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Abstract. This paper presents a study of performance optimization of dense ma-
trix multiplication on IBM Cyclops-64(C64) chip architecture. Although much
has been published on how to optimize dense matrix applications on shened m
ory architecture with multi-level caches, little has been reported on the apjilic

ity of the existing methods to the new generation of multi-core architectures like
C64. For such architectures a more economical use of on-chip stogagurces
appears to discourage the use of caches, while providing tremendectsio
memory bandwidth per storage area.

This paper presents an in-depth case study of a collection of well knptin o
mization methods and tries to re-engineer them to address the new challenge
and opportunities provided by this emerging class of multi-core chip acshite
tures. Our study demonstrates that efficiently exploiting the memory bierés

the key to achieving good performance. The main contributions of thisrpap
clude: (a) identifying a set of key optimizations for C64-like architectumad (b)
exploring a practical order of the optimizations, which yields good pevémce

for applications like matrix multiplication.

1 Introduction

Cyclops-64 (C64) [1, 2] is a petaflop supercomputer projaden development at IBM.
As shown in Figure 1(a), a C64 system is built from thousarfid€®6d chips that employ
a unique multiprocessor-on-a-chip design. Each chip stssif 160 thread units and
the same number of SRAM memory banks connected by an on-obéglzar network
(see Figure 1(b)). C64 chip architecture features massiva-chip parallelism and on-
chip memory bandwidth (320GB/s). Given such a novel archite, the challenge is
how to use these two features to obtain high sustained peafuze for scientific and
engineering applications.

During the past two decades, there has been a considerablentaf work on how
to optimize dense matrix applications on shared memoryitathres with multi-level
caches. However, it is not clear whether the existing mettawd applicable to the new
generation of multi-core architectures, such as C64.

This paper presents an in-depth case study of how a coltecfiwell known opti-
mization methods can be applied to address the new chaflexrgkopportunities that
the emerging class of multi-core chip architectures magqe Thephase ordering
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Fig. 1. Cyclops-64 Architecture

of different optimizations has long been challenging bt¢riesting research problem
that still remains open [3]. Furthermore, previous work [hich has established the
optimization order for cache-based architectures, may ay not be applicable to a
cacheless architecture like C64. In this work, we apply sigeaptimizations following
the order dictated by our experience and knowledge of thelgmoat hand. However,
we do not in any way claim that this order is optimal. Our gsatid demonstrate that
overall, for a given dense matrix operation, it is possibléérive a good order of op-
timization. We hope that the experience reported in thisepaypll prove to be useful
for developers, in designing compilers and runtime syst@nsC64-like multi-core
architectures.

2 Cyclopsb4 chip architecture

The work described in this paper focuses on a single C64 @hj,[the main compo-
nent of a C64 node (see Figure 1(b)). Within a C64 chip thezeB@rprocessors, each
consisting of two thread units, a floating-point unit, ané t8RAM memory banks of
32KB each. Hence, the total on-chip memory is approximeadhB. A 32KB instruc-
tion cache, not shown in the figure, is shared among five psocgs

At boot time, SRAM banks are partitioned into two segmentse ®@egment con-
tributes to the globally shared interleaved on-chip memBrgcessors and interleaved
memory are logically arranged in a dancehall configuratigh processors and mem-
ory banks on opposite sides connected by a one-level crosgliteh. The other seg-
ment, called scratchpad memory (SPM), is regarded as loealary since the corre-
sponding thread unit has fast access to its own SPM. The CB#egture also provides
four DRAM controllers. Each one is attached to a 256MB baekde a C64 node fea-
tures 1GB off-chip DRAM. As a summary, Figure 2(a) refleces¢hirrent size, latency
(when there is no contention) and bandwidth of each levdd@ftemory hierarchy. The
C64 instruction set architecture incorporates efficieppsut for thread level execution,
hardware barriers, and atomic in-memory operations.
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3 TheProblem and Experimental Method

This paper is a case study of square matrix multiplicatiotM{Mwhich is a widely
used computation kernel for scientifc and engineeringieg)dns. For our baseline,
we choose a straightforward implementation of the seqakaltjorithm. To parallelize
matrix multiplication, we partitioned the three matricesoit? blocks and we assign
each thread unit the computation of a number of such blocks. cbmputation of a
C,,» block requires block multiplications and additions according to the faling
expression:

t—1

Cm,n+ = ZAm,k X Bk,n (1)
k=0

To exploit spatial locality, it is best to assign the caltiaia of C,, ,, to a single
thread, as the resultant matrix block does not need to maandr

To study matrix multiplication on the C64 architecture wedishe FAST simula-
tor [5]. FAST is an functionally-accurate simulator than@ng other features, models
the memory hierarchy of C64 architecture, including thenates and bandwidth of
each memory segment.

4 Evolutionary Performance Tuning

In this paper]28 x 128 and256 x 256 matrix multiplications are simulated on up to 68
thread units. The former ensures the matrix fits into on-chgmory, the latter forces
some blocks of the matrix to be stored in DRAM. However, ttseles hereby presented
can be extrapolated to larger matrices.

The study begins with the sequential version, where the ebdays resides in
off-chip DRAM, and data is placed in each of the three memagnsents one at a



time. We compare the performance and memory latencies dahtke cases. Then a
straightforward parallel version of the MM is introducedtiwdata stored in SRAM
and DRAM, respectively. In the following sections, we impedhe performance of the
parallel implementation and measure the effectivenesarmdws optimizations.

4.1 Sequential Matrix Multiplication

We start by comparing the performance achieved by the ségquénplementation,
with matrices placed in SPM, interleaved SRAM, and DRAMpegively. SPM size
is quite limited. In addition it holds both the runtime sta@kd thread-private data.
Hence, the maximum size allowed for each matrikds< 16 only. The results from this
experiment are shown in Figure 2(b).

It is apparent that the performance difference comes froenldkency incurred
by load operations accessing different memory segmentantdyeconclude that data
should always be loaded into SPM first before starting thepegation. However, data
needs to be loaded from SRAM/DRAM into registers first andestdnto SPM af-
terwards on this architecture. If data reuse rate is lovg itat worth performing this
“prefetching”. Therefore, data reuse is a key issue foredhg high performance on
C64. Matrix multiplication has the potential for high dagise as the memory size is
0O(n?) and computation is @f).

4.2 Matrix Multiplication Parallelization in On-chip SRAM

We implemented a straightforward parallel version, whitdtes thred 28 x 128 ma-
trices into interleaved SRAM. This version will be used asltlseline version for per-
formance comparison. The matrices are partitioned $itblocks, each with6 x 16
size. At most 64 thread units are used in this experimenheas tare 64 blocks in total.
Thus, it is natural to assign one resultant matrix block tohethread, as well as all
the computation for that block. We encapsulate the comioutédr one resultant block
into one task. Also notice that the resultant block can bead8 times while the other
blocks are used only once for each task. A task array is eraglty store the tasks.
Each task consists of a pointer to the resultant block, amdasrays of pointers that
point to 8 pairs of source blocks.

Each thread tries to obtain the next available task fromablke pool. When success-
ful, it performs the computations, writes the resultanthlback, and attempts to get
a new task until the task pool is empty. The result is shownaibld 1. Although we
get near linear speed up, the overall performance is stilklap to 1.3GFLOPS for 64
threads - 4% of the peak performance (32GFLOPS with 64 thuadsl).

Next, we will study a sequence of optimizations to improve garallel perfor-
mance.

Using SPM The next step is to use the SPM as a high speed buffer to aatetbe
corresponding thread unit in the computation. We still perfthel6 x 16 matrix mul-
tiplication in SPM. The matrices are copied into SPM blocklyck. The computation
is conducted and the result is stored back into SRAM. It istivoopying the resultant



Table 1. Baseline Parallel Version

[Num of Threads Cycles FLOPS Speefiup
1 93,435,509 22.5M 1.00
2 46,750,840 44 9M 2.00
4 23,413,382 89.6M 3.99
8 11,783,500 178.0M 7.93
16 5,942,832 352.9M 15.72
32 3,207,410 653.9M 29.13
64 1,627,767 1.3G 57.40

block into SPM as it will be used 8 times. Since the two souregrices are only used
once, they are not copied into the SPM. Implementing thiklg: 1.79GFLOPS. This
represents a 38% performance improvement over the baservé¢g&ee "Using SPM”

in Table 2).

Table 2. 128x128 MMM Incremental Optimizations in SRAM

Optimizations GFLOPS Speedup Over Speedup Over Incremental
Baseline Sequential
Parallel Version Version
Baseline 1.29 1.00 40.31 0%
Using SPM 1.79 1.38 55.94 38%
Tiling+Unrolling 2.77 2.15 88.56 55%
Reg. Tiling 5.05 3.91 157.81 82%
Inst. Sched. 10.02 7.77 313.12 99%
Reg. Alloc. 11.03 8.55 344.69 10%
Sync. Opt. 13.70 10.61 428.12 24%

Loop Tiling and Unrolling Loop tiling is a very effective optimization for architec-
tures with caches. The tile size is chosen to allow all the datessed by the inner most
tile to fit into the cache. For matrix multiplication, tié x 16 matrix is split into two

levels of4 x 4 tiles.

A simple tiling does not bring performance gain as the nundbdranch instruc-
tions and code size are increased. By unrolling the nextéwener loops, 2.77GFLOPS,
which is a 55% improvement over "Using SPM”, is achieved.

Register Tiling (Manually) Forthe inner most 3 loop nests, there are totall x 3 =
48 data elements that can fit into 64 registers of C64. The daterete is 4 for each
element of A and B, and 32 for C.



Because of the current limitation in the compiler, we malyuditl the register tiling
by allocating registers properly to the data elements osthetrices, as well as other
index variables. Those elements are used in the 2 inner wmstriests, with A and B
inside and C one level outside. After manually performirgjster tiling and allocation,
the optimized code achieved 5.05GFLOPS, which is an 82%dwepnent over the
simple tiling plus unrolling.

Instruction Scheduling (Manually) After register tiling, by properly scheduling the
instructions in the innermost loop, we can hide the latenofanost memory and float-
ing point operations and achieve 10.02GFLOPS - another @88tovement over the
register tiling. By moving accesses to C outside of the imnest loop, the performance
reaches 11.03GFLOPS.

A good instruction scheduler is very important to the MM agggion as well as
other programs. The key issue is that the scheduler shoulhvibee of the different
latencies when accessing different memory segments (SRMIVGand DRAM). Most
existing compilers assume cache latency when they do gigiruscheduling. For this
architecture, there is no data cache and each load/stordavaydifferent latency de-
pending on the target memory segment. Explicit multi-lewelmory hierarchy aware
instruction scheduling is a key optimization for the C64nétecture. In fact, loop tiling,
register tiling and instruction scheduling have to be figkhbupled, and the aggrega-
tion of the 3 optimizations is the key to generate optimalectmat even a simple matrix
multiplication.

Remove Unnecessary Synchronization In all the above experiments, mutex is used
to control the access to the task pool. When one thread ingetttask from the task
pool and updating the status of the allocated task, all dtiveads have to wait for the
release of the mutex lock.

Since MM is a regular application, an alternative approactoistatically assign
workload, i.e., each thread is assigned to a fixed numbesk$t#\s a result, the mutex
lock is not needed. After removing the mutex, we get 13.708F8, which is 42.8%
of the potential peak performance (32GFLOPS for 64 threads)

All of the above results are based on the assumption that Boestre stored into
on-chip SRAM. The memory bandwidth (320GB/s) is enough &ian the computa-
tion. However, when the matrices become larger and larger that they cannot be
stored into on-chip SRAM, bandwidth of DRAM becomes a magsue. In the next
section, we are going to investigate bandwidth optimizetit bring high performance
to the algorithm assuming that data resides in off-chip DRAM

4.3 Parallelizing Matrix Multiplication in DRAM

Off-chip DRAM is the largest memory resource of the C64 amatture. Most data and
code will be stored there for real applications. On-chip $Rand SPM are smaller
and more expensive resources, and should be used morellgarefu

To demonstrate the optimizations, we @56 x 256 matrices that need to be stored
in DRAM with 128 x 128 sub-banks buffered in SRAM. Therefore, the application has



to move data between DRAM and SRAM. In this section we studyrtipact of DRAM
bandwidth limitation on the application’s performance v to tackle this problem
by hiding the communication latency between DRAM and SRANhvgomputation.
A nice feature of C64 is that thread units are not expensivretare very many of
them. On-chip memory resources are more expensive. We eaa set of thread units
to do the computation and another group of thread units tcerdata between DRAM
and SRAM. In this case study, we use two sets of SRAM bankdxddwffering). One
set for computation and another set for preloading, ancchvaiétween them during the
computation.

DRAM Bandwidth For the first version of C64 chip design, the DRAM can transfer
at most 32 bytes every cycle. Hence, the total DRAM bandwil#t6GB/s.

To make the best utilization of the DRAM bandwidth, load ripkt and store mul-
tiple (of 8 doublewords or 64 bytes) instructions should sediand the starting address
should be 64 byte aligned.

Bandwidth limitation is the major challenge here. B@8 x 128 matrix multi-
plication, the total number of memory accesse$28 x 128 x 128 x 8 x (3 + 1)
bytes (3 loads, 1 store), 617, 108, 864 bytes. Then, the ideal access to memory time is
67,108,864/32, or2,097, 152 cycles. Even excluding load/store conflicts and ignoring
other instructions, the peak performance can only be 1GRB.OP

We may assume the C array is loaded and stored in the secamhiost loop. The
total bytes to be accessed becorh2s x 128 x 128 x 8 x 2+ 128 x 128 x 8 x 2, or
33,816,576 bytes. In this case, the ideal performanceaseeto 1.98 GFLOPS. But
we are still far from the peak performance (32GFLOPS for gdads).

This means that we have to use on-chip SRAM and/or SPM totuiferix blocks,
perform the computation in SRAM/SPM, and store the resultklio off-chip DRAM.

In other words, we have to reduce the DRAM bandwidth requénetsivia the on-chip
data reuse.

Using LDM and STM One optimization is to use LDM and STM instructions to ag-
gregate multiple memory accesses. Four LDD (load doubldware combined into
one LDM and four STD are combined into one STM. Hence, DRAMues are ef-
fectively reduced to 1/4 of its original number, and DRAM Hasdth has been better
utilized here. The best case is to combine 8 LDD into one LDM &r5TD into one
STM. But for register tiling, 4x4 is a better choice. If we dx83 although we can load
sub-blocks into registers, we cannot consume them and bastere them into on-chip
memory. This is not good for matrices A and B.

Using On-chip Memory To reduce the bandwidth requirement to DRAM, we try to
move sub-blocks of matrices into SRAM, and move intermediasults back to DRAM
whenever it is necessary. We also pipeline the process bg tsio SRAM blocks for
each matrix: one for computation and the other for loadéstor

In this study, we assume the original size of the three nmegiig256 x 256 and they
reside in DRAM. The on-chip block size i28 x 128. Each matrix has two blocks in



SRAM and half of each is loaded into SRAM. We assurhandc2 for matrix C,al and
a2 for A, andbl andb2 for B. While one set of SRAM blocks is used for computation,
the other set can be used to load or store . The pipeline igmdias follows:

‘ Computation Threads Memory Access Threads ‘

load c00 (to c1), a00(a1),b00 (I

compute c00/a00/b00 in cl/al/bl load a01(to a2) b10 (to b2)

compute c00/a01/b10 in c1l/a2/b2 load c01(to c2) bO1 (to b1)
store c00

compute c01/a00/b01 in c2/al/bl load b11(to b2)

compute c01/a01/b11 in c2/a2/b2 load c11(to c1) a10 (to al)
store cO1

compute ¢11/a10/b01 in cl/al/bl load all(to a2)

compute c11/all/b11l in cl/a2/b2 load c10(to c2) b0O (to b1)
store c11

compute ¢10/a10/b00 in c2/al/bl load b10(to b2)

compute ¢10/a11/b10 in c2/a2/b2
store c10

Fig. 3. Execution Steps When the Matrices are in DRAM

The total DRAM accesse$28x 128 x8x (4 loads of G-4 stores of G-4 loads of A+
6 loads of B = 2,359, 296 bytes. The ideal DRAM access time in this casg3sr28
cycles, which is equivalent to 56.9GFLOPS without consideother computations.

Synchronization Overhead To implement the above pipelined scheme, a barrier is
inserted at the end of each step. There are 12 barrier ingasah the implementation.
This guarantees that computation happens after loaditigealequired data, and storing
follows the corresponding computation stage. C64 has renelWarrier support with
low cost. A barrier can be completed in as little as dozenycdes.

Optimized memcpy() The standard C library features an optimized version of mem-
cpy(), which is up to 20 times faster than the initial strafgtward implementation. It
takes into account possible unalignment at the source atohdgon, as well as differ-
ent copy lengths. Itis also capable of pipelining the thr@sidstages: loading from the
source array, address computation and storing into théndésn array.

UsingMoreThreadsfor Load/Store In previous sections, only one thread handles the
work of loading and storing. To further improve the perforro@, we assign three more
threads, four in total. Three threads are responsible felopding each of the three
matrices, and the main thread handles the task pool creatihstores the resulting sub
matrices back to DRAM.

The final result we achieve is 206, 048 cycles and 13.9 GFLOPS for2a6 x 256
problem size, which is 43.4% of the peak performance (we 8dar@ads in this case:
64 threads for computation, 4 threads for load/store).



Table 3. Optimizations for Matrices in DRAM

Optimizations  Size Cycles Mem/Delay FLOPS Speedup
No Opt 128 6,499,276 5,401,783 322.7M

No Opt 256 42,078,325 35,060,687 398.7M 1.00
LDM/STM 128 1,745,340 1,439,301 1.2G
LDM/STM 256 13,996,754 11,652,068 1.2G 3.00

AllOpt 256 1,206,048 810,997 13.9G 34{86

5 Conclusions

Our results demonstrate that efficiently exploiting the tirelvel memory hierarchy is
the key to achieve good performance on C64. When data fits R&M tiling, loop
unrolling, register allocation, and instruction schedglare the most important opti-
mizations. SPM can also be used to buffer frequently acdedata. When data does
not fit in SRAM, DRAM bandwidth becomes the bottleneck. Toroeee this issue,
first we use SRAM to buffer blocks of DRAM data, which additatly reduces the
bandwidth requirements to DRAM. Second, we overlap DRAMeases with compu-
tation in SRAM to dramatically improve the performance.

For compiler designers, inner most register tiling is vemportant. The instruction
scheduler should be aware of the latency for each memoryesggdigh level loop
optimization should be able to automatically choose SPNebsifor SRAM data and/or
SRAM buffers for DRAM data.

6 Redated and Future Work

Locality optimizations have been studied by numerous rekeas which resulted in
many publications on cache-based architectures. Loogftranations have been in-
vestigated to exploit computation parallelism and datalitc for scientific applica-
tions [6-11]. Loop tiling is a well known loop transformatito increase cache locality
(see [12,7,9, 13, 14] and their references). We use loamtiland register tiling) to
map a matrix block into the register file, SPM, and SRAM. Baialtlw optimization
has also been extensively explored in [15-21] and theireaf®es. Indeed, we have
shown that an efficient utilization of the memory bandwidikcritical for C64 when
data is stored in DRAM. Phase order problem has been studi¢d, 3] and their ref-
erences. We identify a set of useful optimizations for G&d-architectures. Moreover,
we explore a practical sequence order of optimizationd@mntatrix multiplication that
yields 14GFLOPS.

As future work we intend to the study other representativechmarks. The identi-
fied optimizations will be implemented in the C64 compilaraditional loop optimiza-
tions may be extended to support automatic storage anddthngia management by
allocating SPM and SRAM to the hot data at certain computaittases, and automat-
ically overlap memory transfer with computation.
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