
DAEDALUS – A Peer-to-Peer Shared Memory

System for Ubiquitous Computing

Peter Ibach1, Vladimir Stantchev2, and Christian Keller1

1 Lehrstuhl Rechnerorganisation und Kommunikation, Institut für Informatik,
Humboldt-Universität zu Berlin

Unter den Linden 6, 10099 Berlin, ibach—keller@informatik.hu-berlin.de
2 Net Business Center, Fachgebiet Systemanalyse und EDV, Technische Universität
Berlin, Franklinstrasse 28/29, 10587 Berlin, Vladimir.Stantchev@sysedv.tu-berlin.de

Abstract. Data sharing in a large scale and for high volatility tolerance
requires peer-to-peer solutions where traditional multiprocessor shared
memory systems are not applicable. Efficiency of those P2P shared mem-
ory systems depends, in particular, on scale, dynamics, and concur-
rent write accesses. We have developed a P2P shared memory solu-
tion, DAEDALUS, based on SUN’s JXTA framework, and integrated
an efficient stochastic locking protocol, proper resource clustering, and
semi-hierarchical grouping of nodes. We evaluated the applicability under
heavy load, scale, and node mobility. Here, DAEDALUS outperformed
a client/server system and solved its inherent scalability problem.

1 Introduction

Shared memory systems provide the foundation for efficient development
of distributed applications. A lot of mature shared memory solutions for
multiprocessor systems exist. However, data sharing in a large scale and
for high volatility tolerance – typically occurring in ubiquitous comput-
ing scenarios – is still unaccomplished and has become an active field of
research. Under such conditions, peer-to-peer architectures provide ad-
vantages over traditional distributed architectures with classical shared
memory approaches. On the other hand there are numerous shared mem-
ory systems that are well designed for large amount of write accesses,
but those are usually intended for supercomputers or cluster computing.
However, none of these systems fully cover issues arising in ubiquitous
computing scenarios where network topology and quality of service pa-
rameters are subject to frequent changes. Providing a synchronized and
consistent view on the shared data for all participants with reasonable
communication overhead, accordingly, is challenging and requires proper
utilization of caching, routing, grouping, data compression, cryptography,
forwarding, and consensus.



2

Therefore, we have developed DAEDALUS, a platform-independent
and lightweight framework for peer-to-peer communication. It enables
mobile/embedded devices to easily and efficiently share their data. Data
may be distributed among thousands of peers and subjected to permanent
updates, while further dynamics induced by mobility or environmental
changes remain transparent to users or application developers. Devices
may join or leave groups in an ad-hoc manner and can be members of
an arbitrary number of groups at the same time, while our framework
keeps the data stochastically in sync and consistent among all members
of any group even in case of numerous concurrent write accesses. Our
approach therefore uses stochastic locking and semi-hierarchical grouping.
The implementation is based on SUN’s JXTA Java classes for peer-to-peer
communication. As a case study, we have integrated it in MagicMap, a
cooperative WLAN positioning system. The client/server communication
here did not scale well and required reliable connectivity. Both problems
could be successfully solved using DAEDALUS, which achieved significant
improvements regarding dependability, scalability and performance.

2 The MagicMap Application Scenario

MagicMap is a cooperative context aware computing application we intro-
duced in [4–6]. Every node senses its environment and uses the observed
data to calculate its location and situation. From that, location/situation
specific actions can be triggered. The system works cooperatively, i.e.,
nodes exchange their measurements among each other. Calculations can
be done redundantly on multiple nodes to improve fault tolerance, in par-
ticular, to prevent a minority of malicious nodes to affect system stability.
In our current implementation we use WLAN equipped Laptops, PDAs,
and Smartphones that exploit WLAN signal strength to sense the envi-
ronment and calculate their positions (see Fig. 1). Nodes sense the WLAN
received signal strength (RSSI) of neighboring nodes (access points, other
clients, or previously measured reference points) and estimate the phys-
ical distance. A spring layout algorithm moves the nodes with unknown
positions such that length of edges best match the calculated physical
distance. Thus, the graph converges to a ”magic map”, where nodes are
located approximately at their true physical position.

Since different nodes may calculate devices positions, the calculating
nodes need access to signal strength measurements. Consider the following
scenario shown in Fig. 2. Node C wants to know the position of node B.
Node C, as well as node B, has low processing capabilities. Node A has



3

Fig. 1. MagicMap screenshot

high processing capabilities and therefore calculates the position of node
B. Node E, being sufficiently capable as well, does that calculation too
for redundancy reasons. All WLAN-aware nodes sense signal strength (1)
and forward it to the nodes where calculation is done (3).

Note, that in this scenario we assume the mobile clients A, B, and C

to sense the signal in a symmetric manner, i.e., A senses signal strength
from B and symmetrically, B can sense signal strength from A. Some
nodes may not sense the signal, in our case node D, which might be an
access point or a peer node without MagicMap installed. However, given
D is using its WLAN interface, its radio signals can be sensed by other
nodes (2).

Finally, the calculated positions are sent to node C (4) who then can
use, for example, the mean value of both calculations as best position
estimation. In case C receives three or more independent position esti-
mations, it could employ elaborated voting algorithms for improved fault
tolerance and resilience against malicious behavior. To provide a real-time
picture, signal strength measurement and position recalculation is done
periodically at least every 10 seconds. Obviously, this scenario implies



4

significant performance and real-time demands: all measured values need
to be on time at the nodes calculating the positions, and finally, all cal-
culated positions need to be on time at those nodes, that have interest in
this information.

Fig. 2. Example scenario with high-performance nodes A and E and low
performance nodes B and C

3 Peer-to-Peer Data Sharing Concepts

Several research projects emerged in the last years investigating efficient
data updates in peer-to-peer systems. However, they impose limitations
that reduce their usefulness in ubiquitous computing scenarios. Systems
like Freenet [3], OceanStore [8], or P-Grid [1] assume no conflicting writes,
going as far as limiting updates to the original author of a data item in
Freenet. Ivy [7] requires application-level programming to cope with con-
flicting manipulations of data objects and only provides some tools to
detect those conflicts. These systems do not provide any locking mecha-
nisms or other concurrency protocols since their main purpose is to pro-
vide high scalability – at the costs of sacrificed consistency. Systems such
as JuxMem [2] take the opposite approach: they provide locking mecha-
nisms while limiting the size of the network.



5

3.1 Concurrency Control – Pessimistic and Optimistic
Approaches

There are two opposed approaches for concurrency control, the pessimistic
and the optimistic one. The first assumes that conflicting write accesses
to a data item might cause intolerable inconsistency and thus have to be
avoided anyway (conflict prevention). To guarantee that no other node is
performing a concurrent write access to any replica of a data item, a node
has to lock that item to prevent it from other concurrent manipulations.
In a distributed scenario, this requires two-phase locking, i.e., the node
has to wait for all item replicas to confirm the lock request. After the
write has been performed, all replicas have to be updated accordingly to
obtain a consistent state. Meanwhile, since the data might be temporarily
inconsistent, additional write or read accesses to it are not allowed.

Pessimistic locking, hence, is not applicable in highly dynamic net-
works where typically presumed latencies cannot be guaranteed.

Therefore, an optimistic approach, in contrast, assumes that tempo-
rary inconsistency resulting from concurrent writes to a data item is tol-
erable. It employs conflict resolution instead of the above conflict pre-
vention. Optimism is accounted for the assumption that the number of
actual conflicts and resolving them will be manageable and temporary in-
consistencies will be rare. If, however, a conflicting update occurs, nodes
have to use roll back or roll forward mechanisms to resolve inconsistency
and recover a consistent system state. An example is Ivy, which stores the
history of operations that have been performed on the items. It does not
resolve conflicting updates, but it detects them and provides application-
level means to resolve them.

Instead of pessimistic or optimistic conflict handling, its also possible
to create a disjoint global storage space, such that conflicts cannot occur.
Freenet, for example, combines keys for files with a private key, specific to
a user, and thereby creates a global name space with private subspaces.
This however, would result in unmanageable network traffic and does not
fit the MagicMap scenario where every device can publish estimates of
other devices’ positions.

Since none of the above approaches seem appropriate for our purpose,
we have employed a hybrid approach (see Section 4.2).

3.2 Considering Different Node Capabilities

All above systems assume the peers to possess comparable capabilities.
This assumption, although it might be acceptable in workstation environ-



6

ments, is unrealistic in heterogeneous networks of ubiquitous computing.
Therefore, caching a snapshot of the overall storage system as required
by Ivy is only feasible for very small distributed file systems. OceanStore
does allow multiple nodes to change a single data item. To prevent faulty
nodes from publishing wrong version information, a Byzantine agreement
is formed between all primary replicas. OceanStore however, as well as P-
Grid, does not offer means to prevent or resolve conflicting write accesses
to the same data item. Since MagicMap updates position information
rather frequently, such peer-to-peer systems are likewise not appropriate.

4 The DAEDALUS Peer-to-Peer Shared Memory System

The system architecture is divided into platform dependent and platform
independent components, see Fig. 3. Measurements of signal strength and
collection of other sensor data is highly dependent on particular hardware,
operating system, and drivers. The platform independent components –
in particular the DAEDALUS shared memory and the normalization and
calculation of position estimations – are written in Java. All components
are freely available via our website www.magicmap.org.

Fig. 3. System architecture with platform dependent and platform in-
dependent components communicating via the DAEDALUS peer-to-peer
shared memory



7

4.1 Peer Groups

The basic idea of our shared memory system is to assign every data item
a specific peer group. Peers that have interest in this data item join the
related group and serve as a replica. The advantage of this approach is
scalability. Thereby, the amount of messages send does not depend on the
number of nodes participating in the entire system, instead it depends on
the number of peers interested in this data item. While the number of
nodes in a network could become rather big in real world scenarios, the
number of peers interested in a specific data item is limited. The idea,
however, has a downside: once no peer is interested in a data item, it will
be lost. To prevent this, nodes having enough resources to join multiple
groups in parallel will be asked to join this group, in case the number of
member nodes is decreasing below certain threshold. As these groups still
can grow rather big, a further differentiation is needed. A percentage of
all nodes in this group acts as a manager. Managers act as replicas, vote
on locking requests, and keep track of the group size.

4.2 Stochastic Locking – a Hybridization of Pessimistic and
Optimistic Concurrency Control

Since both, pessimistic and optimistic approaches are not feasible in our
scenario, we pursue a hybrid approach. We use a locking mechanism but
we do not require all nodes to answer a lock request. Instead, only a rela-
tively small number of nodes has to answer and broadcast their decision
to all managing nodes in a group as shown in Fig. 4. The requesting node
has successfully locked a data item, if a majority of those answers is posi-
tive. This approach is optimistic, as it assumes that enough nodes receive
the lock request messages and there are only a few faulty nodes that give
an insane answer regarding a request. It is as well pessimistic to a certain
degree, as it reduces the number of conflicts by locking a resource be-
fore updating it. While this stochastic locking cannot guarantee that no
conflict occurs, it does provides a high probability of conflict prevention.

4.3 Scalability Considerations

As only a fixed number of managers is required to answer a client request,
the expected traffic for each update process is limited and known. How-
ever, in order to ensure that the number of managers answering a request
does not exceed the threshold, the managers have to keep track how much
of them are in a group. Therefore, every peer joining a group broadcasts



8

Node A sends a 
locking request

Node B and C inform 
all managers and A 

which Node won the lock
Node A sends the new
version of the data item

A

E

K

G

J

HI

B
M

D

F

Q
P

N

K

C

O

O

O

Manager

Node

Unicast

Broadcast

A

E

K

G

J

HI

B
M

D

F

Q
P

N

K

C

O

A

E

K

G

J

HI

B
M

D

F

Q
P

N

K

C

O

Fig. 4. The locking process. Node A sends a lock request to all manager
nodes. Of those manager nodes B and C respond and broadcast their
decision to all other managers.

a hello packet to all managers. A fixed number of managers will provide
the new member with all necessary information, such as group size and a
list of managers. Every peer node joining the group starts as a manager.
If the peer later discovers that there are already enough managers it can
alter its status and become a regular client. Additionally, managers check
whether there are still enough managers in the group, and ask clients of
the group to become managers, if the number falls below the threshold.
On the other hand, if a manager detects that there are not enough mem-
bers in its group, they call other nodes that still have enough resource
capacity available to enter the group.

While the load of a client is independent from the number of nodes
in the group, the load of managers does grow with the size of the group.
For a single process the load is constant. However, as only the request
for data items can be balanced over all managers, the load for writing,
locking and counting is not. Therefore, the number of messages a manager
has to process increases linear with the number of nodes in the group.
This however does not compromise the original goal of low load for small
computing devices. As the chance for such a device to be a manager
decreases with group size, the load for small devices will not grow beyond
a point which depends on the ratio of small and large nodes within it.



9

4.4 Integration into MagicMap

We implemented the peer-to-peer shared memory system as a Java ap-
plication which communicates with any local application via UDP data-
grams. It supports calls to read the data item of a given name, to store
a new version and to lock and unlock the data item. Additionally, we
included calls to search for groups and peers. As group names are the
same as their data item’s name, a search for all groups will result in a
list of all available data items. By applying a name scheme an application
can easily search for all data items it needs. We have developed one call
specifically for MagicMap: joining a specific group. We use this call to
create a hierarchical tree that stores all nodes and their positions.

4.5 Data Clustering

To keep management overhead reasonable, the data items have to be
clustered appropriately. One clustering option is to subsume all external
measurements according to each node and store it in a single data item.
This would allow the position calculating nodes to easily discover the
relevant data. However, it would increase the number of groups that each
node has to join and would cause frequent locks and updates to data
items.

This made the alternative option – aggregating all values measured by
the same node – most promising to us. As only a single node will change
the data item, no locking is required. However, now the calculating node
has to find all other nodes that have measured the signal strength of the
node to be located. To make the discovery process feasible, we decided to
add a data item for each node to store a list of the nodes having measured
its signal strength. Thus, the calculating node can scan the list and find all
the data items required to calculate the node’s position. As this node list
has to be updated by different nodes, locking is required. Fortunately, the
number of updates to the list typically remain in a manageable amount.

The position values for each node are stored in a single data item.
As there are typically less than five nodes actually updating this data
item, this does not cause heavy load. We end up with three data items
for every MagicMap node. For a node A there are A-Measurements where
this node stores all signal strengths it sensed, A-See stores all nodes that
sense signals from A and A-Position contains the calculated position of
this node. A node that wants to know the position of node A accesses
A-Position. If no other node has yet calculated the position and the data
item is empty, this node may want to calculate the position itself. To do



10

so the node first reads A-See and then accesses all measurement data
items of the nodes in this list.

5 System Evaluation

We conducted our tests using the MagicMap application as a case study
and compared the delay of data item updates in the client-server setup to
the DADALUS peer-to-peer setup at different numbers of participating
nodes (see Fig. 5).

C/S Avg. C/S Standard P2P Avg. P2P Standard
#Nodes Delay Deviation Delay Deviation

10 2.5 s 11 s 1.0 s 461 s

20 3.5 s 12 s 1.6 s 810 s

40 7.5 s 13 s 2.9 s 1,103 s

80 12.5 s 14.5 s 4.1 s 1,221 s

120 - - 4.2 s 1,069 s

Fig. 5. Comparing the data update delay of the standard client-server
and the DAEDALUS peer-to-peer setup

In the client-server setup, updates were done via a centralized server
using Web Service communication. The peer-to-peer setup utilized JXTA
broadcast/unicast and comprises locking the data item, updating it, and
finally releasing the lock.

For both setups we employed 8 Dell PDAs as ”low capable” nodes
and 8 desktop computers as ”high capable” nodes and simulated further
nodes. The ratio of low to high capable nodes was kept at constantly 1:1.
We tested each setup for a period of 6 hours and repeated the measure-
ment three times at different days. While we consider the obtained result
quite realistic, true real world measurement with heterogeneous devices
in a magnitude of hundreds or even thousands of nodes have to remain
for future work.

6 Conclusion and Outlook

We have proposed a peer-to-peer shared memory system designed for
ubiquitous computing scenarios. It provides stochastic locking and data



11

clustering to arrive at reasonable performance even at high scale and dy-
namics. In our WLAN positioning case study implementation we used
relatively well equipped Dell PDAs and measured performance parame-
ters. Using these measurements, we further investigated scalability and
other quality of service issues by simulation. The results indicate that,
regardless of group size, 95% of all data updates will not take longer than
6 seconds, provided that no conflicting writes occure.

Future work may integrate a way to preserve multiple versions of a
single data item. Also a privacy scheme has to be developed to protect
data and improve system acceptance – since user locations are definitely
very sensitive information.

References

1. Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Man-
fred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-grid: a self-organizing
structured p2p system. SIGMOD Record, 32(3):29–33, 2003.

2. Gabriel Antoniu, Luc Boug, and Mathieu Jan. Juxmem: An adaptive supportive
platform for data sharing on the grid. Scalable Computing: Practice and Experience,
6(3):45–55, November 2005.

3. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A
distributed anonymous information storage and retrieval system. Lecture Notes in
Computer Science, 2009, 2001.

4. P.K. Ibach, T. Hübner, and M. Schweigert. MagicMap - Kooperative Positions-
bestimmung über WLAN. In Chaos Communication Congress, Berlin, Germany,
December 2004.

5. P.K. Ibach, F. Schreiner, V. Stantchev, and H. Ziemek. Ortung drahtlos kommu-
nizierender Endgerte mit GRIPS/MagicMap. In 35. Jahrestagung der Gesellschaft
für Informatik, Bonn, Germany, September 2005.

6. P.K. Ibach, V. Stantchev, F. Lederer, A. Wei, Th. Herbst, and T. Kunze. WLAN-
based Asset Tracking for Warehouse Management. In IADIS International Confer-
ence e-Commerce, Porto, Portugal, December 2005.

7. Athicha Muthitacharoen, Robert Morris, Thomer Gil, and Benjie Chen. Ivy: A
read/write peer-to-peer file system. In Proceedings of the 5th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’02), Boston, Mas-
sachusetts, December 2002.

8. Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and John
Kubiatowicz. Pond: The OceanStore prototype. In Proceedings of the Conference
on File and Storage Technologies, pages 1–14, March 2003.


