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Abstract Automatic performance analysis of parallel programs caadmm-
plished by scanning event traces of program execution fieqpe representing
inefficient behavior. The temporal and spatial relatiopshietween individual
runtime events recorded in the event trace allow the retiogmf wait states as
a result of suboptimal parallel interaction. In our eani@rk [1], we have shown
how patterns related ta@PI point-to-point and collective communication can be
easily specified using common abstractions that represecuton-state infor-
mation and links between related events. In this articlepresent new abstrac-
tions targeting remote memory access (also referred toesided communica-
tion) as defined in thetpi-2 standard. We also describe how the general struc-
ture of these abstractions differs from our earlier workdccenmodate the more
complicated sequence of data-transfer and synchronizaterations required
for this type of communication. To demonstrate the benefitaiomethodology,
we specify typical performance properties related to adeescommunication.

1 Introduction

Remote memory acceseNA) describes the ability of a process to access a part of
the memory of a remote process directly without explicittipgration of the remote
process in the data transfer. Since all parameters for tteetdmnsfer are determined
by one process, it is also callethe-sided or single-sided communication. One-sided
communication is often made available to the programmehnénférm of platform or
vendor-specific libraries, such asMEM (Cray&GI) or LAPI (IBM). In 1997, one-sided
communication was added to the portafale standard version 2 [2].

On platforms with special hardware providimgA support, one-sided commu-
nication can be used to improve the efficiency of paralleliappions. For example,
NASA researchers reported a 39% improvement in throughput effgacingmpi-1
non-blocking withmp1-2 one-sided communication in a global atmosphere simulation
program [3]. As more and more scientists adopt this new paimatb better utilize the
underlying hardware, the demand for performance tools @ting RMA communica-
tion will increase. This is especially important in view betcomplicated sequences of
data transfer and synchronization operations involvediaméhct that thenpi specifica-
tion leaves a large degree of freedom to implementors ra@ggtde blocking behavior
of corresponding operations.



A performance-analysis technique successfully appliedraditional message-
passing applications is event tracing. An event trace cecperformance-relevant run-
time events, such as routine entries or exits or as sendithgezeiving point-to-point
messages. TheoJak tool [4] uses the temporal and spatial relationships betviee
dividual runtime events reflected in the event trace to reamgpatterns that occur as
a result of suboptimal parallel interaction. These pattere specified as compound
events to (i) allow the classification of inefficient behauy describing the exact cir-
cumstances causing it and to (ii) enable the quantificatiovad times incurred.

Compound events consist of multiple primitive events, asmged in the trace file,
and are connected by relationships, such as message teatisé are often specific to a
particular parallel programming model, suchvas. They may be further characterized
by constraints imposing, for example, a certain tempordéoof events. To keep the
pattern specifications as simple as possible and also to thak@multaneous search
for different patterns more efficienkoJAK includes a separate layer with common
abstractions representing execution-state informatmahliaks between related events
in terms of which the actual patterns are described.

In our earlier work [1], we have defined abstractions alonthwypical patterns
describing performance properties in the context of tiaw#l message passing#i-1)
and shared-memorppervp) programming. In [5], we provided informal descriptions
of patterns suitable to diagnose inefficiencies relatedn®-sided communication. In
this article, we outline the formal specification of theserabstractions and patterns.
Compared to the previous ones relatethto-1 andopervp, the abstractions presented
here are more complicated to accommodate the complex seegiehdata-transfer and
synchronization operations involved iirpi-2 one-sided communication and to reflect
the intricate inter-process relationships establishegrbyps denoting potential origins
or targets during communication epochs. The new pattewesli@en incorporated into
theK0OJAK tool, taking advantage of the recently added measuremgastructure for
one-sided communication events reported in [6]. As parhi effort, we have also
specified abstractions and patterns relategH®EM, which, however, are beyond the
scope of this paper.

The outline of this article is as follows: We start with a ghaescription ofvpi-2
RMA communication and synchronization functions in Sectidn &ection 3, we give a
brief overview of related work. In Section 4, we introduce ttlea of creating suitable
abstractions on top of which inefficiency patterns can beifipd and explain their
general structure. After that, we define abstractionsfar2 one-sided communication
in Section 5. To demonstrate the usefulness of our methggioRection 6 specifies
several exampl@pi-2 patterns containing wait states the application developey
wish to identify. In Section 7, we conclude our paper and giseoutlook on future
work.

2 MPI-2 One-sided Communication

The interface forMA operations defined bwyiri-2 differs from the vendor-specific
APIS in many respects. This is to ensure that it can be efficiemfyemented on a wide
variety of computing platforms even if a platform does naivide any direct hardware



support forRMA. The design behind ther1-2 RMA API specification is similar to that
of weakly coherent memory systems: correct ordering of nrgraocesses has to be
specified by the user with explicit synchronization calts; éfficiency, the implemen-
tation can delay communication operations until the syocization calls occur.

MPI does not allonRMA operations to access arbitrary memory locations. They can
access only designated parts of a process’ memory, whictafiegiwindows. Windows
must be explicitly initialized (with a call to/Pl "W n_cr eat e) and released (with
MPI W n_f r ee) by all processes that either provide memory or want to act@s
memory. These calls arm®llective between all participating partners and include an
internal barrier operation. Bgrigin MP1 denotes the process that performsrama
read or write operation, and ligrget the process in which the memory is accessed.

There are threeMA communication calls impi: MPI _Put transfers data from the
caller's memory to the target memomginote write); MPl _Get transfers data from the
target to the originremote read); and MPI _Accunul at e updates locations in the
target memory, for example, by replacing them with sums odpcts of the local and
remote data valuesdmote update). These operations am@nblocking: the call initiates
the transfer, but the transfer may continue after the calirns. The transfer is com-
pleted, both at the origin and the target, only when a sulesgmynchronization call is
issued by the caller on the involved window object. Only themthe transferred values
(and the associated communication buffers) availabled@tbogramRrRMA communi-
cation falls in two categoriesictive target andpassive target communication. In both
modes, the parameters of the data transfer are specifiedabtiig origin, however in
active mode, both origin and target processes have to jmaticin the synchronization
of theRMA accesses. Only in passive mode is the communication anthsymization
completely one-sided.

RMA accesses to locations inside a specific window must occyrwitthin an ac-
cess epoch for this window. Such an access epoch starts witlRsa synchronization
call, proceeds with any number of remote read, write, or teopdperations on this win-
dow, and finally completes with another (matching) syncization call. Additionally,
in active target communication, a target window can only d@eased within aexpo-
sure epoch. RMA operations issued by an origin process for a target winddhaecess
that target window during the same exposure epoch if andibtiigy were issued dur-
ing the same access epoch. Distinct epochs for a window attime process must be
disjoint. However, epochs pertaining to different windaway overlap.

MPI1 provides thre&®MA synchronization mechanisms:

Fences: TheMPl ‘W n_f ence collective synchronization call is used for active target
communication. An access epoch at an origin process or avsarp epoch at a
target process are started and completed by such a callr@depses who patrtic-
ipated in the creation of the window synchronize, which instntases includes a
barrier. The data transfered is only accessible to user aftelethe fence.

General Active Target Synchronization (GATS): Here, synchronization is reduced:
only pairs of communicating processes synchronize, ang dieeso only when
needed to correctly order accesses to a window with respdotél accesses to

Y In our model, we consider an accumulate operation as a $peciion of a put operation and,
therefore, distinguish only between get and put in the radei



that window. An access epoch is started at an origin proces®b_W n_st ar t
and is terminated by a call 9Pl "W n_conpl et e. The start call specifies the
group of targets for that epoch. An exposure epoch is stattadarget process by
MPI _W n_post andis completed byPl ‘W n_wai t or MPl W n_t est . Again,
the post call specifies the group of origin processes forgpath. Data written is
only accessible after the wait (or test) call, however dataanly be read after the
complete call.

Locks: Finally, shared and exclusive locks are provided throughMPl _Lock and
MPI _Unl ock calls. They are used for passive target communication. diitiad,
they also define the access epoch for this window at the oigita read or written
is only accessible from user code after the unlock operdtisncompleted.

It is implementation-defined whether some of the descrilsld are blocking or
nonblocking; for example, in contrast to other shared mgmpoygramming paradigms,
the lock call must not be blocking. For a complete descriptibmPi-2 RMA commu-
nication see [2].

3 Related Work

Currently, there are only very few tools that support the sneament and analysis of
one-sided communication and synchronization on a widegafglatforms. The well-
known Paradyn tool which performs an automatic on-lineleoéck search, was re-
cently extended to support several major featuresrof2 [7]. For RMA analysis, it col-
lects basic, process-local statistical data (i.e., temsbunts and execution time spent
in RMA functions). It does not take inter-process relationships account nor does it
provide detailed trace data. Also, it does not support tladyais of SHMEM programs.
The very portablerau performance analysis tool environment [8] supports prafili
and tracing ofvP1-2 andsHMEM one-sided communication. However, it only monitors
the entry and exit of thema functions; it does not providemA transfer statistics nor
are the transfers recorded in tracing mode. The commertial Trace Collector tool
(formerly known as VampirTrace) [9] recordsri execution traces. When used with
MPI-2, it does not measure the routines of the general activettsygehronization, cre-
ating the wrong impression that useful user calculatioeslane instead. Also, message
lines show the’RmA transfer as completed by the end of the put or get operatibithw
does not reflect the user-visible behavior, as specified &ywth-2 standard. Finally,

it does not record the collective naturen$i-2 window functions. Besides these there
are also some non-portable vendor tools with similar litiotss.

4 State Sequences and Pointer Attributes

Event tracing models the execution of a program as a sequdr®eents represent-
ing actions relevant to the purpose of the observation.&fbeg, the selection of event
types to be observed defines the view of program executioremt &ace can provide.
An event model defines the formal properties of that view. It comprises ao$etvent



types with an associated set of attributes and constragfisinlg correct event order-
ing. Each event has a location attribute as well as a watlkctone stamp. The event
location is an abstraction usually referring to the proaasthe thread generating an
event. Since the following discussion only considers pureapplications, the location
of an event can be regarded as equivalent tosthieprocess, as identified by the rank in
MPI _COVMMWORLD. Another attribute denotes the event type.éyant trace is a finite
indexed set of event® := {ey,...,e,, }. The indexing reflects the time-sequenced
order of event records in the trace file.

To be able to express complex relationships among the toasts of a compound
event, the event model of system observation can be extdndegtating instances of
two different categories of abstractions: (i) state segasrand (ii) pointer attributes.
The process of creating these abstractions is callest model enhancement because it
enhances the model’s capabilities to describe compleatgitus of execution behavior.
We summarize the key concepts below. The interested reaalerefer to [10] for more
details.

State sequencesAn event happening in a parallel system indicates a changs in
state, thus, events can be regarded as state transitiorexehhtrace can be seen as a
sequence of state transitions starting at an initial statiechanging into the next state,
event by event, until a final state is reached after the lashtevThe state entered as
the result of an event is a useful abstraction when spegfgommpound events that
represent inefficient behavior.

The overall state of a parallel system is characterized tigrdint aspects. For ex-
ample, one aspect might be the set of messages being tradsétra given moment,
another aspect might be the dynamic call stack of a procehsaad. Such a state aspect
can be conveniently characterized in terms of the eventcthesed that aspect’s state.
For each of these aspects we can defigiat@ sequencethat describes the evolution of
that aspect over time. A state sequence is inductively ditfiyea transition operator.
The transition operator is applied to the current state hadhext event to compute the
next state in the sequence. Since a state sequence desaipese aspect of the sys-
tem, we can combine all state sequences into a vector ofstgteences to obtain the
overall-state sequence.

In our earlier work, a state sequence has been defined as enseqof event sets.
Starting with the empty set, the transition operator eitheded the current event or
removed events related to the current event, changing thet et describing an as-
pect of the overall system. To conveniently retrieve eveis sf interest during trace
analysis, we have defined auxiliary functions that can bdiegpo individual states
of a sequence. For example, a scheme that proved to be useéldrtify individual
collective-operation instances was to collect all eveetsiiging to an instance and re-
trieving it using an auxiliary function upon its completidmeeded. Immediately after
this point, the transition operator removes the instanomfthe set. Later, we will see
that simple event sets are inconvenient to describe patievolving intertwined steps
of communication and synchronization, such as occur insded communication, and
that a hierarchical grouping of events becomes necessary.



Pointer attributes. Another useful abstraction is a link connecting relatechésieso

that one can navigate from one event to another related .ef&aneéxample is a link
from the event of receiving a message back to the correspgradient of sending it.
This mechanism permits navigation along a path of relatedtsvand the definition of
relationships among the constituents of a compound evémg ssich paths. A natural
way of representing such links is to provide event attrisimtéth pointer semantics,
which we callpointer attributes.

5 One-sided Abstractions

In this section, we describe abstractions suitable asibgildlocks for the specifica-
tion of inefficiency patterns related toPi-2 one-sided communication. For reasons of
brevity, we refrain from presenting the unabridged forsraliunderlying our abstrac-
tions and try to restrict ourselves to key concepts expthinenatural language as far
as possible. See [11] for a complete specification.

The state sequences and pointer attributes presented iartitle apply to the un-
derlyingkoJak event model, whose relevant portions are summarized ireTabl

Table 1. Event types irkOJAK relevant tompPI-2 RMA analysis.

Abstraction Eventtype |Type specific Attributes
Entering / leaving a region ENTER region id
(e.g., a function) ExiT region id
Leaving anupi collective function MPICEXxIT  |region id, comm id, root loc, sent,
recvd
Start/ end / origin oRMA PuT_1TS window id, rma id, length, dest loc
one-sided transfers PUT_1TE window id, rma id, length, src log

GET.1TO window id, rma id
GET.1TS window id, rma id, length, dest loc
GET1TE window id, rma id, length, src log

Leaving anMPI GATS function MPIWEXIT |window id, region id, group id
Leaving anmPI collectiveRMA functionMPIWCEXIT |window id, region id, comm id
Locking / unlocking armPi window  |WLOCK window id, lock loc, type

WUNLOCK window id, lock loc

The table lists type-specific attributes that are addedadattation attribute and the
timestamp mentioned in Section 4. For entries and exitsgibns and ,in particular,
MPI functions, we record which region was entered or left. In¢hse of collective
MPI functions, instead of “normal” BT events, special collective events are used to
capture the attributes of the collective operation. Thithis communicator, the root
process, and the amounts of data sent and received duringgération. Start and end
of RMA one-sided transfers are marked withiP1TS and RT_1TE (for remote writes
and updates) or with r_1TS and GT_1TE (for remote reads). For these events, we
collect the source and destination and the amount of datefeaed, as well as a unique



RMA operation identifier which allows an easier mapping df BE to the correspond-
ing #.1TS events in the analysis stage later on. Fomall RMA communication and
synchronization operations we also collect an identificafor the window on which
the operation was performed. Exits aP1-2 functions related to general active target
synchronization@ATs) are marked with a MPIWET event which also captures the
groups of origin or target processes. For collectm-2 RMA functions, we use an
MPIWCEXIT event and record the communicator that defines the groupoockepses
participating in the collective operation. Finallypi window lock and unlock opera-
tions are represented by MIck and WUNLOCK events. A more detailed description
of the mP1-2-specific events and their implementatiorkidiak can be found in [6].

Collective operations. In active target mode, access and exposure epochs may be en-
closed in collective fence synchronization operationse $nchronizing character of
these operations may result in wait times when processeh tha fence at different
points in time. The same applies to functions to create asttaewindows. To detect

wait states resulting from collective synchronization,veee defined a state sequence
modeling the progress of collective operationsram windows - similar to the one for
MPI-1 collective communication defined in our previous model.

Since the structure of themA-collective sequence is nearly identical to the se-
quence used in our previous model, we have introduced theepbdof generic meta-
sequences that can be instantiated with a type argumemhifsi the formulation of
sequences describing arbitrary collective operationsh@ve created a meta-sequence
€9 < T > collecting the exit events of collective operations catreit by members
of a groupg of processes. Depending on the typef these exit events, this group is
identified either by ampiI communicator, ampermp team, or arRMA window. Once
all events of typel’ belonging to a collective operation instance are preskatcom-
plete instance is removed upon the next event applied toethéa auxiliary function
complete < T > (e) is provided to query for instances completed by an ewewhich
is useful to measure waiting times. The state sequence llectiee window operations
is created by instantiating? < M PIW C Exit >. Note that this abstraction can also
be used fosHMEM collective operations.

Data transfers. Data transfers are modeled as pairs of events: (i) a stant @vié-
ating the transfer (i.e., r_1TS or GET_1TS) and (ii) an end event completing the
transfer (i.e., BT_1TE or GET_1TE). KOJAK’s event model observes ther1-2 syn-
chronization semantics and, therefore, reflects the usére behavior oMPI1-2 RMA
operations. Figure 1 shows the model for the three diffesgnthronization methods
defined bympi-2. The transfer line shown in the picture is not part of the nade is
only shown for clarity.

The endGATs calls is modeled with MPIWEIT events, the end of fences with
MPIWCEXIT events to capture their collective nature. The transfamt-etvent is placed
at the source process immediately after the begin of thespanding communication
function. However, the transfer-end event is placed at gsigiation process shortly
before the exit of th&@MmA synchronization function which completes the transfer ac-
cording to thevpi-2 standard rules. Unfortunately, this has an undesired $ideteAs
one can see in the figure, this results in a separation of taetidasfer for remote reads



from the correspondinigPl _Get function. To rectify this situation, we have introduced
a new event @T_1TO indicating time and location of the transfer’s origin.
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(a) MPI-2 get and put operations enclosed in fences.
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(c) MPI-2 get and put operations with locks.

Figure 1. Examples ok0JAK’S MPI-2 event model.

To access all events belonging to the same data transferaweedefined pointer
attributesstartptr andoriginptr, which connect the end event with its corresponding
start event and the start event with its corresponding mgent, respectively. Their
definition is based on state sequences collecting trangéete separately for each lo-
cation (i.e., process) - similar to the queue for point-terap messages defined in our
earlier model. The identification of events belonging toghme transfer is based on the
rmaid attribute assigned during trace generation. Subsequemlyse these pointer at-
tributes to reach start and origin events for given trarefet events. Beyond that, these



pointer attributes can be useful to calculate matrices afittounts of data transferred
between processes.

Access and exposure epochs in general active target synchimation. The most
challenging part of analyzingpPi-2 one-sided communication@ATS synchronization.
To facilitate cross-process analysissATs mode, it is necessary to identify correspond-
ing access and exposure epochs. Here, we present a mpltiastbod to recognize all
access epochs belonging to a given exposure epoch (andesisa)with the goal of
providing all data needed for their analysis. This is the tidsicate part of our model
as it requires considering sets of sets of events to refledtigrarchical grouping of the
events involved. Note that this constitutes an importafieince to the abstractions
defined in our earlier work. We start with an introduction bé toverall structure of
event sets related t®ATS communication:

Data transfer A put or get operation.

Put operation A PUT_1TE and its correspondingd®_1TS event connected by the
startptr attribute.

Get operation A GET_1TE and its correspondinge3_1TS and &T1_.1TO events
connected bytartptr andoriginptr attributes.

Epoch An access or exposure epoch.

Access epochincludes two MPIWCEKIT events, one for each call to
MPI Wnstart and MPI W n_conpl ete, plus all GET_.1TE events in
between at the same location and referencing the same wittde@present all get
operations belonging to this epoch. Note that put operatame represented by
their respective BT_1TE events inside the exposure epoch.

Exposure epochincludes two MPIWCKIT events, one for each call to
MPl W n_post and MPI W n_wai t, plus all RUT_1TE events in between
at the same location and referencing the same window to septall put oper-
ations belonging to this epoch. Note that get operationgepeesented by their
respective GT_1TE events inside the access epoch.

Epoch pair Union of an access epoch at locatibmvith a corresponding exposure
epoch at locatiort but without any communication events not related to commu-
nication between andk.

Access transactionUnion of an access epoch at locatibwith all corresponding ex-
posure epochs at locatiows, . . . , k,,, but without any communication events not

P2 — Exposure epoch —_— P2 |— Access epoch —_—
“» QN /;ut " ge/' put
§ §
£ P1 Access epoch = P1 Exposure epoch
3 3
= put get = put get
PO |—— Exposure epoch — PO |——— Access epoch —
time time

Figure 2. An access transaction (left) and an exposure transacigint)r



related to communication betwekandk,, . . ., k,,. Figure 2 (left) shows an access
transaction involving one access and two exposure epochs.

Exposure transaction Union of an exposure epoch at locatibwith all correspond-
ing access epochs at locatiohs . . ., k,, but without any communication events
not related to communication betwekandk;, . . ., k,,. Figure 2 (right) shows an
exposure transaction involving one exposure and two a@pmesshs.

MatchingGATs-based patterns requires the recognition of the abovestagin the
event trace. For this purpose, we have defined a hierarcdyist#m of state sequences
that detects higher-level structures step-by-step basdéalxer-level structures already
detected.

At the bottom, there are two state sequerite$ and¢!* responsible for collect-
ing all events belonging to an access or exposure epochgtpkate at locatiorh and
referring to windoww. The separation by window ensures that epochs belongifgto t
same window do not overlap in time at the same location. Omeevent set describing
an epoch is complete, the state is cleared upon the occercétice next event.

Completed epochs are combined into epoch pairs by a staterseg3* ", which
is defined for a target locatiok, an origin locationi, and a windoww. Before com-
bining the two epochs, however, all events not related tomamication between the
two sides of the pair are removed. Again, after completiothefwhole pair, the state
is cleared. Different from our earlier sequence, the statélsis sequence contain sets
of event sets. This is necessary to express the hierarajrioaping of events typi-
cal for GATs transactions that consist of zero or more data transfertevarclosed
by synchronization operations at each participating iocatThe auxiliary function
epoch_pair(e,l) extracts a complete epoch pair as a flat set @onstitutes the last
event of a pair witH being the location of the counter epoch.

The next level of composition is achieved through an auyilianctionezpta(e, P)
that can be applied to an evenand a set of epoch paif and that returns all epoch
pairs belonging to an exposure transactioa donstitutes the last event of this trans-
action. Using this and the function above, we have definedte sequence’® for
a location! and a windoww that successively adds epoch pairs as they are finished
until a full exposure transaction has been completed, wihieh can be extracted using
expta(e, P). | denotes the location of the access epoch. Similarly, we Hefieed a
function accta(e, P) and a state sequen@é™ to identify whole access transactions
for later performance analysis.

6 One-sided Patterns

Now, we use the abstractions defined in the previous seatispécify complex inef-
ficiency patterns spanning more than one process as a pigtedor their automatic
detection in event traces. The general structure of a pattansists of aoot event de-
scribed by a simple test condition and zero or more congiituthat can be located
from the root event using the abstractions. The root eveheitatest constituent event
because the search for the remaining ones occurs backveaueffi€¢iency reasons. An
additional rule specifies how to quantify the pattern’s parfance impact (i.e., the time



lost). Since it is the most complicated partvofi-2 one-sided communication, we have
focused mostly on patterns relateddars synchronization.

A major challenge in specifying appropriate detection naei$m has been the fact
that the latest event in an epoch pair can either belong to@asa or an exposure epoch.
This can lead to complicated case distinctions that are soéssary for traditional
point-to-point communication, where a send event alwagxeules a receive event.
Another important difference to point-to-point commurioca arises from the one-to-
many relationships existing between access and exposaohgmvolving more than
two processes. For example, during an exposure epoch, awinthy be accessed
by multiple processes each passing through a separatesagmesh according to our
definition above.
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Figure 3. Early TransferMPl _Get / Put () blocks during an access epoch until the related ex-
posure epoch is started wikPl "W n_post () .

Early Transfer. This pattern describes a situation that may happen when cocat-
ing in GATS mode.MPI _Get / Put () blocks during an access epoch until the related
exposure epoch is started with?l "W n_post () (Figure 3). Recognizing the pattern
requires considering epoch pairs. The root event is thelasit of an epoch pair and is
of type MPIWEXIT. It either completes the access or the exposure epoch andfdie,
either belongs t&/Pl "W n_conpl et e() ortoMPl Wnwait/test().

The complete set of epoch pairs finished by the root eventterméned by cal-
culatingepoch_pair(root, 1) for every locatiorl being a member of the partner group
recorded with the root event. If the root event belongs toxgosure epoch, the pattern
covers all corresponding access epochs already finished.

The waiting time is counted from the start of an access ojoeratithin the access
epoch until the corresponding post operation has beendshuréng the matching ex-
posure epoch. The begin of the access operation is idenisiad the pointer attributes
startptr andoriginptr in the case of a get operation.
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Figure 4. Early Wait: MPI W n_wai t () blocks during completion of an exposure epoch until
all related access epochs are completed.

Early Wait. This pattern represents the premature request to finishosare epoch
usingMPl ‘W n_wai t () and is depicted in Figure 4. We consider the request as pre-
mature if it was posted before the last access epoch’s @dwas been requested using
MPlI W n_conpl et e() within the same exposure transaction.

The recognition of this pattern requires the recognitioamExposure transaction.
Two cases must be distinguished: (i) the transaction is ¢etegbby an exposure epoch
or (i) the transaction is completed by an access epoch dffiitst case, the root event
is the MPIWEIT event of the wait operation and the full transaction is gastitained
by applyingexpta() to the root event and’* with [ being the location of the root
event.

In the second case, the root event is the MP IXMEevent of a complete operation
and, therefore, finishes an access epoch. Now, the deteetionanism needs to find all
exposure transactions finished with this access epochisTfaizomplished by iterating
over all exposure epochs belonging to epoch pairs complsteitie root event and
extracting completed exposure transactions fi@it using theezpta() function. The
exposure epochs are found by mearf86f-** with [ being the location of the root event
andk being a location in the root event’s partner group. Sinceipmsure transactions
we are looking for have been completed by the root event, wd teconside€”* at
the time of the root event. The waiting time is the period leswthe start of the wait
until the beginning of the latest complete operation in taasaction.

Late Complete. If a process delays the completion of an access epoch byrpeng
work between the last access and the complete operatiorhanddit operation has
already been posted, a situation named Late Complete offéigtge 5). It is actually
a sub-property of Early Wait. This pattern considers an sypdtransaction and mea-
sures the time spent in the wait operation between exitia¢pist put or get and entering
the corresponding complete (or the latest complete if thiegat/put is not unique). The
recognition of the exposure transaction is similar to Esvbit.
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Figure 5. Late Complete: Describes the time wasted between the lassa@nd the call to the
correspondind/Pl W n_conpl et e() operation.
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Figure 6. Late PostiMPl W n_st art () or MPl ‘W n_conpl et e() block because the corre-
sponding exposure epoch has not started yet.

Late Post. Refers to access-sided synchronization operations tbek bintil access is
granted by an exposing process (Figure 6). Depending omphénplementation, this
may happen either duringPl W n_start () or duringMPl ‘W n_conpl et e().
Since the exact blocking semantics are usually not knowngerformance tool, our
pattern counts time spent in both operations before théesapost call within the
same access transaction is issued in the casd&/BiawW n_st art () does not block.
Then, however, the time spent in the start operation will tmalsand the resulting
inaccuracy negligible. Whereas the semantics of the pediercloser to Early Transfer,
its recognition is very similar to Early Wait, only that itqeires the recognition of
an access transaction usiRg®. Like Early Wait, this pattern needs to distinguish
two cases: (i) the root event finishes an access epoch ohéiijdot event finishes an
exposure epoch, in which case the access transactionsthbgeadentified by iterating
over all related access epochs.
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Figure 7. Wait at Fence: Time spent waiting in front of a synchronizvg W n_f ence()
operation.

Wait at Fence. Whereas the previous patterns all refeiGiars synchronization, this
pattern covers the simpler case of synchronization Wih _W n_f ence() . Since
fence normally implies a barrier, waiting times occur if the fence is notatezd si-
multaneously by all participating processes (Figure 7)ylyEprocesses have to wait
for the latest one. The recognition of Wait at Fence is acdsimgd usinged <
MPIWC Ezit >, which collects collective window operation instanceseffetriev-
ing such an instance usingmplete < M PIW CEzit > () and identifying the latest
entry into the operation, the waiting times of different ggeses can be easily deter-
mined.

7 Conclusion

To the best of our knowledge, this is the first systematic aggm of automatically iden-
tifying wait states related t®PI-2 one-sided communication in event traces. Building
upon our earlier framework to identify wait states in traatigl two-sided and collective
communication, we have defined new abstractions repregghigjher-level events re-
lated to one-sided operations. These abstractions seaveszsul prerequisite to specify
inefficiency patterns in a way facilitating their automatetection in the event stream.

A major difficulty that has been solved within our new frameks the fact that
one-sided communication is accomplished in complex sempgenf synchronization
and communication, where the notion of send and receiveatipas is replaced by
the notion of access and exposure epochs comprising botthymization and access
operations. Also, a single epoch may perform communicatibim an entire group of
processes, which requires the recognition of all counteclep performed by members
of this group. In addition, the root event from where the tibmants of a pattern may
be located may reside on either side of an epoch pair, whiablvias complex case
distinctions on the side of the detection mechanism.

2 The internal barrier can be avoided by passing additionakshto the fence call as a second
parameter.



To demonstrate the usefulness of our framework, we havéfigubseveral complex
patterns of inefficient behavior targeting, in particulgeneral active target synchro-
nization, which can be challenging for programmers. Medlayive have completed
the implementation of akoJAk modules necessary for the instrumentation, measure-
ment, conversion, and analysis of parallel applicatiorsedaonmpPi-2 RMA and we
have a prototype version f@HMEM programs. Figure 8 shows a summary of the cur-
rently implemented pattern hierarchy. We have also extode internal test suite to
cover one-sided communication and used it to verify our enpntation. As a next
step, we need to evaluate the relevance of these pattengsresil-world applications.

Finally, we hope that some of the complexity in the analyais be avoided, when
transferring this approach to the new parallel analyzehigecture developed in the
SCALASCA [12] project. By exploiting distributed memory and parbfieocessing ca-
pabilities, the analysis is carried out entirely in main nogynrelaxing the efficiency-
motivated forward-analysis requirement imposed by ouviptes sequential analysis
approach.
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