Supporting Reconfigurable Parallel Multimedia
Applications

Maik Nijhuis, Herbert Bos, and Henri E. Bal

Department of Computer Science, Vrije Universiteit, Amsterdam
{maik,herbertb,bal t@cs.vu.nl

Abstract. Programming multimedia applications for System-on-Chip (SoC) ar-
chitectures is difficult because streaming communication, user event handling, re-
configuration, and parallelism have to be dealt with. We present Hinch, a runtime
system for multimedia applications, that efficiently exploits parallelism by run-
ning the application in a dataflow style. The application has to be implemented as
components that communicate using streams. Reconfigurability is supported by
a generic component interface. Measurements have been performed on a Space-
Cake SoC architecture simulator. Hinch can easily be ported to other shared-
memory architectures.

1 Introduction

The problem we address in this paper is the complexity of programming embedded
System-on-Chip (SoC) architectures with multiple processing units operating in paral-
lel. These architectures are becoming more and more popular in the field of consumer
electronics, especially in the area of multimedia applications. This trend, which is al-
ready visible, is likely to become even more important in the future for several reasons.
First, media applications increasingly require complex processing, for example new
coding algorithms and dynamic picture-in-picture. Second, the processing is applied to
increasing amounts of data per time-unit, such as multichannel HDTV. Third, media
applications often exhibit much potential parallelism. Fourth, hardware vendors have
already opted for multi-core processors as the key to speed, partly because it is hard
to crank up clock speeds at the same rate as in the past (e.g., Cell[1], Network pro-
cessors[2], Xeon, and Opteron). Unfortunately, programming such parallel hardware is
challenging and very much an open research problem.

In this paper, we present a solution that facilitates application development for SoC
architectures. While our target domain includes a broad range of applications, we fo-
cus our examples and discussion on TV sets, for ease of explanation. The SpaceCake
SoC architecture[3], developed by Philips, is used as the experimentation platform. For
testing purposes, the applications can also run natively on Linux.

By careful observation of several applications, we obtained a core set of proper-
ties that a multimedia run time system should cater for. We used these properties to
derive requirements for our system. Our system, named Hinch, exploits the following
properties of typical multimedia applications:

1. The application consists of several kernels that perform a specific operation, such as
motion estimation. To manage large numbers of kernels, we should be able to group
them intocomponentswhich in turn can be grouped into higher-level components.
The resulting application will be organized hierarchically like a tree with kernels at
the leaf nodes.

2. The configuration of kernels changes as a result of asynchronous user inputs and
other events. For example, by pressing a button a user may add a picture-in-picture
to the television screen. Hinch supports events and allows the kernel configuration
to change at run time. As we typically do not want to stop the complete applica-
tion as reconfiguration occurs, we allow subtrees in the tree-based hierarchy to be
reconfigured without interfering with user experience.

3. Individual nodes in the tree communicate either via streaming channels (e.g., a
motion estimator kernel calculates motion vectors that are used by a motion com-
pensated de-interlacer kernel), or via events (e.g., a component sends an event that
a sub-program has started). Hinch supports both streaming and events.

4. Multimedia applications exhibit both task- and data-parallelism. Hinch is able to
map the tree-based component hierarchy on hardware such that both forms of par-
allelism are exploited. For task parallelism this implies that different kernels are
mapped on different functional units. For data parallelism, multiple instances of a
kernel have to run concurrently.

While it is well known how to support the individual properties, to the best of our
knowledge, Hinch is the first system that supports all, while greatly simplifying the
SoC programmers’ task. Moreover, measurements show Hinch incurs only little over-
head and achieves a parallelization efficiency of about 95 % with 9 processors. The
major difficulties we encounter are combining task- and data-parallelism[4], support-
ing dynamic reconfiguration and handling asynchronous events. Hinch can be used as
a lower layer in a programming environment for building multimedia applications. We
plan to combine Hinch with higher level layers such as SPC-XML[5].

The remainder of this paper is organized as follows. In Section 2 we will explain
reconfigurability requirements. In Section 3 we will describe the design of Hinch. In
Section 4 we will show the results of using Hinch on the SpaceCake architecture. Re-
lated work is discussed in Section 5. Finally, the paper is concluded in Section 6.

2 Reconfigurability

Many multimedia applications need support for reconfiguration. This can be due to
user input (e.g., the user wants to add a picture-in-picture), or to available resources
(e.g., scaling down quality when less bandwidth is available). Reconfiguration can be
performed by adjusting parameters of application components (component reconfigu-
ration) or by adding and removing components while the application is running (appli-
cation reconfiguration). In this section, we give two examples of reconfigurable appli-
cations. Both applications are used for the experiments described in Section 4.

2.1 Add/Remove Components

In a dynamic Picture-In-Picture (PiP) application, the user can add or remove small
subpictures (of different TV channels) on the screen. The structure of this application is
shown in Fig. 1. The downscale components reduce the size of their inputs and the blend
component merges the downscaled images into the main background image. When a
picture is added, input and downscale components are created and connected to the
blender. The blender is then notified that it has to blend one more picture into its output.
When a picture is deleted, the blender is notified, the connection to the blender is re-
moved and the picture-in-picture input and downscale components are destroyed. The
notifications to the blender are an example of component reconfiguration.

Main Input

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1. Picture-in-Picture application

2.2 Replace Components

Temporal upscaling (increasing the frame rate) of a movie can be done at different
quality levels that have different computation requirements. A trivial temporal upscaler
simply copies existing images to create new images. An advanced temporal up scaler
can perform motion estimation and use the motion vectors to compute the new images.

We have created an application ('Tups’) that performs temporal upscaling of an
image sequence by a given factor. Copy mode and motion estimation mode are both
supported. The application layout for both modes is shown in Fig. 2. The application
can dynamically switch between the two modes by replacing the middle component,
for instance depending on available resources.

v £ A

Motion Motion—aware
Estimator Upscaler

e

(a) b)

Fig. 2. Tups application: copy mode (a) and motion estimation mode (b)

3 Run Time System

In this section we explain the design of Hinch and the model for applications that use it.
Hinch, as well as the applications that use it, are written in C. Hinch consists of several
modules that provide functionality to the application and/or to other Hinch modules.
These modules are also described below.

3.1 Application Layout

A Hinch application consists of components that are actors in a dataflow process net-
work[6]. The application is run by executiriigrationsof the dataflow graph, in which

each actor is fired one or more times. One firing corresponds to running one iteration
of the component. A graph iteration begins by scheduling the initial component(s). The
other components are scheduled as soon as their predecessors in the dataflow graph
have finished. There is no restriction on the shape of the dataflow graph. For a video
processing application, the components typically contain image processing kernels. One
iteration then consists of processing one image frame from the video stream.

Dataflow graphs can be nested using special grouping components. Grouping com-
ponents contain child components and connect these into a dataflow graph. When an
iteration of a grouping component is run, an iteration of the dataflow graph inside the
grouping component is run. When this 'inner’ iteration has finished, the successors of
the grouping component in the higher level dataflow graph are scheduled.

All components have a generic interface, which provides an abstraction of the com-
ponent. This interface contains functions to create, configure and destroy instances of
the component, to get its properties, and to run an iteration of the component. A group-
ing component has extra functions to add, remove, replace, and (dis)connect its con-
tained children. All functions except the run function are used to configure the appli-
cation, at the start of the application. An application can also be reconfigured at run
time using these functions. The connections between children correspond to dataflow
dependencies. Connections can also include a data stream, as will be explained in the
next subsection.

A central job queue in shared memory is used to accomplish automatic load balanc-
ing. To enable usage of Hinch on distributed memory machines, we plan to scale the job
gueue to a distributed version using the algorithms of [7]. A parallel program consists of
multiple threads that continuously execute jobs from the queue, and add new jobs to the
gueue that are ready to run. We avoid expensive context switches by running a single
thread per processor. A job in Hinch consists of running an iteration of a component.
When a job has finished, the dataflow graph is used to find the successors of this job.
These are added to the job queue if they are ready to be run.

To build a parallel program, the programmer only has to build components, specify
the connections between these components, and call some initialization routines. Using
the job queue, Hinch makes sure that the program runs in parallel. We plan to add an
XML layer on top of Hinch for specifying the component connections. This XML layer
can then also be used for performance prediction using PAM-SoCJ8].

The Hinch application model resembles that of Koala[9]. A Hinch component iter-
ation corresponds to the execution of a Koala task. As in Koala, Hinch components can
only be coupled if their interfaces match and components can be grouped recursively.

3.2 Streams

Components can communicate in a streaming fashion using a stream module. This mod-
ules provides similar streaming functions as the Streamlt[10] language and a commu-
nication abstraction similar to Space-Time Memory[11]. A component does not know
with whom itis communicating. It merely has to read and write the appropriate streams,
which are parameters to then function. This way, a component can easily be reused

in another part of the application or in a different application.

Streams are implemented using an efficient zero-copy protocol. The producer can
write to the stream after allocating a write buffer. When it is finished writing, it com-
mits the buffer. The consumer can then read the data from the same buffer. The zero-
copy protocol is only possible at shared memory machines. For distributed memory
machines, a different implementation must be used.

Multicast streams are also supported by Hinch. These streams are shared by multiple
dataflow connections. There is also support for reading a fixed amount of old data,
which has been used in previous iterations, from the stream. This is similar to the peek
functionality in StreamIt[10].

3.3 Task Parallelism

Task parallelism is supported by Hinch in two ways, as shown in Fig. 3. The circles
indicate components, and the arrows indicate connections between them. We assume
one iteration of the application processes one image frame using multiple image pro-
cessing components. The first type of task parallelism is running multiple iterations
concurrently in a pipeline style. When component A has finished frame 1, A could be
processing frame 2 while B is processing frame 1. The second type of task parallelism
is running independent tasks concurrently. Components V and W have no dependency
so they can be concurrently active in the same iteration. Both types of task parallelism
can be combined. For example, if V and W both have finished frame 2 they can start
processing frame 3 while X is processing frame 2.

AV
(Ar—>B)—>0) \@/@)

(a) (b)

Fig. 3. Task parallelism. Pipeline-style (a) and independent tasks (b)

3.4 Data Parallelism

Normally, a component iteration processes the data it gets by reading its input streams
once (say one image frame). However, often this processing can be done in parallel, in
which case a component iteration consists of processstigemultiple lines) instead

of a frame. Hinch has slicing helper functions for components, which contain common
code needed to code slicing. These functions tell the component which slice of which
frame is to be processed, do the appropriate stream reading and writing, and handle
out-of-order execution of sliced iterations. By using these functions, exploiting data
parallelism becomes easy.

One might argue that data parallelism can also be obtained by reducing the stream
granularity from a frame to a slice. However, processing a slice usually requires the
data in the previous and next slice for the pixels at the boundary, for example with
convolution kernels. Programming a component is more difficult in this case because
boundary conditions have to be dealt with. In our approach, this is not necessary since
the whole frame is in a continuous memory area.

3.5 Reconfiguration and Event Handling

Reconfigurability is supported by the general component interface. Components can
be dynamically created, destroyed, grouped, and connected at run time. To avoid race
conditions, the application parts that are to be reconfigured are made idle before recon-
figurating.

The replace function in the grouping component interface can replace a child com-
ponent by a component that has the same I/O interface. Without the replace function,
this has to be accomplished by removing all connections to the old child, removing the
child, adding the new child, and creating the connections to the new child. With the
replace function, removing and creating the connections is not necessary because the
new child has the same interface.

Asynchronous events can easily be handled by buffering them in an event queue, as
shown in Fig. 4. The event queue is periodically emptied by the manager component,
which is run at the end of every iteration. It regulates the number of concurrent active
iterations in the application using the control flow connection to the start of the appli-
cation. The manager component can halt the program for reconfiguration by lowering
the number of active iterations to zero.

el

1
\o\yasyncevent Buentqueue
Application Manager

/
control flow

Fig. 4. Event queue (Application overview)

4 Experiments

To verify the usefulness of Hinch, we measured parallelization efficiency and reconfig-
urability overhead for the picture-in-picture (PiP) and temporal up scaler (Tups) appli-
cations. The temporal up scaler doubles the amount of image frames in its input stream
by inserting a new image frame after each image. All measurements were done using
720x576 video files. 1/0 (reading the files and writing the final result) is not included in
the measurements.

Since SpaceCake[3] hardware is not yet available, all experiments are run using
simulation software, which simulates a tile with multiple TriMedia cores. A TriMedia
is a VLIW processor aimed at multimedia applications. At a tile, each TriMedia has its
own level 1 cache. The level 2 cache is shared between all TriMedias. The SpaceCake
architecture allows multiple tiles to be combined. We plan to add support for multiple
tiles in the future.

The TriMedia cycle counter is used for all measurements. For the experiments on
a single processor, we turned off all inter-processor synchronization, e.g., locking of
shared variables. All other measurements use a parallel version. The number of slices
is set to 4 for the picture-in-picture applications and 9 for the temporal up scaling ap-
plications. These settings yielded the best results.

4.1 Parallelism

Figure 5 shows the speedup of processing 96 image frames with four variants of the PiP
application. These variants (PiP-0, PiP-1, PiP-2 and PiP-3) process zero, one, two, and
three pictures-in-picture, respectively. PiP-0 does not exhibit much speedup because it
is a trivial application that merely copies its input to its output. However, the speedup
stays constant when run at a larger number of nodes, which shows that the overhead of
Hinch does not increase with the number of nodes. PiP-1 reaches maximum speedup at
8 nodes. There is no more parallelism to exploit when PiP-1 is run at 9 nodes.

Figure 6 shows the speedup of the Tups application in copy mode (tups-copy), mo-
tion estimation mode (tups-me), and in a reconfigurable mode (tups-reconf). Tups-copy
creates the newly inserted images by copying the previous image. Tups-me generates
the newly inserted images from the two adjacent images using motion estimation tech-
niques. Tups-reconf is a mixture of tups-copy and tups-me and will be explained in the
next subsection. These applications process 68 image frames. Again, the trivial appli-
cation (tups-copy) does not exhibit a good speedup and its speedup stays constant when
run at a larger number of nodes.

Both Fig. 5 and Fig. 6 show that Hinch provides the means to efficiently parallelize
these multimedia applications. At nine nodes, the efficiency of PiP-2 and tups-me are
94,2 % and 95,8 %, respectively.

4.2 Reconfigurability

We have created four reconfigurable applications. Three of these are variants of the PiP
application, the other is a variant of the Tups application. These applications process an
equal amount of frames as their non-reconfigurable counterparts. The four variants are:

g ideal speedup g ideal speedup
—=— PiP-0 —=— tups-copy
—e— PiP-1 —e— tups-me
64 ——PiP-2 6- —*— tups-reconf
2 —=— PiP-3 2
= S
]]
@ D
&4 2 4+
2 -— - u 2]
O T T T T T T T T 1 O T T T T T T T T 1
o 1 2 3 4 5 6 7 8 9 0o 1 2 3 4 5 6 7 8 9
nodes nodes
Fig. 5. PiP application speedup Fig. 6. Tups application speedup

1. PiP-01. Half of the frames have no pictures-in-picture, the other half have one
picture-in-picture.

2. PiP-12. Half of the frames has one picture-in-picture, the other half has two pic-
tures-in-picture.

3. PiP-012. One third of the frames has no pictures-in-picture, one third has one
picture-in-picture, and one third has two pictures-in-picture.

4. Tups-reconf. Half of the generated frames is generated in copy-mode. For the other
half motion-estimation mode is used.

All reconfigurations are matched by their inverse to cancel out latency differences.
Because we are interested in average reconfiguration latency, multiple reconfiguration
pairs are performed at regular intervals. The PiP variants perform eight reconfigurations
in total. Tups-reconf performs four reconfigurations.

Overhead. To measure reconfigurability overhead, we compared the run time of these
applications to the run time of equivalent static applications. For example, the run time
of PiP-01 is compared to the average run time of PiP-0 and PiP-1.

Figure 7 shows the overhead of the reconfigurable applications using one to eight
processors. We have omitted measurements at 9 processors due to the result of PiP-1
at 9 processors. (PiP-1 does not scale beyond 8 processors, and all PiP overheads are
(partly) based on the performance of PiP-1.) An overhead factor of 1.01 means the
reconfigurable program is 1 percent slower than the corresponding static applications.

Although reconfiguration occurs very often (once every 12 frames for the PiP appli-
cations, once every 17 frame for Tups-reconf), the overhead is at most 8 %. When the
application is stopped for reconfiguration, the amount of parallelism in the application
drops until the application is run sequentially. Thus, on average there is less parallelism
to exploit in the reconfigurable applications and the reconfigurable applications will
perform relatively worse on larger numbers of nodes. This causes the reconfigurability
overhead to increase with the number of nodes, which is is clearly visible in Fig. 7.

Latency. We have measured the latency of reconfigurations. This is the time between
the occurrence of the asynchronous event and the completion of the reconfiguration. The
latency includes waiting until the application is idle and performing the reconfiguration.

Figure 8 shows the average reconfiguration latency. Because anomalies occur at 1
and 2 nodes, we have not included measurements at 1 and 2 nodes. These anomalies
occur when the event is generated just before or after many computations. For example,
in a sequential application it can happen that all active iterations are about to start the
manager (see Fig. 4). When an event occurs at this point, there are no computation jobs
in the job queue (only small manager jobs) and the application quickly becomes idle.
On the other hand, latency will be high if many computation jobs have been scheduled
when the event occurs. When the applications are run at higher number of nodes this
effect becomes less visible and the average latency goes to 40 ms which is a single
image frame in a 25 Hz video stream.

The individual latency measurements show that the latency depends on the com-
plexity of the program before reconfiguration. This is because the complexity deter-
mines the (average) number of outstanding computations and thereby the time before
the application is idle. For example, in the Tups-reconf application, the latency of going
from copy-mode to motion-estimation mode is 10 ms (at 3 or more nodes). The latency
of going from motion-estimation mode to copy-mode varies between 56 and 85 ms at 3
or more nodes.

—e— PiP-01 —e— PiP-01
1.08 . —a— PiP-12
—~— Eﬁiéfz 60 —+— PiP-012
1.064 —— Tups-reconf - —— Tups-reconf
E ‘i 501
S 1.04- g
°© E 404
1.02 304
1.00 T T T T T T 1
1 2 3 4 5 6 7 8 20 3 A % é % é é

nodes nodes

Fig. 7. Reconfigurability overhead Fig. 8. Reconfigurability latency

5 Related Work

There are many other systems that simplify programming multimedia applications for
embedded architectures by providing abstractions. Often these systems include hard-
ware design. Some systems mainly focus on hardware design, like Cheops[12] and
Imagine[13].

At Philips Research many of these systems have been developed, e.g., TTL[14],
YAPI[15] and C-HEAP[16]. These systems model an application as a Kahn Process

Network (KPN)[17], which is a number of independent tasks that communicate using
FIFO channels. These tasks and FIFO channels can be implemented in hardware or
software, using shared or distributed memory. Task parallelism is supported this way,
however, data parallelism is not. Load balancing is mostly done statically by mapping
the tasks to fixed resources. C-HEAP has the most advanced reconfiguration support of
these systems.

The SmartCam project[18] aims at simplifying building image processing appli-
cations for use in smart camera’s. Skeletons[19] are used to provide an implemen-
tation abstraction and to exploit data parallelism. Tasks can be mapped on different
hardware in different (heterogeneous) hardware architectures. Memory is distributed in
these architectures. Unlike Hinch, SmartCam does not do reconfiguration or dynamic
task scheduling. User events are absent in the SmartCam application domain.

The Model Integrated Real-Time Imagine Processing System[20] is a programming
environment for building image processing applications, which are run on a network of
DSPs. MIRTIS generates a parallel image processing application from sequential kernel
code, data dependencies and the application graph. The generated application includes
a run time system for a distributed computing platform. MIRTIS supports both data and
task parallelism. The mapping of the application to the parallel hardware is done stati-
cally. Dynamic load balancing and runtime reconfiguration are therefore not supported.
User events do not occur in the applications MIRTIS supports. MIRTIS deliberately
does not have support for (designing) specialized hardware.

The Nizza framework[21] has a similar structure as Hinch. It also processes stream-
ing multimedia applications in dataflow-style, allowing task parallelism. Data paral-
lelism can be exploited using 'combinatorial’ modules. The application can stop Nizza
if it wants to perform reconfiguration and restart Nizza afterwards. Unlike Hinch, Nizza
targets desktop applications instead of embedded applications. Therefore, Nizza does
not have support for (designing) specialized hardware and distributed memaory. To our
knowledge, Nizza does not support handling user events.

Various projects are dealing with programming SoC architectures in the domain
of network processing. Among these projects are NP-Click[22], NEPAL[23], Shangri-
La[24], the system described in [25], and Netbind [26]. Like multimedia applications,
network processing applications also process streams of data (network packets) by mul-
tiple kernels. However, these kernels are much smaller than multimedia kernels. To
exploit this fine grained parallelism, the systems cooperate closely with the hardware.

Table 1 provides a summary of the features of the mentioned multimedia program-
ming systems and Hinch. The first two columns indicate the presence of support for
task- and data-parallelism, respectively. The load balancing column indicates the qual-
ity of the load balancing features of the system. The Dist. mem column indicates if the
system targets distributed memory architectures. A ‘-’ in this column means the sys-
tem targets shared memory architectures. The events column indicates if the system has
support for handling asynchronous user events. Finally, the hardware column shows if
the system has support for specialized acceleration hardware in the target architecture.
Table 1 shows that distributed memory and special hardware are currently not supported
by Hinch. We plan to include support for this in the future.

Table 1. Comparison of related work. ‘+' = excellent support, ‘0’ = supported, -’ = bad / no
support, ‘N/A’ = not applicable

Feature |Task paiData paiLoad balancingDist. menjReconfigurabilityEventsHardware

C-HEAP + - 0 0 + 0 o}
SmartCa + + o) 0 - N/A o]
MIRTIS + + 0] 0 - N/A -
Nizza + 0 + - 0 - -
Hinch + + + - + + _

6 Conclusion

We have presented Hinch, a runtime system for multimedia applications. Hinch has
support for streaming, event handling, reconfiguration, data parallelism and task paral-
lelism, amongst others. Hinch also provides automatic load balancing of the application
when run on a shared-memory architecture, by running the application in a data-flow
style. Experiments show that applications using Hinch can be efficiently parallelized
and the overhead of reconfigurating a running program is low.

Future work includes building a layer on top of Hinch that provides a simple in-
terface for specifying multimedia applications. This layer will automatically generate
optimized applications that use Hinch. We plan to include performance prediction in
this layer. Other future work tracks are adding support for specialized hardware and
more complex memory architectures, such as multiple SocC tiles.

Acknowledgments

We would like to thank Philips Research, especially Paul Stravers, for their support.
This work is performed in the context of STW/PROGRESS project DES.6397, which
is supported by the Dutch government.

References

1. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: Introduction
to the Cell multiprocessor. IBM Journal of Research and Develop#Af#at5) (2005) 589

2. Intel Corporation: Network processors. http://www.intel.com (2006)

3. Stravers, P., Hoogerbrugge, J.: Single chip multiprocessing for consumer electronics. In
Bhattacharyya, ed.: Domain-Specific Processors. Marcel Dekker (2003)

4. Bal, H.E., Haines, M.: Approaches for integrating task and data parallelism. IEEE Concur-
rency6(3) (1998) 74-84

5. Gonalez-Escribano, A., van Gemund, A.J., noso Payo, V.C.: An XML structured represen-
tation for nested-parallel programming languages. In: Proc. CPC, Chiemsee (2004) 149-160

6. Lee, E.A., Parks, T.M.: Dataflow process networks. In: Proc. of the IEEE. (1995) 773-799

7. van Nieuwpoort, R.V,, Kielmann, T., Bal, H.E.: Efficient load balancing for wide-area divide-
and-conquer applications. In: Proc. PPoPP’01, Snowbird, UT (2001)

8. Varbanescu, A.L., Sips, H., van Gemund, A.: PAM-SoC: A toolchain for predicting MPSoC
performance. In: Proc. EuroPAR '06, Dresden (2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala component model

for consumer electronics software. Comp88{3) (2000) 78—-85

Thies, W., Karczmarek, M., Amarasinghe, S.P.: Streamlt: A language for streaming applica-
tions. In: Proc. CC 2002, Grenoble, France (2002) 179-196

Ramachandran, U., Nikhil, R.S., Harel, N., Rehg, J.M., Knobe, K.: Space-time mem-
ory: A parallel programming abstraction for interactive multimedia applications. In: Proc.
PPoPP’99, Atlanta, Georgia (1999) 183-192

Bove, V., Watlington, J.: Cheops: A reconfigurable data-flow system for video processing.
IEEE Trans. on Circuits and Systems for Video Technol6@@) (1995) 140-149

Serebrin, B., Owens, J.D., Chen, C.H., Crago, S.P., Kapasi, U.J., Khailany, B., Mattson, P.,
Namkoong, J., Rixner, S., Dally, W.D.: A stream processor development platform. In: Proc.
20th International Conference on Computer Design, Freiburg, Germany (2002)

van der Wolf, P., de Kock, E., Henriksson, T., Kruijtzer, W., Essink, G.: Design and program-
ming of embedded multiprocessors: an interface-centric approach. In: Proc. CODES+ISSS.
(2004) 206-217

de Kock, E.A., Smits, W.J.M., van der Wolf, P., Brunel, J.V., Kruijtzer, W.M., Lieverse, P.,
Vissers, K.A., Essink, G.: Yapi: application modeling for signal processing systems. In: Proc.
37th Design Automation Conference, New York, NY, USA, ACM Press (2000) 402—-405
Nieuwland, A., Kang, J., Gangwal, O.P., Sethuraman, R.aBNs Goossens, K., Llopis,

R.P., Lippens, P.: C-HEAP: A heterogeneous multi-processor architecture template and scal-
able and flexible protocol for the design of embedded signal processing systems. Design
Automation for Embedded Systermg) (2002) 233—-270

Kahn, G.: The semantics of a simple language for parallel programming. In Rosenfeld,
J.L., ed.: Information processing, Stockholm, Sweden, North Holland, Amsterdam (1974)
471-475

Caarls, W., Jonker, P., Corporaal, H.: Skeletons and asynchronous RPC for embedded data-
and task parallel image processing. In: Proc. MVA2005, Tokyo (2005) 384—-387

Cole, M.1.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press & Pitman (1989)

Moore, M.S., Sztipanovitz, J., Karsai, G., Nichols, J.: A model-integrated program synthesis
environment for parallel/real-time image processing. In: Proc. Par. Dist. Methods for Image
Processing. (1997) 31-45

Tanguay, D., Gelb, D., Baker, H.H.: Nizza: A framework for developing real-time streaming
multimedia applications. Technical Report HPL-2004-132, HP Labs, Palo Alto (2004)

Shah, N., Plishker, W., Keutzer, K.: NP-Click: A programming model for the Intel IXP1200.
In: Proc. NP-2 conjunction with HPCA-9, Anaheim, California (2003)

Memik, G., Mangione-Smith, W.: Nepal: A framework for efficiently structuring applica-
tions for network processors. In: Proc. NP-2 in conjunction with HPCA-9, Anaheim, Cali-
fornia (2003)

Chen, M.K,, Li, X.F., Lian, R., Lin, J.H., Liu, L., Liu, T., Ju, R.: Shangri-La: achieving high
performance from compiled network applications while enabling ease of programming. In:
Proc. ACM SIGPLAN PLDI, New York, NY, USA, ACM Press (2005) 224-236

Ramaswamy, R., Weng, N., Wolf, T.: Application analysis and resource mapping for het-
erogeneous network processor architectures. In: Proc. NP-3 in conjunction with HPCA-10,
Madrid, Spain (2004) 103-119

Campbell, A.T., Chou, S.T., Kounavis, M.E., Stachtos, V.D., Vincente, J.: Netbind: A bind-
ing tool for constructing data paths in network processor-based routers. In: Proc. IEEE
OPENARCH, New York, NY (2002)

