. Caughey and M.M. Hafez, editors, In Frontiers of Computational Fluid

Dynamics 1998, pages 155–170. World Scientific, 1998.
7. A. Griewank and A. Walther. Revolve: An implementation of checkpointing for the

reverse or adjoint mode of computational differentiation. ACM Trans. Math. Soft-

ware, 26:19–45, 2000.
8. M.D. Gunzburger. Perspectives in flow control and optimization. Advances in

Design and Control 5. Philadelphia, SIAM., 2003.
9. V. Heuveline. On higher-order mixed FEM for low Mach number flows: Appli-

cation to a natural convection benchmark problem. Int. J. Num. Meth. Fluids,
41(12):1339–1356, 2003.

10. V. Heuveline and A. Walther. Towards the economical computation of adjoints in
PDEs using optimal online checkpointing. In preparation, 2006.

11. M. Hinze and J. Sternberg. A-revolve: An adaptive memory- and run-time-reduced
procedure for calculating adjoints; with an application to the instationary Navier-
Stokes system. Opti. Meth. Softw., 20:645–663, 2005.

12. P. Hood and C. Taylor. A numerical solution of the Navier-Stokes equations using
the finite element techniques. Comp. and Fluids, 1:73–100, 1973.

13. L. Machiels, A.T. Patera, and J. Peraire. Output bound approximation for partial
differential equations; application to the incompressible Navier-Stokes equations.
In S. Biringen, editor, Industrial and Environmental Applications of Direct and

Large Eddy Numerical Simulation. Springer, 1998.
14. J.T. Oden and S. Prudhomme. On goal-oriented error estimation for elliptic prob-

lems: Application to the control of pointwise errors. Comput. Methods Appl. Mech.

Eng., 176:313–331, 1999.
15. Y. Saad. Iterative methods for sparse linear systems. Computer Science/Numerical

Methods. PWS Publishing Company, 1996.
16. M. Schäfer and S. Turek. Benchmark computations of laminar flow around cylinder.

Notes on numerical fluid mechanics, 52:856–869, 1996.
17. R. Serban and A.C. Hindmarsh. CVODES: An ODE solver with sensitivity analysis

capabilities. UCRL-JP-20039, LLNL, 2003.
18. A. Walther and A. Griewank. Advantages of binomial checkpointing for memory-

reduced adjoint calculations. In M. Feistauer et al., editor, Numerical mathematics

and advanced applications, pages 834–843. Springer, 2004.
19. P. Wesseling. An introduction to multigrid methods. Wiley, Chichester, 1992.

