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Abstract. With increasing number of processors available on nowadays
high performance computing systems, the mean time between failure
of these machines is decreasing. The ability of hardware and software
components to handle process failures is therefore getting increasingly
important. The objective of this paper is to present a fault tolerant ap-
proach for the implicit forward time integration of parabolic problems
using explicit formulas. This technique allows the application to recover
from process failures and to reconstruct the lost data of the failed pro-
cess(es) avoiding the roll-back operation required in most checkpoint-
restart schemes. The benchmark used to highlight the new algorithms
is the two dimensional heat equation solved with a first order implicit
Euler scheme.

1 Introduction

Today’s high performance computing (HPC) systems offer to scientists and en-
gineers powerful resources for scientific simulations. At the same time, the reli-
ability of the system becomes a paramount key: systems with tens of thousands
of processors face inherently a larger number of hardware and software failures,
since the mean time between a failure is related to the number of processors
and network interface cards (NICs). This is not necessarily a problem for short
running application utilizing a small/medium number of processors, since re-
running the application in case a failure occurs does not waste a large amount
of resources. However, for long running simulations requiring many processors,
aborting the entire simulation just because one processor has crashed is often not
an option, either because of the significant amount of resources being involved
in each run or because the application is critical within certain areas.
Nowadays, a single failing node or processor on a large HPC system does not
imply, that the entire machine has to go down. Typically, the parallel application
utilizing this node has to abort, all other applications on the machine are not
affected by the hardware failure. The reason that the parallel application, which
utilized the failed processor, has to abort is mainly because the most widespread
parallel programming paradigm MPI [1], is not capable of handling process fail-
ures. Several approaches how to overcome this problem have been proposed, most
of them relying on some forms of checkpoint-restart [2, 3]. While these solutions



require few modifications of the application source code, checkpoint-restart has
inherent performance and scalability limitations. Another approach suggest by
Fagg et. all [4] defines extensions to the MPI specification giving the user the
possibility to recognize, handle and recover from process failures. This approach
does not have built-in performance problems, requires however certain changes
in the source code, since it is the responsibility of the application to recover the
data of the failed processes.

In the last couple of years, several solutions have been proposed how to extend
numerical applications to handle process failures on the application level. Geist
et al. suggest a new class of so-called naturally fault tolerant algorithms [6]
based on mesh-less methods and chaotic relaxation. In-memory checkpointing
techniques [7] avoid expensive disk I/O operations by storing regular checkpoints
in the main memory of neighbor /spare processes. In case an error occurs, the data
of the failed processes can be reconstructed by using these data items. However,
the application has to roll-back to the last consistent distributed checkpoint,
loosing all the subsequent work and adding a significant overhead for applications
running on thousands of processors due to coordinated checkpoints. Further,
while it is fairly easy to recover numerically from a failure with a relaxation
scheme applied to an elliptic problem, the problem is far more difficult with the
time integration of a parabolic problem. As a matter of fact the integration back
in time is a very ill-posed problem. Further time integration of unsteady problem
may run for very long time and are more subject to process failures.

In this paper, we concentrate on the heat equation problem that is a rep-
resentative test case of the main difficulty and present a new explicit recovery
technique which avoid the roll-back operation and is numerically efficient.

The paper is organized as follows: section 2 defines our test-system and de-
scribes two different fault tolerant algorithms. Section 3 discusses implementa-
tion issues with respect to the communication and checkpointing scheme applied
in our algorithms. Section 4 presents some results for the recovery operation. Fi-
nally, section 5 summarizes the results of this paper and presents the ongoing
work in this area.

2 Description of the Fault Tolerant Algorithms

The work presented in this paper is based on the Fault Tolerant MPI (FT-MPI)
framework developed at the University of Tennessee. FT-MPI extends the MPI
specification by giving applications the possibility to discover process failures.
Furthermore, several options how to recover from a process failure are speci-
fied: the application can either continue execution without the failed processes
(COMM_MODE_BLANK) or replace them (COMM_-MODE_REBUILD). The
current implementation of the specification is based on the HARNESS frame-
work [5]. HARNESS provides an adaptive, reconfigurable runtime environment,
which is the basis for the services required by FT-MPI. While FT-MPI is capable
of surviving the simultaneous failing of n — 1 processes in an n processes job, it



remains up to the application developer to recover the user data, since FT-MPI
does not perform any (transparent) checkpointing of user-level data items.

2.1 Definition of the Problem

The model problem used throughout the paper is the two dimensional heat

equation as given by

ou
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We suppose that the time integration is done by a first order implicit Euler

scheme, W = AU™! 4 F(x,y,t"*1), and that (2 is partitioned into N

subdomains {2;, j = 1..N.

For the sake of simplicity, the explanations in the paper will be restricted to
the one dimensional heat equation problem 2 = (0, 1), discretized on a regular
cartesian grid, which leads to
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Furthermore, we assume that dt ~ h. In case process j fails, the most recent
values for U; are not available for continuing the computations, assuming that
the runtime environment can survive process failures. On each up and running
process the last computed solution is still available. The goal of the approach
presented in the paper is therefore to design an algorithm which reconstructs
the solution of the failed process(es) efficiently based on the checkpointed data.

The general fault tolerant approach is based on periodic checkpoints of the
local data, e.g. to persistent disks or spare processes. Furthermore, processes
are not coordinated for the checkpointing procedure for performance reasons,
e.g. each process might save its local data at different time steps. As soon as a
process failure occurs, the runtime environment will report it through a specific
error code to the application. The application initiates the necessary operations
to recover first the MPI environment and replace the failed process(es). In a
second step, the application has to ensure, that the data on the replacement
processes is consistent with the other processes. For this, the last checkpoint
of the failed processes has to be retrieved. However, since the checkpoint of
each process might have been taken at a different time step, this data does not
yet provide a consistent state across all processes. Therefore, we discuss two
mathematical methods based on time integration for constructing a consistent
state from the available, inconsistent checkpoints. This difficulty is characteristic
of a time dependent problem with no easy reversibility in time.

Figure 1 gives an example for the status of different process(es) after re-
spawning a failed process and retrieving the last available checkpoint for this
process. The thick lines represent the available data from which the recovery
procedure will start. The circle lines correspond to the lost solution which we are
trying to retrieve mathematically. The dashed lines are the boundary interfaces



between subdomains. In the following, we will review two numerical methods to
reconstruct a uniform approximation of UM at a consistent time step M on the
entire domain f2.
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2.2 The Forward Implicit Reconstruction

For the first approach, the application process j has to store every K time
steps its current solution U;l(] ). Additionally, the artificial boundary conditions

I = £2; N £2;41 have to be stored for all time steps m < M since the last

checkpoint. The solution UJM can then be reconstructed with the forward time
integration (2). Figure 2 demonstrates how the recovery works. The vertical thick
lines represent the boundary data that need to be stored, and the intervals with
circles are the unknowns of the reconstruction process.

The major advantage of this method is that it is using the same algorithm
as in the standard domain decomposition method. The only difference is, that it
is restricted to some specific subsets of the domain. Thus, the identical solution
UJM as if the process had no failures can be reconstructed. The major disad-
vantage of this approach is the increased communication volume and frequency.
While checkpointing the current solution U;-l @ is done every K time steps, the
boundary values have to be saved each time step for being able to correctly
reconstruct the solution of the failed process(es).

2.3 The Backward Explicit Reconstruction

This method does not require the storage of the boundary conditions of each
subdomain at each time step, but it allows to retrieve the interface data by
computation instead. For this, the method requires the solution for each subdo-
main j at two different time steps, n(j) and M, with M — n(j) = K > 0. The



solution at time step M is already available on each running process after the
failure occurred. The solution at time step n(j) corresponds to the last solution
on subdomain j saved to the spare memory before the failure happened. This is
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Fig. 3. Available data on main mem- Fig.4. Reconstruction procedure in
ory processors before starting the re- one dimension using explicit backward
construction algorithms. time stepping.

the starting point for the local reconstruction procedure. In this approach, only
the replacement of the crashed process and its neighbors are involved (figure 3)
in the reconstruction. The reconstruction process is split in two explicit numer-
ical schemes. The first one comes from the Forward Implicit scheme (2) which
provides an explicit formula when going backward in time:

n+1 n+1 n+1
Ur = U'(L+1 — 4t Uj+1 B 2UJ + Ujfl
J h2

n+1
! — B, (3)

The existence of the solution is granted by the forward integration in time. T'wo
difficulties arise: first, the numerical procedure is instable, and second, one is
restricted to the cone of dependence (Step 1 in figure 4). We have in Fourier
modes U = &, U, with 6, ~ —2(cos(k 2 m h) — 1), |k < &. The
expected error is at most in the order ;% where v is the machine precision and
L is the number of time steps which we can compute backwards. Therefore, the

backward time integration is still accurate up to time step L with ;7 ~ h? <=

L ~ igg 7 — 2. Then, the precision may deteriorate rapidly in time. Thus, to
stabilize the scheme, one can use an hyperbolic regularization such as on the

telegraph equation. Further details regarding this result can be found in [9, 10].

To construct the solution outside the cone of dependencies and therefore to
determine the solution at the subdomain interface, we used a standard procedure
in inverse heat problem, the so-called space marching method [8] (Step 2 in
figure 4). This method is second order but may require a regularization procedure
of the solution obtained inside the cone using the product of convolution ps *



u(z , t), where ps = ﬁ exp(—fs—z). The space marching scheme is given by:
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Equation 4 is unconditionally stable, given that § > \/QTdt. The neighbors of
the failed processes apply these two methods successively. At the end of the
procedure, these processes are able to provide to the replacement of the crashed
process the artificial boundary conditions. Then, the respawned process can re-
build its lost data using the forward time integration as shown in section 2.2
(Step 3 in figure 4). The backward explicit time integration is well known to be
an ill-posed problem and works only for few time steps. Indeed, for example if
we assime v = 107!2 and h = 0.05, the solution computed may blow up for
L > 7. This would be equivalent to set at most the frequency of backup time
step to K = 9. We refer to [9] for more details on the accuracy of our numerical
scheme. Let us mention also that neither the backward explicit scheme nor the
space marching scheme are limited to Cartesian grids.

In the following, we would like to compare the communication and check-
pointing overhead imposed by the two methods described up to now.

2.4 Performance Comparison of the Checkpointing Operations

The two methods described in the sections 2.2 and 2.3 have different require-
ments with respect to what data has to be checkpointed by each process. While
the backward explicit scheme requires only the storage of the domain of each
process every K time steps, the forward implicit scheme requires additionally
saving the boundary values in every time step.

For the performance comparison between both methods, two different codes
have been evaluated, one based on a two dimensional domain decomposition and
a code using a three dimensional domain decomposition. For the two-dimensional
tests (1), we tested three different problem sizes per processor ( 5050, 100 %100
and 200 * 200) on four different processor configurations ( 9, 16, 25 and 36 pro-
cesses). The processes are arranged in a regular two dimensional mesh. Each
column of the processor-mesh has a separate checkpoint processor assigned to
it. The data each checkpoint process receives is stored in their memory, avoid-
ing therefore expensive disk I/O operations. More details to the checkpointing
scheme are given in the section 3.

The cluster used for the 2-D testcase consisted of 154 Intel Itanium 2 proces-
sors with 4 GB of main memory and a Gigabit Ethernet interconnect. The results
for the configuration described above are displayed in figures (5-8). The abscissa
gives the checkpointing frequency in number of time steps between each check-
point, while the ordinate shows the overhead compared to the same code and
problem size without any checkpointing. As expected, the overhead is decreas-
ing with increasing distance between two subsequent checkpoints. Furthermore,
saving the boundary conditions each time step adds only a negligible overhead,



especially for the largest test case with 36 processes and 200 * 200 problem size
per process. However, for higher dimension problem, saving at each time step
the artificial boundary conditions slows the code execution down significantly.
While interface conditions are one dimension lower than the solution itself, the
additional message passing is interrupting the application work and data flow.
Figure 9 and 10 shows the checkpointing time cost on the 3D version of the
model problem defined in (1) for a small (50 * 50 % 50) and a larger problem size
(102 % 102 * 102). For the large problem, saving the boundary conditions with a
backup frequency of ten time steps slows the application down dramatically on
an Intel EM64T cluster with a Gigabit Ethernet network. As shown in 10, the
overhead compared to the method not requiring to store the boundary condition
can double in the worst case. Figure (5-6-7-8) for the two dimensional problem
and figure (9-10) for the three dimensional problem make us confident, that sav-
ing the local solution each 9 time steps brings a small overhead (between 5% and
15%) on the overall execution time. Moreover, such numerical methods are very
cheap in term of computation and very fast. Therefore, the focus of the following
sections is on the implementation aspects of the backward explicit scheme.

3 Implementation Details

As described in section 2.4, the checkpointing infrastructure utilized in the 2-
D test case is implemented by using two groups of processes: a solver group
composed by processes which will only solve the problem itself and a spare group
of processes whose main function is to store the data from solver processes using
local asynchronous checkpointing and non-blocking communications.

The communication between the solver processes and the checkpointing pro-
cesses is handled by an inter-communicator. Since it does not make sense to have
as many checkpointing processes as solver processes, the number of spare pro-
cesses is equal to the number of solver processes in the x-direction. Thus, while
the solver processes are arranged in the 2-D cartesian topology, the checkpoint
processes are forming a 1-D cartesian topology.

Figure 11 gives a geometrical representation of the two groups with a local
numbering. This figure shows furthermore, how the local checkpointing is ap-
plied for a configuration of 16 solver processes and 4 spare processes. Each spare
process is in charge of storing the data of a single subgroup, depicted by the
ellipses in figure 11. To further improve the performance, asynchronous check-
pointing has been used. Thus, each spare process stores the solution of only few
solver processes of its subgroup at each time step. This approach further reduces
the load on the network. As an example, suppose the backup time step is set
to 10. The solver processes j = [0 — 1 — 2 — 3] with floor(j/4) = 0 will send
to the checkpoint process [0 — 1 — 2 — 3] respectively their solution at the 15!
time step and then at the 11*" at the 21% time step and so one. The solver
processes j = [8 — 9 — 10 — 11] with floor(j/4) = 2 will send it to the spare
process [0 — 1 — 2 — 3] respectively at the 37¢ time step and then at the 13" at
the 2377 time step etc... Before starting the numerical reconstruction procedure
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discussed in section 2.3, the spare process(es) will send the last local solution(s)
of the failed process(es) to their replacement process(es). Additionally, the last
checkpoint of all neighbors of the failed process(es) will be distributed to them,
since this data is required in the algorithm presented previously as well. From
that on, the three step local reconstruction procedure can start and only the
crashed process(es) and its neighbors will be involved.

4 Results

In the following, we would like to present the costs of a recovery operations in
case a process failure occurs. Using the 2-D testcase described in section 2.4
we simulated a process failure and measured the execution time required for
respawning the failed process and to reconstruct the data of this process using
the backward explicit scheme. Two testcases using 9 and 16 solver processes
have been analyzed. The recovery time for both cases was in the order of 2% of
the overall execution time of the same simulation for the same number of time
steps. For the 9 processor case, the average recovery time of the application was
0.16 seconds for the small problem size and 0.2 seconds for the largest one. The
recovery time for the 16 processes test cases was in the same range, the recovery
operation after a process failure took up to 0.34 seconds. These results show,
that while the recovery time is increasing with the number processes used, its
overall effect is still negligible.

5 Summary

This paper discusses two approaches on how to handle process failures for parabolic
problems. Based on distributed and uncoordinated checkpointing, the numeri-



cal methods presented here can reconstruct a consistent state in the parallel
application, despite of storing checkpoints of various processes at different time
steps. The first method, the forward implicit scheme, requires for the recon-
struction procedure the boundary variables of each time step to be stored along
with the current solution. The second method, the backward explicit scheme,
only requires checkpointing the solution of each process every K time steps.
Performance results comparing both methods with respect to the checkpointing
overhead have been presented. We presented the results for recovery time of a
2-D heat equation. Currently ongoing work is focusing on the implementation of
these explicit methods for a 3D Reaction-Convection-Diffusion code simulating
the Air Quality Model [11].
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